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Summary. We present a Bayesian approach to analyze matched “case–control” data with multiple disease
states. The probability of disease development is described by a multinomial logistic regression model. The
exposure distribution depends on the disease state and could vary across strata. In such a model, the
number of stratum effect parameters grows in direct proportion to the sample size leading to inconsistent
MLEs for the parameters of interest even when one uses a retrospective conditional likelihood. We adopt
a semiparametric Bayesian framework instead, assuming a Dirichlet process prior with a mixing normal
distribution on the distribution of the stratum effects. We also account for possible missingness in the
exposure variable in our model. The actual estimation is carried out through a Markov chain Monte Carlo
numerical integration scheme. The proposed methodology is illustrated through simulation and an example
of a matched study on low birth weight of newborns (Hosmer, D. A. and Lemeshow, S., 2000, Applied Logistic
Regression) with two possible disease groups matched with a control group.
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1. Introduction
Case–control studies have received a great deal of attention
over the last few decades both from statisticians and epidemi-
ologists. The analysis is based on the comparison of persons
having a disease (the cases) with those not having the disease
(the controls) and assesses the effect of exposure variables on
the probability of developing the disease. For efficient use of
data, in such studies, one usually implements a matched de-
sign, matching one or more controls with a case on the basis
of some prognostic factors such as age, family background,
etc. In some such situations it is natural to note that the dis-
ease state might have more than one category, i.e., we may
have subdivisions within the “cases.” For example, for pa-
tients diagnosed with cancer, they may have cancer of stage
I, stage II, or stage III at the time of the diagnosis which is
an example of ordinal disease categories. We may also notice
nominal categories for disease states such as patients classi-
fied into having one eye or both eyes damaged. To our best
knowledge there has been hardly any Bayesian and very little
frequentist work for analyzing matched data when one has
multiple disease states. Along with considering polytomous
disease states, we extend the typical methodology for ana-
lyzing case–control data in the following way. In analyzing
a matched study one usually considers an appropriate con-
ditional likelihood to eliminate the stratum effect parameters
involved in determining the disease probability, while nonspe-
cific exposure distributions are assumed to satisfy Prentice–
Pyke (Prentice and Pyke, 1979) type constraints. In contrast,

we assume the exposure distribution to be a member of the
exponential family and allow for the exposure distribution to
vary across strata. In such a situation, even the conditional
likelihood involves some nuisance parameters that grow in
direct proportion to sample size, giving rise to inconsistency
of the conditional maximum likelihood estimates (MLEs). We
adopt a semiparametric Bayesian approach to circumvent this
problem and estimate the parameters of interest through a
numerical computation scheme. We also account for possible
missingness in the exposure variable through modeling the
distribution of the exposure variable.

The example considered in this article involves a matched
case–control data set coming from a low–birth weight study
conducted by the Baystate Medical Center in Springfield,
Massachusetts. The data set is discussed in Hosmer and
Lemeshow (2000, Section 1.6.2) and is used as an illustrative
example of analyzing a matched case–control study in Chap-
ter 7 of their book. Low birth weight, defined as birth weight
less than 2500 g, is a cause of concern for a newborn as infant
mortality and birth defect rates are very high for low–birth
weight babies. The data were matched according to the age of
the mother. A woman’s behavior during pregnancy (smoking
habits, diet, prenatal care) can greatly alter the chances of
carrying the baby to term. The goal of the study was to de-
termine whether these variables were “risk factors” in the
clinical population served by Baystate Medical Center. Us-
ing the actual birth weight observations we divided the cases,
namely the low–birth weight babies, into two categories, very
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low (weighing less than 2000 g) and low (weighing between
2000 to 2500 g) and tried to assess the impact of smoking
habits of mother on the chance of falling in the two low–birth
weight categories. Presence of uterine irritability in mother
and mother’s weight at last menstruation period were consid-
ered as relevant covariates. It was noted that smoking mothers
had a higher relative risk of having a low–birth weight child
when compared to a nonsmoking mother. However, the risk of
having a very low–birth weight child did not depend on smok-
ing significantly. This observation could not be made without
the classification of the data into multiple low–birth weight
groups, illustrating the relevance of such a type of analysis in
certain situations.

In many real studies, one often does not have access to ex-
posure information on all the subjects under study. In such
situations, rather than ignoring the available partial informa-
tion, one gains in terms of estimation accuracy of the param-
eters of interest if the distribution of the missing exposure or
the missingness process is stochastically modeled. Although
the frequentist literature contains a number of articles for
matched case–control studies and treatment of missing co-
variate information (see, e.g., Paik and Sacco, 2000; Satten
and Carroll, 2000; Rathouz, Satten, and Carroll, 2002), uni-
fied Bayesian methods addressing these problems are needed.
Zelen and Parker (1986), Nurminen and Mutanen (1987), and
Ashby, Hutton, and McGee (1993) considered case–control
problems in a Bayesian formulation when the risk factor was
a binary variable, the stratum effect was a constant, and there
were no missing covariates. Müller and Roeder (1997) and
Müller et al. (1999) considered a semiparametric model for
unmatched case–control problems with continuous and pos-
sibly missing covariates, and binary disease status. Seaman
and Richardson (2001) extended the Müller–Roeder approach
for categorical covariates, and brought out the connection
between the Zelen–Parker and Müller–Roeder approaches in
absence of measurement error. None of these papers consid-
ered a multicategory disease status in a matched case–control
set-up.

This article intends to develop an approach to case–control
studies with a multicategory variable D denoting disease
states, a completely observed covariate Z, and a vector of
exposure variables or risk factors X that could potentially
contain some missing observations. The exposure variables
could be discrete or continuous, and we assume that X |D, Z
has a distribution coming from an exponential family which
may have different natural parameters across strata. We will
assume a Dirichlet process with a normal base measure on the
distribution of the stratum effects and normal priors on the
other regression parameters and estimate all the parameters
via a Markov chain Monte Carlo (MCMC) computing scheme.
This is a major departure from the usual frequentist as well
as the Bayesian approach of assuming that the distribution
of exposure variable is not affected by any stratum effect ex-
cept through the measured covariates. This last assumption
may not hold in many situations. For example, matching for
cancer patients is often done from their family and smoking
is a natural exposure to consider. The distribution of the ex-
posure may depend on genetic traits in the family which may
affect the disease distribution in different families in different
ways and may not be measurable as a covariate. The present

Bayesian approach will allow us to model stratum effects on
the exposure distribution for highly stratified data and ac-
count for missing exposure information.

The outline of the remaining sections is as follows. In
Section 2 we introduce notations and model assumptions.
Section 3 contains the conditional likelihood and the priors.
In Section 4 we analyze the low–birth weight data and discuss
the MCMC computation scheme. Section 5 presents the re-
sults from a small simulation study comparing the proposed
Bayesian semiparametric method with two possible paramet-
ric Bayesian alternatives. Section 6 contains concluding re-
marks. The Appendix contains details of some calculations
and computation scheme.

Before concluding this section we highlight some of the new
features of this article. First, ours seems to be the first attempt
toward an analysis of matched case–control studies with mul-
tiple disease states. Second, the introduction of the semipara-
metric Bayesian method overcomes the difficulties associated
with the conventional frequentist procedure when the number
of nuisance parameters grows in direct proportion to the sam-
ple size even in the retrospective conditional likelihood. Third,
we provide a unified analysis for both discrete and continu-
ous exposure variables and account for possible missingness
in exposure observations.

2. Model and Notation
Let Dij denote the disease state of the jth individual in the ith
stratum Si . Suppose that there are (K + 1) nominal levels
of the disease variable, with Dij = k denoting disease state
k, k = 1, . . . ,K and Dij = 0 denoting the control group. We
assume that there is one case matched with M controls in each
stratum and we have n strata in all. For ease of notation, we
present our models with a single exposure X, but the model
could easily be extended to the case when one has a set of
independent multiple exposures, each having a distribution
coming from the exponential family. The disease probabilities
for each of the K groups are modeled through K logits as in
a multinomial logistic regression model:

log
P [Dij = k |Si,Zij ,Xij ]

P [Dij = 0 |Si,Zij ,Xij ]

= β0k(Si) + βT
1kZij + β2kXij for k = 1, . . . ,K. (1)

Each β1k is a p × 1 column vector and Zij = (Z
(1)
ij , . . . ,Z

(p)
ij )T

is the vector of p completely observed covariates.
For our example with the low–birth weight data as de-

scribed in Section 1, we have two disease states with K = 2.
Then exp(β21) signifies the odds of having low–birth weight
baby for a mother who smokes relative to one who does not
smoke and similarly exp(β22) is the risk of a very low–birth
weight child for a mother who smokes relative to one who
does not. The conditional probabilities of the disease variable
given the covariate, exposure, and the stratum are given by

P (Dij = k |Si,Zij ,Xij)

=
exp
{
β0k(Si) + βT

1kZij + β2kXij

}
1 +

K∑
r=1

exp
{
β0r(Si) + βT

1rZij + β2rXij

}
for k = 1, . . . ,K (2)



Bayesian Semiparametric Modeling 43

and

P (Dij = 0 |Si,Zij ,Xij)

=
1

1 +

K∑
r=1

exp
{
β0r(Si) + βT

1rZij + β2rXij

} . (3)

To cover both discrete as well as continuous exposures, we
assume a general exponential family of distributions for the
exposure variable in the control population with respect to
some finite dominating measure µ, i.e.,

f(Xij |Si,Zij ,Dij = 0)

= exp[ξij{θijXij − b(θij)} + c(ξij ,Xij)]. (4)

The natural parameters are modeled as a regression function
of the completely observed covariates, namely, θij = γ0i +
γT

1 Zij , where γT
1 = (γ11, . . . , γ1p). The dependence of the ex-

posure distribution on the stratum is captured through the
varying intercepts γ0i.

3. Likelihood, Priors, and Posteriors
Before writing out the conditional likelihood, we need some
technical results stated in the following as lemmas. These lem-
mas follow by repeating essentially the proofs of Lemmas 1–3
of Sinha et al. (2003). The details are omitted.

Lemma 1: Under assumptions (2)–(4) the distribution of the
exposure variable in a given disease state k, namely f(Xij |Si ,
Zij ,Dij = k), is also of general exponential form with scale
parameter ξij and natural parameter θ∗ijk = θij + ξ−1

ij β2k for k
= 1, . . . ,K.

Lemma 2: Under the same set of assumptions,

P (Dij = k |Si,Zij)

P (Dij = 0 |Si,Zij)

= exp
{
β0k(Si) + βT

1kZij

}
×exp

[
ξij
{
b
(
θ∗ijk
)
− b(θij)

}]
. (5)

We need one more lemma to write out the conditional like-
lihood.

Lemma 3:

P (Dis = k |Si,Zis)/P (Dis = 0 |Si,Zis)
M+1∑
j=1

P (Dij = k |Si,Zij)/P (Dij = 0 |Si,Zij)

=
exp
(
βT

1kZis

)
exp
[
ξis
{
b
(
θ∗isk
)
− b(θis)

}]
M+1∑
j=1

exp
(
βT

1kZij

)
exp
[
ξis
{
b
(
θ∗ijk
)
− b(θij)

}]
for s = 1, . . . ,M + 1, i = 1, . . . , n. (6)

Without loss of generality we may assume that the first
subject in each stratum is a case, and if we denote the dis-
ease state (type of case) in stratum i as ki (ki could assume
any of the values 1, . . . ,K), then the conditional likelihood
given that there is one case in each stratum will be of the
form

Lc ∝
n∏
i=1

P

{
Di1 = ki,Dij = 0(j = 2, . . . ,M + 1),

Xij(j = 1, . . . ,M + 1) |Si,Zij ,

M+1∑
j=1

Dij = ki

}

=

n∏
i=1

{
f(Xi1 |Si,Zi1,Di1 = ki)

M+1∏
j=2

f(Xij |Si,Zij ,Dij =0)

}

×
n∏
i=1

P (Di1 = ki |Si,Zi1)

M+1∏
j=2

P (Dij = 0 |Si,Zij)

M+1∑
l=1

P (Dil = ki |Si,Zil)

M+1∏
j �=l

P (Dij = 0 |Si,Zij)

=

n∏
i=1

{
f(Xi1 |Si,Zi1,Di1 = ki)

M+1∏
j=2

f(Xij |Si,Zij ,Dij =0)

}

×
n∏
i=1

P (Di1 = ki |Si,Zi1)/P (Di1 = 0 |Si,Zi1)
M+1∑
j=1

P (Dij = ki |Si,Zij)/P (Dij = 0 |Si,Zij)

.

(7)

In many situations, one may not have all observations
recorded on the exposure variable. For example, in the famous
endometrial cancer data set as discussed in Breslow and Day
(1980), 16% of the observations are missing on a possible risk
factor of obesity. In such situations, a typical conditional fre-
quentist matched analysis loses the entire information on a
subject with a single missing exposure. Modeling the expo-
sure distribution in such situations leads to more efficient es-
timation of parameters of interest as compared to completely
ignoring the partial information that is still available (Satten
and Kupper, 1993a,b; Satten and Carroll, 2000; Sinha et al.,
2003).

We modify the above likelihood appropriately for the sit-
uations when the exposure variable may contain some miss-
ingness. Let δij be an indicator variable for missing exposures
defined in the following manner:

δij =


1 if Xij is observed,

0 if Xij is missing,
i = 1, . . . , n and j = 1, . . . ,M + 1.

We also assume that the distribution of δij does not involve
the parameters β1k, β2k, γ1, and γT

0 = (γ01, . . . , γ0n). The
conditional likelihood including missingness of the exposure
variable is seen to be

Lc ∝
n∏
i=1

{
f(Xi1 |Si,Zi1,Di1 = ki)

δi1

×
M+1∏
j=2

f(Xij |Si,Zij ,Dij = 0)δij

}

×
n∏
i=1

P (Di1 = ki |Si,Zi1)/P (Di1 = 0 |Si,Zi1)
M+1∑
j=1

P (Dij = ki |Si,Zij)/P (Dij = 0 |Si,Zij)

. (8)
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This likelihood involves the parameters βp×K
1 =

(β11, . . . ,β1K), βT
2 = (β21, . . . ,β2K), γ1, and γ0.

We consider mutually independent normal priors: β1k ∼
Np(µβ1k

, σ2
β1k

Ip) for k = 1, . . . ,K. β2 ∼ NK(µβ2
, σ2

β2
IK) γ1 ∼

Np(µγ1
, σ2

γ1
Ip).

One of the key features of our approach is to retain the
nuisance parameters γ0i in the model and to put a Dirichlet

with normal base measure on them, i.e., γ0i |G i.i.d.∼ G, where
G ∼ DP(αG0) and G0 is N(ζ0, σ

2
0). Using the classical result

of Antoniak (1974), it follows that

γ0i | γ0k(k �= i) ∼ α

α + n− 1
N
(
ζ0, σ

2
0

)
+

1

α + n− 1

n∑
k=1,k �=i

Iγ0k (γ0i), (9)

where I is the indicator function. The result allows the possi-
bility of equal values of some γ0i as well. As we will notice in
our simulations, the fact that it can allow for equal values of
γ0i plays an important role in making the procedure robust
over a wide spectrum of scenarios, from widely varying γ0i’s
to the case when they are all equal.

For our data analysis and simulations, we compared our
Bayesian semiparametric (BSP) method with two possible
parametric Bayesian alternatives. The first one is a paramet-
ric Bayesian analogue of the method proposed by Satten and
Carroll (2000) for matched case–control studies with a single
disease state. Satten and Carroll (2000) assumed a constant
stratum effect on the exposure distribution, i.e., γ0i ≡ γ0. In
the parametric Bayesian analogue of their method (denoted
by PBC, C standing for constant stratum effect) in the con-
text of multiple disease states, we consider a normal distri-
bution as a prior on this common stratum effect parameter
γ0 and carry out Bayesian analysis. The other parametric
Bayesian alternative (denoted by PBV, V standing for varying
stratum effects) allows for possibly varying γ0i and assumes
i.i.d. normal prior on each γ0i.

Remark 1. It follows from (9) that for very large values of
α the BSP method is equivalent to the PBV method, whereas
for very small values of α it amounts to assuming a completely
discrete prior on γ0i. In our numerical work we assumed a
Gamma prior on α and resampled from the full conditional
distribution of α using a latent beta variable as prescribed in
Escobar and West (1995).

Remark 2. The entire analysis carries through if each stra-
tum contains varying number of controls, with equations (5)–
(9) remaining essentially the same with M replaced by Mi in
the ith stratum.

The estimation of the parameters is done by the Markov
chain Monte Carlo numerical integration scheme. To gen-
erate random numbers from the posterior distributions of
the parameters we use a componentwise Metropolis Hast-
ings scheme. We describe the computation scheme along with
the analysis of the low–birth weight study in the following
section.

4. Example and Computing Scheme
In the previous sections, we discussed the general methodol-
ogy which we now apply to the matched case–control study for
low–birth weight data as described in Section 1. The matched
data contain 29 strata, and each stratum has one case and
three controls. We denote the low–birth weight and the very
low–birth weight group as disease states 1 and 2, respectively.
One can possibly think of many different models for explain-
ing the disease in terms of the possible covariates recorded in
the data set. We consider smoking status of mother as a sin-
gle exposure variable. Two other covariates, a binary variable
denoting presence of uterine irritability (UI) in mother and
weight of the mother at last menstrual period (LWT) are also
included in the model.

As a starting point, we separated the 29 strata into
two groups depending on whether the case belonged to
low–birth weight category 1 or 2. We formed two cross-
classification tables of birth weight category versus smoking
status of mother during pregnancy period for these two sep-

arate matched samples and noted that ̂OR(1, 0) = 3.4 and̂OR(2, 0) = 1.917, where ̂OR(k, 0) denotes the odds ratio of
maternal smoking habits for birth weight group = k versus
normal birth weight group = 0. The two odds ratios demon-
strate that the odds of having a low–birth weight baby for
a smoking mother as opposed to a nonsmoking mother are
higher in category 1, whereas for category 2 we notice a rel-
atively weaker behavior in the same direction. The difference
in the odds ratios in these two tables led us to use these data
as a testbed example to illustrate our methods.

For our proposed analysis we have a stochastic distribution
on the exposure variable that belongs to the exponential fam-
ily. The binary variable smoking status is assumed to follow
a Bernoulli distribution:

f(Xij |Dij = 0,Zij , Si) = p
Xij

ij (1 − pij)
1−Xij ; (10)

so here ξij =1, θij = ln(pij/(1 − pij)), b(θij) = ln(1 +
exp(θij)), and c(Xij , ξij) = 0. Also here K = 2, p = 2, n =
29, and M = 3. Using Lemmas 1–3 we obtain the conditional
likelihood for the whole data:

Lc ∝
n∏
i=1


exp
{
θ∗i1Xi1 − ln

(
1 + exp

(
θ∗i1
))}

× exp

[
M+1∑
j=2

{θijXij − ln(1 + exp (θij))}
]

×
exp
(
hT

i β11Z
(1)
i1 + hT

i β12Z
(2)
i1

)
×
(
1 + exp

(
θ∗i1
))

(1 + exp (θi1))
M+1∑
j=1

exp
(
hT

i β11Z
(1)
ij + hT

i β12Z
(2)
ij

)
×
(
1 + exp

(
θ∗ij
))

(1 + exp (θij))


,

(11)
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Table 1
Analysis of low–birth weight data using full data set. BSP stands for Bayesian semiparametric method, whereas PBC and PBV

stand for parametric Bayes methods assuming constant and varying stratum effects, respectively.

BSP PBC PBV

Logit Parameter Mean SD HPD region Mean SD HPD region Mean SD HPD

1 SMOKE 1.42 0.60 (0.33, 2.72) 1.26 0.56 (0.25, 2.50) 1.48 0.65 (0.26, 2.08)
LWT −0.86 1.39 (−3.78, 1.81) −1.03 1.35 (−3.58, 1.86) −0.73 1.36 (−3.40, 2.01)
UI 0.15 0.67 (−1.27, 1.46) 0.10 0.67 (−1.19, 1.52) 0.18 0.67 (−1.14, 1.52)

2 SMOKE 0.37 0.83 (−1.35, 2.05) 0.23 0.66 (−1.10, 1.54) 0.38 0.85 (−1.30, 2.17)
LWT −0.52 1.61 (−3.76, 2.52) −0.55 1.59 (−3.73, 2.41) −0.55 1.62 (−3.65, 2.79)
UI 1.81 0.83 (0.18, 3.51) 1.78 0.83 (0.30, 3.59) 1.81 0.87 (0.27, 3.72)

where θ∗ij = θij + hT
i β2. Since the value of k (i.e., disease

type) is completely determined by knowing the stratum, we

omit the subscript k for θ∗ijk in the above expression; Z
(1)
is and

Z
(2)
is denote the observed value of the two covariates UI and

LWT for the sth subject in the ith stratum, respectively, and
hi is defined as hi = (hi1, . . . , hiK )T where

hir =

{
1 if Di1 = r

0 otherwise, i = 1, . . . , n and r = 1, . . . ,K.

Our analysis is based on normal priors centered at zero with
large variances for all the regression parameters. In instances
(such as ours) when prior elicitation is not possible, these pri-
ors usually lead to posteriors relying more heavily on the data
and protect against model failures. In many real applications,
the practitioner may have a more precise knowledge about
the sign and magnitude of the relative risk parameters and
can suitably change the prior if necessary. We conducted a
sensitivity analysis with several choices of prior parameters.
For the regression parameters and the normal base measure
of the Dirichlet process, we experimented with normal pri-
ors centered at zero and with variances 2, 4, 5, 6, and 9. We
used a gamma prior on the concentration parameter α of the
Dirichlet process and ran our analysis with both shape and
size parameter set at 0.5, 1, 2, 4, 10, 40, 100, and 200, and with
many other possible pairs like G(0.5, 4), G(1, 10), G(10, 40),
G(100, 40), and G(200, 10). We noted that the ultimate nu-
merical estimates are reasonably stable over a varying range
of prior parameters.

Table 2
Analysis of low–birth weight data after deleting 40% observations on smoking completely at random. BSP stands for Bayesian
semiparametric method, whereas PBC and PBV stand for parametric Bayes methods assuming constant and varying stratum

effects, respectively.

BSP PBC PBV

Logit Parameter Mean SD HPD region Mean SD HPD region Mean SD HPD

1 SMOKE 0.86 0.88 (−0.88, 2.55) 0.55 0.78 (−0.84, 2.18) 0.56 0.86 (−0.71, 2.49)
LWT −0.92 1.31 (−3.63, 1.51) −1.03 1.34 (−3.50, 1.83) −1.01 1.33 (−3.57, 1.75)
UI 0.19 0.69 (−1.11, 1.49) 0.21 0.67 (−1.10, 1.55) 0.20 0.69 (−1.31, 1.48)

2 SMOKE 0.54 1.04 (−1.46, 2.07) 0.13 0.93 (−1.85, 1.88) 0.12 0.93 (−1.10, 1.54)
LWT −0.43 1.62 (−3.98, 2.38) −0.59 1.63 (−3.75, 2.59) −0.54 1.54 (−3.62, 2.45)
UI 1.82 0.86 (0.34, 3.65) 1.80 0.83 (0.24, 3.46) 1.87 0.82 (0.43, 3.63)

The results are reported for independent N(0, 5) prior on
each component of β11, β12, and β2, N(0, 6) as the normal base
measure for the Dirichlet process prior, and a Gamma(2, 2)
prior for the concentration parameter α.

We used componentwise Metropolis Hastings algorithm to
generate random numbers from the full conditionals of the pa-
rameters. For generating observations from the posterior dis-
tribution of γ0i, i = 1, . . . ,n, we used an algorithm proposed
by Neal (2000) for simulating observations from posteriors of
Dirichlet mixtures for nonconjugate cases. The details of the
computation scheme are given in Sinha et al. (2003). The full
conditional distributions for the parameters are presented in
the Appendix. We ran the chain typically from 7000 to 10,000
iterations and calculated the diagnostic proposed by Gelman
and Rubin (1992) as a measure of convergence.

Table 1 contains the posterior means, posterior standard
deviations, and 95% HPD credible intervals for the parame-
ters of interest under the proposed Bayesian semiparametric
method (BSP) and the parametric Bayes (PBC and PBV)
methods as discussed before. In the parametric Bayes meth-
ods, we used an N(0, 6) prior on the constant γ0 (in PBC) and
i.i.d. N(0, 6) prior on varying γ0i’s (in PBV). To illustrate the
methods in presence of missingness, we deleted 40% of expo-
sure values completely at random (in the sense of Little and
Rubin, 1987) and reran the three analyses. The results are
presented in Table 2.

The full data analysis indicates that smoking of mother is
a significant risk factor for low–birth weight category (cate-
gory 1) and is not very significant in the very low–birth weight
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Figure 1. Plot of the variability of γ0i’s for the low–birth
weight study example. Estimates of the 29 γ0i’s were collected
for each of the last 3000 MCMC samples. Variances of these
29 values were then calculated for each run. The histogram is
of these 3000 variance values with a kernel density estimate
overlayed on it.

category (category 2). UI, on the other hand, shows an oppo-
site association, showing significance in category 2 and almost
no significance in category 1. LWT does not seem to be a sig-
nificant covariate in any of the categories. The BSP and the
PBV methods are in closer agreement, whereas the PBC es-
timates show some numerical differences.

Figure 1 shows a plot of the variance of the 29 stratum
effects in the last 3000 MCMC samples. The average variance
is approximately 2.3, showing that there indeed exists vari-
ability in the stratum effects. As a result, the BSP and PBV
methods that account for this variability are in close agree-
ment, whereas the PBC method assuming constant stratum
effect differs numerically from these two methods.

For the analysis with 40% missing observations on smoking,
one notices that the estimates corresponding to smoking in
the BSP method come closer to their full data counterparts
even though the inferences are the same in all three methods.
As one might expect, with 40% missingness, the parameter
estimates for smoking lose precision and the effect of smoking

Table 3
Analysis of low–birth weight data after collapsing categories 1 and 2 into a single low–birth weight category (less than 2500 g).
BSP stands for Bayesian semiparametric method, whereas PBC and PBV stand for parametric Bayes methods assuming constant

and varying stratum effects, respectively. CLR stands for usual conditional logistic regression for analyzing matched data.

BSP PBC PBV CLR

Parameter Mean SD HPD region Mean SD HPD region Mean SD HPD region Estimate SE

SMOKE 1.106 0.52 (0.15, 2.17) 0.89 0.45 (−0.03, 1.78) 1.105 0.54 (0.02, 2.25) 0.86 0.45
LWT −1.07 1.14 (−3.29, 1.17) −1.11 1.14 (−3.28, 1.12) −0.98 1.15 (−3.25, 1.30) −1.13 1.36
UI 0.85 0.51 (−0.20, 1.78) 0.84 0.50 (−0.03, 2.03) 0.87 0.49 (−0.13, 1.82) 0.85 0.51

now appears to be not significant in both categories 1 and
2. Inferences on the other two covariates remain essentially
unchanged when compared to full data inferences.

We also analyzed the data after collapsing categories 1 and
2 into only one category (birth weight less than 2500 g). We
carried out the Bayesian analysis for a simple matched case–
control data (Sinha et al., 2003) and the usual conditional
logistic regression (CLR) analysis (Breslow and Day, 1980).
Table 3 shows that both BSP and PBV methods assuming
varying stratum effects bring out the effect of mother’s smok-
ing on having low–birth weight newborns and produce very
similar results. The PBC and the CLR methods, assuming
constant stratum effect, are in closer agreement with each
other and they do demonstrate the effect of smoking but not
as precisely as the other two methods that allow varying stra-
tum effects. Figure 1 again demonstrates the differences in
results between these two classes of models. Obviously, with-
out the finer classification into two weight categories, the fact
that smoking is not so significant for category 2 and UI is
appreciably significant for category 2 cannot be concluded
from looking at the overall analysis. Thus, the multicategory
analysis may render some useful additional information to the
practitioner.

5. Simulation Study
In the low–birth weight data we noticed appreciable variabil-
ity in the stratum effects. In practice, the experimenter may
not have a prior idea about the nature of variability among
stratum effects and there could be situations where the stan-
dard model assumption of constant stratum effect, i.e., γ0i ≡
γ0, hold. Sinha et al. (2003) contain an example from equine
epidemiology where the stratum effects have very small vari-
ability. We conducted a simulation study to ascertain the ro-
bustness of the BSP method even when variability in the stra-
tum effects is negligible.

In order to simulate a realistic data set for comparing the
BSP, PBC, and PBV methods, we decided to use the low–
birth weight data themselves. We generated a hypothetical
1:1 matched data set with 50 strata with one binary exposure
variable (corresponding to X, smoking status of mother), and
one binary covariate (corresponding to Z, presence of uterine
irritability). The true values for β11, β12, β21, and β22 are cho-
sen to be 0.20, 1.80, 1.40, and 0.4, respectively, close to the
estimates obtained by analyzing the low–birth weight data by
the BSP method as presented in Table 1.

In order to elicit values for γ1, the coefficient of Z in the
natural parameter of the exposure distribution, namely θij
on Z, we ran a logistic regression of X(SMOKE) on Z(UI)
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using the control sample and the fitted model turned out to
be logit(Pr(Xij )) = −0.734 + 0.579Zij . Accordingly, in the
simulation study, we used γ1 = 0.60.

We followed the structure of our models as described before
for simulating Z, X, and the trinomial variable D, indicating
the birth weight category. For the low–birth weight data, oc-
currence of uterine irritability was reported in approximately
20% of the patients. Thus, the completely observed covari-
ate Z was generated first as a Bernoulli variable with success
probability 0.20. Second, we generated the trinomial disease
variable D. For the ith stratum, one should note that

Pr(Di1 = 0 |Zi1, Zi2,Di1 + Di2 = 1 or 2, Si) =
1

1 +
Qi1

Qi2

,

where, for j = 1, 2,

Qij = exp(β11Zij)
1 + exp (θij + β21)

1 + exp (θij)

+ exp(β12Zij)
1 + exp (θij + β22)

1 + exp (θij)
. (12)

We generated a Bernoulli random variable with the above
success probability and if this variable assumed a value 1, the
simulated value for Di1 was taken to be 0, implying that the
first subject in the ith stratum is a member of the control
population. Let, for k = 1, 2,

p∗ik =
1

1 + exp[zik(β12 − β11)]
1 + exp (θik + β22)
1 + exp (θik + β21)

. (13)

If Di1 = 0, we determine Di2 according to a Bernoulli draw
with success probability p∗i2; set Di2 = 1 if it results in a
success, otherwise set Di2 = 2. If Di1 �= 0, set Di2 = 0 and we
determine the value Di1 according to a Bernoulli draw with
success probability p∗i1; if this results in a success Di1 = 1,
otherwise Di1 = 2.

Conditional on the value of D, we proceed to simulate the
exposure X. If Dij = 0, we generated a binary exposure Xij

with success probability given by logit(pij ) = γ0i + γ1Zij . If
Dij = k, we generate the binary exposure variable with success
probability, logit(pij ) = γ0i + γ1Zij + β2k, j, k = 1, 2.

We performed two sets of simulations, one with a constant
value of γ0i, namely −1.00, the other with a relatively varying
set of γ0i’s simulated from a normal distribution with mean
−0.5 and standard deviation 1.5. We assumed N(0, 5) prior
on all the relative risk parameters and a Gamma(2, 2) prior
for α. In all our simulations, we used identical parameters
for the normal distribution which is assumed to be prior on
γ0 in PBC and the i.i.d. prior on γ0i in PBV and also as
the mixing distribution in the Dirichlet process prior for BSP
(N(0, 6) in this case). We replicated the simulation 50 times,
generating 50 different data sets, and obtained the parameter
estimates by above-mentioned methods and computed their
average and MSE. For each replication we also generated data
with 30% exposure values missing completely at random and
recalculated all the estimates.

The simulation results presented in Tables 4 and 5 illus-
trate that for constant stratum effect, the three methods are
comparable with PBV estimates being furthest from the true

Table 4
Results of the simulation study. Here “Mean” is the simulated
mean, while MSE is the mean squared error ×1000. The true

parameter values are β11 = 0.20, β12 = 1.80, β21 = 1.40,
β22 = 0.40, and γ1 = 0.60. BSP stands for Bayesian

semiparametric method, whereas PBC and PBV stand for
parametric Bayes methods assuming constant and varying

stratum effects, respectively.

Method β11 β12 β21 β22 γ1

Full data, fixed γ0i ≡ − 1.00
BSP

Mean 0.23 1.88 1.44 0.40 0.43
MSE 0.22 6.57 12.50 6.55 36.54

PBC
Mean 0.19 1.92 1.43 0.43 0.51
MSE 0.57 14.59 14.42 10.41 20.26

PBV
Mean 0.20 1.88 1.43 0.32 0.41
MSE 0.53 10.56 9.71 15.50 48.36

30% missing data, fixed γ0i ≡ − 1.00
Bayes semiparametric

Mean 0.20 1.90 1.45 0.36 0.44
MSE 0.17 31.78 50.07 37.83 81.31

Bayes parametric
Mean 0.20 1.89 1.47 0.46 0.47
MSE 4.79 10.05 22.09 11.33 23.98

i.i.d. parametric
Mean 0.20 1.90 1.35 0.28 0.38
MSE 0.56 9.89 57.05 67.88 83.19

Table 5
Results of the simulation study. Here “Mean” is the simulated
mean, while MSE is the mean squared error ×1000. The true

parameter values are β11 = 0.20, β12 = 1.80, β21 = 1.40,
β22 = 0.40, and γ1 = 0.60. BSP stands for Bayesian

semiparametric method, whereas PBC and PBV stand for
parametric Bayes methods assuming constant and varying

stratum effects, respectively.

Method β11 β12 β21 β22 γ1

Full data, varying γ0i ∼ N(−0.5, 2.25)
BSP

Mean 0.19 1.89 1.43 0.42 0.50
MSE 0.94 8.20 8.58 10.56 13.47

PBC
Mean 0.20 1.89 1.52 0.48 0.53
MSE 0.70 8.48 27.98 13.36 97.75

PBV
Mean 0.19 1.92 1.44 0.43 0.51
MSE 0.65 12.84 11.15 9.07 13.25

30% missing data, varying γ0i ∼ N(−0.5, 2.25)
BSP

Mean 0.20 1.91 1.50 0.44 0.50
MSE 0.59 11.86 16.96 11.58 19.56

PBC
Mean 0.20 1.92 1.54 0.49 0.53
MSE 0.46 14.04 30.28 14.68 15.54

PBV
Mean 0.20 1.94 1.49 0.44 0.50
MSE 0.76 14.31 16.15 14.42 19.35
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parameters of interest, whereas for varying stratum effect the
BSP and PBV methods have a clear edge over the PBC
method. Overall, BSP seems to be the more robust choice
as at the onset of a study one is not sure about the nature of
variability in the stratum effects.

6. Conclusion
In this article, we proposed a semiparametric Bayesian
method to analyze matched case–control data with more than
one disease state and illustrate the methods with a real exam-
ple. The simulation results indicate that in presence of stra-
tum variability and missing data, the Bayesian semiparamet-
ric method is superior to the parametric Bayesian alterna-
tives. All three methods perform comparably with constant
stratum effects.

Our proposed model considers a nondeterministic exposure
variable having a probability distribution belonging to the ex-
ponential family. Moreover, the distribution of the exposure
could be different in different strata. Our model takes into
account both discrete and continuous exposure along with
possible missingness in the exposure variable. The growing
number of stratum effect parameters are modeled in a semi-
parametric Bayesian way to overcome the inconsistency prob-
lems arising out of classical analysis of such matched data.
The computations involving a Dirichlet process prior with a
normal base measure are done through a suitable MCMC
scheme and enable us to obtain estimates of the parame-
ters of interest. The method could be extended to multi-
ple exposures having an underlying association pattern as
well. The general framework is extremely flexible for being
used in unorthodox data situations involving missingness and
measurement error as well as incorporating widely different
types of exposure variables that one may come across in
practice.
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Résumé

Nous présentons une approche bayésienne pour l’analyse des
données “cas-témoins” appariées avec plusieurs états d’une
maladie. La probabilité de développement de la maladie est
décrite par un modèle de régression logistique multinomiale.
La distribution de la variable d’exposition dépend de l’état
de la maladie, et peut varier entre strates. Dans ce modèle, le
nombre de paramètres d’effets de la strate crôıt proportion-
nellement à l’effectif de l’échantillon, ce qui rend inconsistants
les estimateurs du maximum de vraisemblance, même quand
on utilise une vraisemblance conditionnelle rétrospective.
Nous adoptons donc un contexte semi-paramétrique bayésien,
en supposant un processus de Dirichlet pour la distribution
a priori, et un mélange de distributions normales pour la
distribution des effets de l’état. Nous tenons aussi compte

dans ce modèle d’éventuelles valeurs manquantes pour la
variable d’exposition. L’estimation proprement dite se fait
par intégration numérique de type Monte Carlo sur châıne
de Markov. La méthodologie proposée est illustrée par des
simulations et par l’application à des données appariées
de nouveaux-nés de petit poids, où les groupes correspon-
dants à deux maladies possibles sont appariés à un groupe
témoin.
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Appendix

Full Conditional Distributions for the Parameters
The following are the forms of the full conditional distribu-
tions of the parameters:

As stated before, here we have assumed the following set
priors β1k ∼ N2(µβ1k

, σ2
β1k

I), for k = 1, 2, β2 ∼ N2(µβ2
, σ2

β2
I)

and γ1 ∼ N2(µγ1
, σ2

γ1
I):

π(β1k | ·) ∝
exp

[
− 1

2σ2
β1k

(
β1k − µβ1k

− σ2
β1k

n∑
i=1

hiZ
(k)
i1

)T(
β1k − µβ1k

− σ2
β1k

n∑
i=1

hiZ
(k)
i1

)]
n∏
i=1

{
M+1∑
j=1

exp
(
hT

i β11Z
(1)
ij + hT

i β12Z
(2)
ij

)
×
(
1 + exp

(
θ�ij
))

(1 + exp (θij))

} , (A.1)

for k = 1, 2

π(β2 | ·) ∝
exp

[
− 1

2σ2
β2

(
β2 − µβ2

− σ2
β2

n∑
i=1

δi1hiXi1

)T(
β2 − µβ2

− σ2
β2

n∑
i=1

δi1hiXi1

)]
n∏
i=1

{
M+1∑
j=1

exp
(
hT

i β11Z
(1)
ij + hT

i β12Z
(2)
ij

)
×
(
1 + exp

(
θ�ij
))

(1 + exp (θij))

}

×
n∏
i=1

{
1 + exp

(
θ∗i1
)}1−δi1

, (A.2)

π(γ1 | ·) ∝
exp

[
− 1

σ2
γ1

(
γ1 − µγ1

− σ2
γ1

n∑
i=1

M+1∑
j=1

δijZijXij

)T(
γ1 − µγ1

− σ2
γ1

n∑
i=1

M+1∑
j=1

δijZijXij

)]
n∏
i=1

{
M+1∑
j=1

exp
(
hT

i β11Z
(1)
ij + hT

i β12Z
(2)
ij

)
×
(
1 + exp

(
θ�ij
))

(1 + exp (θij))

}

×
n∏
i=1

{(
1 + exp

(
θ∗i1
))1−δi1

(1 + exp (θi1))

M+1∏
j=2

(1 + exp (θij))
−δij

}
,

(A.3)

π(γ0i | ·) ∝
∑
k �=i

1

α+n− 1
wk(β11,β12,β2,γ1, γ0s, s �= i)I(γ0k)Lc

+wi(β11,β12,β2,γ1, γ0s, s �= i)fi(γ0i | ·), (A.4)

where,

fi(γ0i | ·)

∝

exp

[
− 1

2σ2
0

(
γ0i − ξ0 − σ2

0

n∑
i=1

M+1∑
j=1

δijXij

)2]
n∏
i=1

{
M+1∑
j=1

exp
(
hT

i β11Z
(1)
ij + hT

i β12Z
(2)
ij

)
×
(
1 + exp

(
θ�ij
))

(1 + exp (θij))

}

×
n∏
i=1

{(
1 + exp

(
θ∗i1
))1−δi1

(1 + exp (θi1))

M+1∏
j=2

(1 + exp (θij))
−δij

}
(A.5)

and wr , r = 1, . . . ,n are weight functions such that π(γ0i | ·)
is a proper density. One may note that if X is completely
observed δij = 1 ∀i, j.

Remark. For resampling from the full conditional distribu-
tion of α we followed the algorithm suggested by Escobar and
West (1995). At each step we counted the number of distinct
γ0i, say k, and conditional on the current values of α and k,
we simulated a latent beta random variable say, η ∼ B(α +
1, n). Let G(a, b) denote the prior on α. Using the current
value of k and η, α was simulated from the following mixture
of Gamma distribution,

π(α | η, k) = pG(a + k, b− log(η))

+ (1 − p)G(a + k − 1, b− log(η)),

where p = (a + k − 1)/[a + k − 1 + n{b − log(η)}].


