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a b s t r a c t

If covariates are measured with errors, failure to account for that errors may result in a
biased estimator of the parameters and consequently the test based on the corresponding
estimator may turn out to be biased under the non-zero null hypothesis. In this paper
we derive score tests for testing the association between a disease and covariates when
a covariate is measured with errors in a matched case-control study. In particular, we
deal with the scenario where a possibly biased surrogate is measured in the main data
set which is accompanied by an external calibration data that contain the biased surrogate
and repeatedmeasures of an unbiased surrogate variable. Under the additive, normal, non-
differential measurement errors, and flexible parametric model assumptions, we derive a
score test for testing the effect of the covariate measured with errors. In addition, we also
derive a score test for a more general hypothesis involving the coefficients associated with
the covariates measured with and without errors, which is useful for testing a relationship
among the effects of the covariates, such as equality of one or more regression coefficients.
Finite sample performance of the proposed method is judged via simulation studies. The
proposed method is also applied to a real matched case-control data on colon cancer.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

Errors in a covariate are common in epidemiological studies. In particular, in nutritional epidemiology, association
between a disease and nutrient intakes is sought which are usually measured via food frequency questionnaire (FFQ). It
is well recognized that nutrient intakes measured via FFQ involve substantial amount of errors [6]. The analysis of the data
without reckoning the errors may result in an inconsistent estimator, and consequently any related test may turn out to be
biased. In this paper we propose score tests when a covariate is measured with additive errors in a matched case-control
study.

Although the naive score test for testing the null hypothesis that there is no association between the disease and the
exposure measured with errors is asymptotically valid, usually it loses efficiency [15]. Following the arguments of Tosteson
and Tsiatis [15], Carroll et al. [3, Chapter 10] showed that in the generalized linear model, replacing the true exposure by
its conditional expectation given the observed covariates and the surrogate in the naive score test, will result in an efficient
score test for testing the null that the exposure does not have any effect on the response. Stefanski and Carroll [14] developed
a semiparametric score test in the generalized linear model with prospective or cross-sectional data when the exposure is
measuredwith additive errors. In a linearmodel set-up, Murad and Freedman [9] considered the inference of the interaction
term between two covariatesmeasuredwith additive normal errors. They proposed amethod ofmoment and the regression
calibration approach to handle this scenariowhere both the covariates follownormal distribution. de Castro et al. [4] derived
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a score test for testing H0 : βx = βx0 when covariate X is measured with additive normal errors in a linear model set-up,
and βx denoting the regression coefficient of X in the linear model and βx0 could be any non-zero number.

Except de Castro et al. [4], the above mentioned articles mainly focused on the null hypothesis that the disease and the
covariate measured with errors are not related. Furthermore, mainly the generalized linear model was used for modeling
relation between the response and the covariates based on a prospective or a cross-sectional data. To the best of our
knowledge there has been no article which deals with testing of a hypothesis regarding the disease-covariate association in
a matched case-control study. One may wonder why we need an additional method for testing a hypothesis in a matched
case-control study while there are several tests for prospectively collected data or cross-sectional data. The reason lies in
the sampling design of amatched case-control study. First, matched data are clustered by several strata where stratum sizes
are bounded whereas the number of strata goes to infinity, in principle. Second, in a matched case-control study, data are
collected retrospectively depending on the response variable. Third, there is a stratum-specific parameter in the logistic
model relating to the response with the covariates. Finally, the distribution of the covariates may vary across the strata. For
handling errors in a covariate in a prospective or cross-sectional data using the structural approach one needs to deal with
the conditional distribution of the unobserved true covariate given the error-free covariates whereas in a case-control study
one needs to deal with the conditional distribution of the unobserved true covariate given the response variable (disease
status) and the other error-free covariates. On the other hand, for a matched case-control data one has to deal with the
conditional distribution of the unobserved true covariate given the response variable (disease status), the other error-free
covariates, and the matching variables.

In the context of consistent parameter estimation in matched case-control studies in the presence of errors in a
covariate, Armstrong et al. [1] proposed a likelihood based approachwhere they assumed anormal, additive, non-differential
measurement errors, and assumed that the erroneous covariate follows a normal distribution.McShane et al. [8] took amore
flexible approach for handling normal additive measurement errors that does not require any assumption regarding the
distribution of unobserved predictor. In this context, Guolo and Brazzale [5] compared the structural, regression calibration,
and the SIMEX approaches through simulation studies only for estimating parameters and not for testing of a hypothesis.
To the best of our knowledge there is no paper which considered the measurement errors issue for testing a hypothesis in
this set-up.

Our score tests are based on a conditional likelihood function where we use a conditional argument to remove the
stratum specific nuisance parameters, and use a flexible normal model for the distribution of the unobserved true covariate.
The unobserved stratum specific effect on the distribution of the unobserved true covariate is handled using a random-
effect model. Our score tests not only handle test related to the covariate measured with errors but also handle a general
hypothesis involving the parameters of the covariates measured with and without errors. This general test is applicable
to different scenarios including for a test of equal effect of all the confounding variables. This fact can be illustrated in the
context of epidemiological studies of incidence of breast cancer and low-fat diet [10]. For these studies race plays a role of a
confounder variable, which has many categories, such asWhite, Black, Hispanic, American Indian, Asian/Pacific Islander etc.
Considering White as a reference category, the log-odds ratio parameter for the disease due to Black, Hispanic, American
Indian, Asian/Pacific Islander can be denoted by βB, βH , βAI , βA, respectively. Testing of no difference in the incidence rate
of the disease among the racial groups other than the reference group is equivalent to test H0 : βB = βH = βAI = βA which
can be tested using our general test procedure.

We would like to point out that in the presence of measurement errors in a covariate, the naive analysis may yield
a spurious association between the covariate and the response, and even the relationship between the response and the
confounder variables measured without any error may get distorted. Budtz-Jørgensen et al. [2] have nicely illustrated this
issue in the context of the linear regression model using a prospective epidemiological study of health effects of prenatal
mercury exposure. In their study the response variable was California Verbal Learning Test (CVLT) score, a cognitive task
which measures learning and memory. The main covariate was blood mercury concentration which was measured with
errors, and location (town) was considered as a confounder. When the errors in the covariate was ignored, CVLT score
and location show a strong association. When the errors in the covariate was incorporated in the analysis, the association
between the CVLT score and location became statistically insignificant.

A brief outline of the remainder of the paper is as follows. Section 2 contains model, assumption, and a discussion
regarding the naive score test. Section 3 contains the proposed methodology. In Section 4 we discuss the situation when
the parameters associated with the surrogate variable are estimated from an external calibration data. Section 5 contains
simulation studies where we judge and compare the finite sample performance of our proposed approach with that of the
naive and the regression calibration approach. The simulation results indicate the advantage and the robustness property
of the proposed approach. In Section 6 we apply the proposedmethod to a real matched case-control data on a colon cancer
study. Section 7 concludes with a discussion.

2. Background

Model and assumption: Suppose that we have a 1 : M matched case-control data with n strata. Each stratum contains a case
(diseased) and M control (non-diseased) subjects. In the data, we observe a set of matching variables S, the binary disease
variable Y , a p × 1-vector of error-free covariates Z , and W , an erroneous version of X . We assume that both X and W are
scalar variables. Although the extension of the proposed approach to the scenario of multivariate X would follow the same



S. Sinha, S. Yoo / Journal of Multivariate Analysis 115 (2013) 157–171 159

principles, it may involve tedious algebra and more calculations due to the presence of several integrals in the observed
likelihood function. The disease risk model is

pr(Yij = 1 | Si, Xij, Zij) = H{β0(Si)+ β1Xij + βT
2 Zij}, (1)

where H(u) = exp(u)/{1 + exp(u)}. Here i and j are the indices for strata and the subjects within a stratum. Thus,
i = 1, . . . , n, and j = 1, . . . , (M + 1). Here β1 and β2 denote the log-odds ratio parameters corresponding to X and Z ,
respectively. The effect of the matching variables on the disease risk is conferred through β0(Si) which is left unspecified.
The design of this study implies that

M+1
j=1 Yij = 1 for all i.

When all covariates are error-free, one can test H0 : β1 = β10 by using the score statistic

T0(X, Y , Z; β̃) = S1(β̃){Inβ1β1 − Inβ1β1 I
−1
nβ2β2

Inβ2β1}
−1S1(β̃),

where β̃ is the MLE of β = (β1, β
T
2 )

T under H0, i.e., it is obtained by maximizing LCLR under H0,

LCLR =

n
i=1

M+1
j=1

Yijpij(β), pij(β) =
exp(β1Xij + βT

2 Zij)
M+1
k=1

exp(β1Xik + βT
2 Zik)

.

Here, Inβkβl = −(1/n)[∂2 log(LCLR)/∂βk∂βl]β=β̃ , S1(β) = (1/
√
n)∂ log(LCLR)/∂β1 = (1/

√
n)
n

i=1
M+1

j=1 (Yij − pij)Xij. Under
H0, T0(X, Y , Z; β̃) follows aχ2 distributionwith 1 degree of freedom. Therefore, we rejectH0 if T0(X, Y , Z; β̃) > χ2

α,1, where
pr(χ2

1 > χ2
α,1) = α.

We assume that the surrogate variable W (the erroneous measurement of X) is linearly related with X with additive
errors

W = δ0 + δ1X + UW , where UW ∼ Normal(0, σ 2
W ), (2)

and conditional on X,UW is assumed to be independent of Y (non-differential). If W is an unbiased surrogate for X , then
δ0 = 0 and δ1 = 1.
Naive score test: The naive score test is T0(W , Y , Z; β̃naive), where β̃naive is the naive estimate of β under H0. For testing
H0 : β1 = 0, the naive score test in the presence of measurement error preserves the level of the test. This fact has been
discussed in the context of the generalized linear model, particularly when the observations are a random sample from the
population of (Y ,W , Z) [15]. However, for testing H0 : β1 = β10(≠ 0) the naive score test may turn out to be a biased test.
This fact can be shown mathematically in our context.

Suppose that β10 and β20 are the true values of β1 and β2 under H0, and βĎ
2 is the limiting value of the estimated

coefficient of Z underH0 whenW is used instead of X . Then the score function used in the naive test can be approximated as

1
√
n

n
i=1

M+1
j=1

Yij −
exp(β10Wij + βĎT

2Zij)
M+1
k=1

exp(β10Wik + βĎT
2Zik)

Wij =
1

√
n

n
i=1

M+1
j=1

Yij −
exp(β10Xij + βT

20Zij)
M+1
k=1

exp(β10Xik + βT
20Zik)

Wij

+
1

√
n

n
i=1

M+1
j=1


exp(β10Xij + βT

20Zij)
M+1
k=1

exp(β10Xik + βT
20Zik)

−
exp(β10Wij + βĎT

2Zij)
M+1
k=1

exp(β10Wik + βĎT
2Zik)

Wij. (3)

Since under H0 the expectation of Yij conditional on Wij, Xij, Zijj = 1, . . . , (M + 1), and
M+1

j=1 Yij = 1 is exp(β10Xij +

βT
20Zij)/

M+1
k=1 exp(β10Xik + βT

20Zik), the summand of the first term of (3) has expectation zero. Due to the specific structure
of the conditional probabilities, when β10 ≠ 0, the summand of the second term on the right hand side of (3) has
a non-zero expectation irrespective of the dependence between X and Z . As a result, under H0 : β1 = β10(≠ 0),
(1/

√
n)
n

i=1
M+1

j=1 {Yij − pij(β10, β
Ď
2 )}Wij does not follow an approximate normal with zero mean, making it a biased test.

Using a similar argument one can show that the naive test for β2 is usually biased unless X and Z are independent.

3. Methodology

3.1. Testing the effect of the covariate measured with errors

In the proposedmethodology first we assume that φT
= (δ0, δ1, σ

2
W ) involved in (2) is known.We partition S = (Sq, Snq)

into two parts, the set of measurable (Sq), and the set of unmeasurable matching variables Snq. The measurable variables
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are the ones whose effect can be modeled parametrically, and the effect of Snq cannot be modeled parametrically. For our
data example, cases were individually matched with controls based on age and neighborhood of residence. Even though
age (Sq) is recorded and measurable, neighborhood would be considered as a unmeasurable (Snq)matching variable. Since
the marginal distributions of covariates are not identifiable from the retrospective data, we assume that conditional on the
observed covariates Z and S, the unobserved covariate X among the controls follows a normal distribution,

[Xij | Si, Zij, Yij = 0] ∼ Normal(α0 + αT
1 Siq + αT

2Zij + γi, σ
2). (4)

We assume that the mean of X among the controls depends on Sq and Z linearly, and the corresponding association
parameters are α1 and α2, respectively. The effect of Snq and the nonlinear effect of Sq on themean of X are captured through
γi which is assumed to follow a Normal(0, σ 2

α ). In other words, γi can be interpreted as unmeasured stratum specific effect.
Indeed one can take a more flexible model for X among controls, and follow our procedure to get a score test. However, the
simulation study indicates that normal model among the control population works well for a wide range of scenarios. Now,
using models (1) and (4), and following the results of Satten and Kupper [11] and Eq. (6) of Sinha et al. [12] one can show
that

[Xij | Si, Zij, Yij = 1] ∼ Normal(α0 + αT
1 Siq + αT

2Zij + γi + β1σ
2, σ 2). (5)

From (2), (4) and (5) we obtain the distributions of Wij among the controls and cases [Wij | Si, Zij, Yij = 0] ∼ Normal{δ0 +

δ1(α0 +αT
1 Siq +α

T
2Zij +γi), δ

2
1σ

2
+σ 2

W }, [Wij | Si, Zij, Yij = 1] ∼ Normal{δ0 +δ1(α0 +αT
1 Siq +α

T
2Zij +γi +β1σ

2), δ21σ
2
+σ 2

W },
which will be used in Lunobs given in (7). Following Eq. (6) of Sinha et al. [12] we obtain

pr(Yij = 1|Si, Zij)
pr(Yij = 0|Si, Zij)

= exp

β0(Si)+ (α0i + αT

1 Siq + αT
2Zij)β1 + β2

1
σ 2

2
+ βT

2 Zij


(6)

which in turn implies
M+1
j=1

Yijpr(Yij = 1|Zij, Si)/pr(Yij = 0|Zij, Si)

M+1
k=1

pr(Yik = 1|Zik, Si)/pr(Yik = 0|Zik, Si)
=

M+1
j=1

YijPij, Pij ≡
exp{(αT

2β1 + βT
2 )Zij}

M+1
k=1

exp{(αT
2β1 + βT

2 )Zik}
.

Conditional on γi, the likelihood function given the observed data (Yij,Wij, Si, Zij), j = 1, . . . , (M + 1), i = 1, . . . , n is

Lunobs =

n
i=1


M+1
j=1

f (Wij|Si, Zij, Yij)


pr


Zij, j = 1, . . . , (M + 1)|Si,

M+1
j=1

Yij = 1



=

n
i=1


M+1
j=1

f Yij(Wij|Si, Zij, Yij = 1)f 1−Yij(Wij|Si, Zij, Yij = 0)



×

M+1
j=1

Yijpr(Yij = 1|Zij, Si)/pr(Yij = 0|Zij, Si)

M+1
j=1

pr(Yij = 1|Zij, Si)/pr(Yij = 0|Zij, Si)
, (7)

where f (·) is the generic symbol for a density function. Observe that although expression (6) is a function of β0i and γi
along with other parameters, the last component of Lunobs does involve neither of the stratum specific parameters due to
conditioning on

M+1
j=1 Yij = 1, the sufficient statistic for the stratum specific intercept parameter in the logistic model for

Y given Z and S. The observed data likelihood is obtained by integrating out the random effects γi from Lunobs. That means,

Lobs =


Lunobs

n
i=1

1
2πσ 2

α

exp


−
γ 2
i

2σ 2
α


dγi.

After plugging in expressions (4)–(6) into Lunobs, and then taking the logarithm of Lobs we obtain l = log(Lobs) =
n

i=1 li,
where

li = −

M+1
j=1

L2ij

2ξ
+


δ1

M+1
j=1

Lij

2

2Bξ 2
−
(M + 1)

2
log(ξ)−

1
2
log(σ 2

α )−
1
2
log(B)

+

M+1
j=1

Yij(α
T
2β1 + βT

2 )Zij − log


M+1
j=1

exp{(αT
2β1 + βT

2 )Zij}


,
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Lij ≡ {Wij − δ0 − δ1(α0 + α1Siq + α2Zij + β1σ
2Yij)}, ξ ≡ (δ21σ

2
+ σ 2

W ), and B ≡ {1/σ 2
α + (M + 1)δ21/ξ}. Note that all

parameters are identifiable as δ0, δ1, and σ 2
W are known here. The score statistic for testing H0 : β1 = β10 is

T1 = Sβ1(Inβ1β1 − Inβ1θ I
−1
nθθ Inθβ1)

−1Sβ1 ,

where all components of the statistic are evaluated underH0, and θ represents all parameters butβ1. Here Sβ1 ≡ n−1/2∂ l/∂β1

= Sβ1(φ) =
n

i=1 Si,β1(φ),

Si,β1(φ) =
1

√
n

α
T
2

M+1
j=1

(Yij − Pij)Zij +
δ1σ

2

ξ

M+1
j=1

YijLij −

δ21

M+1
j=1

Lij

Bξ


 ,

and Inβ1β1 ≡ −(1/n)∂2l∂β1∂β1Inβ1θ ≡ −(1/n)∂2l/∂β1∂θ
T , and Inθθ ≡ −(1/n)∂2l/∂θ∂θ T . Observe that under H0, β1 = β10

and θ = θ̃ , where θ̃ satisfies [(1/n)∂ l/∂θ ]β1=β10,θ=θ̃ = 0. The expressions for ∂ l/(∂θ), ∂2l/(∂β1∂β1), ∂
2l/(∂β1∂θ

T ) and
∂2l/(∂θ∂θ T ) are given in Appendix A. Under H0, T1 follows a χ2 distribution with 1 degree of freedom.

Remark 1. Based on model assumptions (2) and (4) one may obtain

[Xij|Si, Zij,Wij, Yij = 0] ∼ Normal

σ 2
Ď


(Wij + δ0)δ1

σ 2
W

+ (α0 + αT
1 Siq + αT

2Zij + γi)σ
−2

, σ 2

Ď


,

where σ 2
Ď ≡ (δ21σ

−2
W + σ−2)−1. Consequently the induced model for the disease odds given Si,Wij, and Zij is

pr(Yij = 1|Si,Wij, Zij)
pr(Yij = 0|Si,Wij, Zij)

=


exp(β0(Si)+ β1Xij + βT

2 Zij)f (Xij|Si, Zij,Wij, Yij = 0)dXij

= exp


β0i + β1σ

2
Ď


(Wij + δ0)δ1

σ 2
W

+ (α0 + αT
1 Siq + αT

2Zij + γi)σ
−2


+
β2
1

2
σ 2
Ď + βT

2 Zij


resulting in pr(Yij = 1|Si,Wij, Zij) = H{β∗

0 (Si) + β∗

1Wij + Zijβ∗

2 }, where β∗

0 (Si) ≡ β0(Si) + β2
1σ

2
Ď /2 + β1σ

2
Ď {δ0δ1σ

−2
W +

(α0 + αT
1 Siq + γi)σ

−2
}, β∗

1 ≡ β1σ
2
Ď δ1σ

−2
W and β∗

2 = β2 + β1σ
2
Ď σ

−2α2. Therefore, the naive method usually produces a
biased estimator for β1 and β2. However, when X and Z are independent (i.e., α2 = 0), the naive method yields a consistent
estimator for β2. This fact holds true even when the distribution of X among the controls follows a non-normal model.

3.2. Extension to a more general hypothesis

The above result can be generalized to test H0 : Q (β) = 0, where Q : R(p+1)
→ Rr is a continuous function of β =

(β1, β
T
2 )

T , and ∂Q (β)/∂β is finite for all β in a compact subset of the (p+ 1)-dimensional Euclidean space, and has full row
rank r . Define ψ = (α0, α

T
1 , α

T
2 , σ

2
α , σ

2)T .

Result 1. Under the assumptions listed in the Appendix the score test statistic for testing H0 : Q (β) = 0 is

T2 =


n−1/2

n
i=1

∂ li(β̃, ψ̃)/∂β

n−1/2
n

i=1

∂ li(β̃, ψ̃)/∂ψ


T

DT
n(β̃, ψ̃)Â

−1
nβ·ψ

∂Q (β̃)
∂β

∂Q (β̃)
∂β

Â−1
nβ·ψDn(β̃, ψ̃)C̃

×DT
n(β̃, ψ̃)Ã

−1
nβ·ψ


∂Q (β̃)
∂β

T
−1

∂Q (β̃)
∂β

Ã−1
nβ·ψDn(β̃, ψ̃)


n−1/2

n
i=1

∂ li(β̃, ψ̃)/∂β

n−1/2
n

i=1

∂ li(β̃, ψ̃)/∂ψ

 ,
where Dn(β̃, ψ̃) ≡ [I − Ãnβψ Ã−1

nψψ ], and Ãnβ·ψ ≡ Ãnββ − Ãnβψ Ã−1
nψψ Ãnψβ , with Ãnββ = (1/n)[

n
i=1 ∂

2li/∂β∂βT
]β=β̃,ψ=ψ̃ ,

Ãnβψ = (1/n)[
n

i=1 ∂
2li/∂β∂ψT

]β=β̃,ψ=ψ̃ , Ãnψψ = (1/n)[
n

i=1 ∂
2li/∂ψ∂ψT

]β=β̃,ψ=ψ̃ , and

C̃ =


(1/n)

n
i=1

(∂ li/∂β)(∂ li/∂βT ) (1/n)
n

i=1

(∂ li/∂β)(∂ li/∂ψT )

(1/n)
n

i=1

(∂ li/∂ψ)(∂ li/∂βT ) (1/n)
n

i=1

(∂ li/∂ψ)(∂ li/∂ψT )


β=β̃,ψ=ψ̃

.

Under H0, T2 approximately follows a χ2
r distribution.
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In the proof of this result given in Appendix B we borrowed the techniques given in Theorem 3.5 of White [16].
Note that White [16] considered the generalized score test in a misspecified model. Here we extend that idea in the
context of errors-in-covariates in a matched case-control set-up. In the above formulation all components are evaluated
at β = β̃ and ψ = ψ̃ , the MLE of β and ψ under H0. Observe that a special case of this hypothesis is to test H0 :

β2 = β20 with Q (β) = (0, 1T )β − β20. Similarly, another special case of this hypothesis is to test H0 : β1 = β10 with
Q (β) = (1, 0T )β − β10.

4. Estimation of δ0, δ1, and σ2
W

Usually the secondary model parameter φ = (δ0, δ1, σ
2
W )

T is not known, and is estimated from an external calibration
data. Following our data example, we consider an external data set consisting of the biased surrogate W and repeated
measures of an unbiased surrogate of X . Thus, even in the external data set the true X is not observed, and this scenario
is common in nutritional epidemiology. That means the external data contain (Wl, Tlk, k = 1, . . . , K ≥ 2), l = 1, . . . ,m,
where K denotes the number of replicates of T for each of the subject in the calibration data, and m represents the size
of the calibration data. In principle, we assume that the calibration sample size m → ∞ along with n → ∞. However,
(n/m) → ρ ∈ (0,∞). We assume that

Tlk = Xl + UTlk, UTjk
i.i.d.
∼ Normal(0, σ 2

T ).

Under the assumption that (1) errors associated with T andW are independent and (2) conditional on X none of UT and UW
depends on Y , φ is consistently estimated by solving the corrected score equations [13]:

m
l=1

(Wl − δ0 − δ1T̄l) = 0,
m
l=1

(Wl − δ0 − δ1T̄l)T̄l + σ 2
T
δ1

K
= 0,

where σ 2
T = [1/{m(K−1)}]

m
l=1
K

k=1(Tlk− T̄l)2 and T̄l =
K

k=1 Tlk/K . Also,
σ 2
W = (1/m)

m
l=1(Wl−δ0−δ1T̄l)2−δ12σ 2

T /K .
When φ is not known, the score statistics given in Sections 3.1 and 3.2 are computed for φ = φ̂, and consequently
the uncertainty of estimation should be taken into account in the score statistics. Observe that φ̂ is a regular linear
estimator which let Sβ1(φ̂) to follow an asymptotic normal distribution. Now using the Taylor series expansion we write
Sβ1(φ̂) = Sβ1(φ) + {∂Sβ1(φ)/∂φ}(φ̂ − φ) + op(1). Since the external calibration data and the matched case-control
data are independently sampled from the population, an estimator of the asymptotic variance of Sβ1(φ̂) is var{Sβ1(φ)} +

{∂Sβ1(φ)/∂φ}Σ̂φ{∂Sβ1(φ)/∂φ}
T , where Σ̂φ is the estimated variance of φ̂, and the test statistic T1 is modified as

T
adj
1 = Sβ1(φ̂)[Inβ1β1(φ̂)− Inβ1θ (φ̂)I

−1
nθθ (φ̂)Inθβ1(φ̂)+ {∂Sβ1(φ̂)/∂φ}Σ̂φ{∂Sβ1(φ̂)/∂φ}

T
]
−1Sβ1(φ̂).

Under H0, T
adj
1 asymptotically follows a χ2

1 distribution. It is clear that due to the adjustment of the variance of the score,
the power of T

adj
1 will be lower than that of T1. Similarly, when φ is estimated from an external data set, T2 is modified as

follows.

Result 2. Under the assumptions listed in the Appendix, and when φ is estimated through an external data set, the score
test statistic for testing H0 : Q (β) = 0 is T

adj
2 . Under H0, T

adj
2

approx
∼ χ2

r where

T
adj
2 =



1
√
n

n
i=1

∂ li(β̃, ψ̃, φ̂)/∂β

1
√
n

n
i=1

∂ li(β̃, ψ̃, φ̂)/∂ψ
n
m

1
√
m

m
l=1

ϑl



T

Dn(β̃, ψ̃, φ̂)Â−1
β·ψ


∂Q (β̃)
∂β

T
∂Q (β̃)
∂β

Â−1
β·ψDn(β̃, ψ̃, φ̂)

× C̃Dn(β̃, ψ̃, φ̂)Â−1
β·ψ


∂Q (β̃)
∂β

T−1
∂Q (β̃)
∂β


Â−1
β·ψD

T
n(β̃, ψ̃, φ̂)



1
√
n

n
i=1

∂ li(β̃, ψ̃, φ̂)/∂β

1
√
n

n
i=1

∂ li(β̃, ψ̃, φ̂)/∂ψ
n
m

1
√
m

m
l=1

ϑl


,
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Dn(β̃n, ψ̃, φ̂) ≡ [I − Ãnβψ Ã−1
nψψ Ãnβφ − Ãnβψ Ã−1

nψψ Ãnψφ],

C̃ =



1
n

n
i=1

{∂ li/∂β}{∂ li/∂β}
T 1

n

n
i=1

{∂ li/∂β}{∂ li/∂ψT
} 0

1
n

n
i=1

{∂ li/∂ψ}{∂ li/∂βT
}

1
n

n
i=1

{∂ li/∂ψ}{∂ li/∂ψT
} 0

0 0


n
m


1
m

m
l=1

ϑlϑ
T
l


β=β̃,ψ=ψ̃,φ=φ̂

,

ϑl =


1
m

m
l′=1

∂Sφ,l′
∂φ

−1

Sφ,l, and Sφ,l =



Wl − δ0 − δ1T̄l

(Wl − δ0 − δ1T̄l)T̄l +
σ 2
T δ1

Km

σ 2
T −

1
K − 1

K
l′=1

(Tl′k − T̄l)2

σ 2
W − (Wl − δ0 − δ1T̄l)2 +

δ21σ
2
T

Km


.

The proof of this result is given in Appendix C. Before we conclude this section we would like to reiterate that in our set-up
themain surrogate variableW which is observed in themain data set and in the calibration data is possibly biased. However,
according to the design of our data example the calibration data contain replicated measurements of an unbiased surrogate
variable T along with W . This unbiased surrogate T is usually more expensive to collect. Therefore, it is collected only for a
subset of the population.

5. Simulation study

Simulation design: In order to study the performance of the proposed test based on the conditional maximum likelihood
(CML) we performed the following simulation study. First, we simulated cohorts of size N = 50 000 by simulating
S = (Sq, Snq), X, Z , and Y . We took Sq ∼ Normal(0, 1), Snq ∼ Normal(−0.5, 1), Z ∼ Bernoulli(0.35) distribution. We
considered two scenarios: (1) X ∼ Normal(0.5Sq + 0.5Snq + Z, 1) and (2) X ∼ 0.25(Snq + Sq + Z) + Gamma(2,

√
2). The

second scenario was considered to assess the robustness of the CML method when the model assumption is violated. The
binary disease variable Y was simulated from a Bernoulli distribution with the success probability pr(Yij = 1 | Si, Xij, Zij) =

H(β0 +0.5Sq +0.5Snq +β1X +β2Z), and β0 was varied so that the marginal disease probability varies between 7% and 15%.
From the cohort, we constructed 1:2 matched case-control data (i.e., M = 2) with n = 200 strata. Each stratum consisted
of 3 subjects of which one was a case and the rest were controls which were matched with the cases based on S. In order to
consider biased surrogate variable we simulated W from (i) W = 0.5 + X + UW (Table 1) and (ii) W = 0.5 + 0.75X + UW
(Table 2), whereUW ∼ Normal(0, σ 2

W ).We considered two different values for σ 2
W , 0.25var(X), and 0.5var(X), where var(X)

represents the marginal variance of X . Each matched case-control data were accompanied by a calibration data consisting
of (Wl, Tl1, Tl2), l = 1, . . . ,m with K = 2, where Tlk = Xl + UT ,lk, and UT ,lk ∼ Normal(0, σ 2

T ) for k = 1, 2, and we set
σ 2
T = 0.5σ 2

W . We took two different values for the size of the calibration data, m = 25 and 50. Furthermore, the calibration
data were independently sampled from the population.

For each possible combination of the scenarios we tested (a) H0 : β1 = 0 against Ha : β1 ≠ 0, (b) H0 : β1 = 0.5 against
Ha : β1 ≠ 0.5, and (c) H0 : β1 − β2 = 0 against Ha : β1 − β2 ≠ 0. For tests (a), (b) and (c) we fixed β2 = 0.5 and varied β1.
Method of analyses: Under each setting we simulated R = 2, 000 data sets, and for each simulated data the above tests were
conducted using the naive (NV), regression calibration (RC), and the proposed CML approach. For the regression calibration
approachwe replaced X by X̂ = δ̂0,rc+ δ̂1,rcW , where δ̂0,rc and δ̂1,rc were the estimator of the intercept and slope parameters
of the regression model relating X withW based on the calibration data. Since the calibration data contain (W , T1, T2), δ̂0,rc
and δ̂1,rc are obtained by regressing (T1 + T2)/2 on W . Consequently, we took into account uncertainties of estimation of
δ0,rc and δ1,rc into the score statistic, and the general form of the adjusted test statistic due to the RC method for testing
H0 : Q (β) = 0 is given by T adj

2,rc. In deriving this formula we used somewhat analogous steps as of Result 2.

T adj
2,rc =


1

√
n

n
i=1

∂ li,rc(β̃rc, δ̂rc)/∂β
n
m

1
√
m

m
l=1

ϑl,rc


T

Dn,rc(β̃rc, δ̂rc)Â−1
nββ,rc


∂Q (β̃rc)

∂β

T
∂Q (β̃rc)

∂β
Â−1
nββ,rc

×Dn,rc(β̃rc, δ̂rc)C̃rcDn,rc(β̃rc, δ̂rc)Â−1
nββ,rc


∂Q (β̃rc)

∂β

T−1
∂Q (β̃rc)

∂β


Â−1
nββ,rcDn,rc(β̃rc, δ̂rc)


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Table 1
Results of the simulation study for comparing powers of several tests. Here, NV, RC, and CML represent the score tests based on the naive, the regression
calibration, and the proposed conditional maximum likelihood method, respectively. For all simulations we fix β2 = 0.5, and W = 0.5 + X + U , with
U ∼ Normal(0, σ 2

W ), κ ≡ σ 2
W /σ

2
X and σ 2

T = 0.5σ 2
W .

κ 0 NV m = 25 m = 50
0.25 0.5 RC CML RC CML

0.25 0.5 0.25 0.5 0.25 0.5 0.25 0.5

β1 X ∼ Normal(0.5Snq + 0.5Sq + Z, 1)
H0 : β1 = 0 versus H0 : β1 ≠ 0

−0.2 0.641 0.467 0.382 0.449 0.332 0.327 0.158 0.492 0.421 0.429 0.205
−0.1 0.23 0.182 0.15 0.171 0.116 0.115 0.067 0.148 0.116 0.116 0.106
0 0.045 0.044 0.045 0.037 0.029 0.026 0.007 0.045 0.045 0.023 0.011
0.1 0.224 0.169 0.145 0.154 0.109 0.127 0.056 0.182 0.140 0.159 0.112
0.2 0.634 0.485 0.388 0.453 0.33 0.332 0.145 0.444 0.333 0.409 0.224

H0 : β1 = 0.5 versus H0 : β1 ≠ 0.5

0.3 0.594 0.369 0.577 0.271 0.358 0.244 0.212 0.258 0.352 0.292 0.266
0.4 0.198 0.296 0.555 0.200 0.326 0.094 0.085 0.193 0.296 0.121 0.083
0.5 0.045 0.232 0.527 0.133 0.248 0.033 0.038 0.126 0.249 0.045 0.048
0.6 0.154 0.176 0.496 0.095 0.214 0.120 0.094 0.088 0.201 0.133 0.111
0.7 0.47 0.142 0.468 0.077 0.195 0.296 0.194 0.067 0.167 0.343 0.243

H0 : β1 − β2 = 0 versus H0 : β1 − β2 ≠ 0

0.3 0.129 0.38 0.562 0.272 0.351 0.117 0.098 0.267 0.355 0.119 0.108
0.4 0.068 0.318 0.561 0.201 0.311 0.065 0.070 0.194 0.297 0.077 0.078
0.5 0.052 0.246 0.535 0.13 0.240 0.059 0.061 0.133 0.241 0.056 0.054
0.6 0.059 0.191 0.484 0.087 0.197 0.072 0.071 0.095 0.199 0.075 0.083
0.7 0.120 0.134 0.464 0.073 0.163 0.104 0.097 0.071 0.170 0.114 0.101

X ∼ 0.25(Snq + Sq + Z)+ Gamma(2,
√
2)

H0 : β1 = 0 versus H0 : β1 ≠ 0

−0.2 0.575 0.535 0.440 0.450 0.354 0.243 0.202 0.502 0.424 0.292 0.258
−0.1 0.159 0.127 0.120 0.160 0.133 0.140 0.127 0.190 0.170 0.176 0.154
0 0.056 0.051 0.048 0.050 0.049 0.046 0.045 0.049 0.046 0.050 0.044
0.1 0.218 0.171 0.155 0.162 0.155 0.160 0.142 0.201 0.188 0.198 0.141
0.2 0.698 0.642 0.532 0.551 0.412 0.342 0.286 0.567 0.435 0.389 0.341

H0 : β1 = 0.5 versus H0 : β1 ≠ 0.5

0.3 0.624 0.264 0.366 0.157 0.171 0.129 0.112 0.159 0.167 0.288 0.188
0.4 0.209 0.163 0.276 0.086 0.095 0.065 0.071 0.091 0.101 0.152 0.095
0.5 0.047 0.067 0.145 0.080 0.092 0.032 0.028 0.076 0.079 0.034 0.028
0.6 0.180 0.064 0.096 0.052 0.066 0.126 0.082 0.059 0.055 0.149 0.102
0.7 0.496 0.042 0.073 0.126 0.114 0.284 0.178 0.135 0.116 0.352 0.215

H0 : β1 − β2 = 0 versus H0 : β1 − β2 ≠ 0

0.3 0.156 0.271 0.364 0.153 0.166 0.090 0.070 0.163 0.165 0.099 0.078
0.4 0.085 0.165 0.279 0.088 0.098 0.063 0.055 0.092 0.093 0.065 0.058
0.5 0.054 0.085 0.172 0.086 0.090 0.040 0.051 0.067 0.077 0.040 0.031
0.6 0.080 0.054 0.102 0.067 0.085 0.046 0.052 0.055 0.058 0.056 0.058
0.7 0.138 0.051 0.068 0.136 0.144 0.069 0.063 0.132 0.121 0.089 0.072

×


1

√
n

n
i=1

∂ li,rc(β̃rc, δ̂rc)/∂β
n
m

1
√
m

m
l=1

ϑl,rc

 ,

where Dn,rc(β̃rc, δ̂rc) = [I Ânββ,rc], Ânββ,rc = (1/n)[
n

i=1 ∂
2li,rc/∂β∂βT

]β=β̃rc
, li,rc = log

M+1
j=1 Yijpij,rc, pij,rc = exp(β1,rcX̂ij +

βT
2,rcZij)/

M+1
k=1 exp(β1,rcX̂ik + βT

2,rcZik),

C̃rc =


1
n

n
i=1

(∂ li,rc/∂β)(∂ li,rc/∂β)T 0

0


n
m


1
m

m
l=1

ϑl,rcϑ
T
l,rc


β=β̃rc,δ=δ̂rc
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Table 2
Results of the simulation study for comparing powers of several tests. Here, NV, RC, and CML represent the score tests based on the naive, the regression
calibration, and the proposed conditional maximum likelihood method, respectively. For all simulations we fix β2 = 0.5, andW = 0.5+ 0.75X + U , with
U ∼ Normal(0, σ 2

W ), κ ≡ σ 2
W /σ

2
X , and σ

2
T = 0.5σ 2

W .

κ 0 NV m = 25 m = 50
0.25 0.5 RC CML RC CML

0.25 0.5 0.25 0.5 0.25 0.5 0.25 0.5

β1 X ∼ Normal(0.5Snq + 0.5Sq + Z, 1)
H0 : β1 = 0 versus H0 : β1 ≠ 0

−0.2 0.63 0.408 0.313 0.406 0.300 0.194 0.100 0.426 0.309 0.272 0.133
−0.1 0.193 0.154 0.121 0.156 0.117 0.068 0.052 0.134 0.122 0.076 0.065
0 0.048 0.049 0.050 0.046 0.048 0.023 0.002 0.048 0.053 0.017 0.006
0.1 0.202 0.141 0.107 0.139 0.108 0.076 0.062 0.148 0.112 0.082 0.067
0.2 0.625 0.411 0.298 0.402 0.284 0.201 0.112 0.385 0.311 0.282 0.142

H0 : β1 = 0.5 versus H0 : β1 ≠ 0.5

0.3 0.601 0.852 0.993 0.610 0.589 0.252 0.142 0.638 0.622 0.276 0.188
0.4 0.202 0.557 0.956 0.362 0.412 0.115 0.090 0.352 0.402 0.124 0.102
0.5 0.054 0.286 0.848 0.165 0.254 0.042 0.032 0.146 0.223 0.048 0.037
0.6 0.147 0.086 0.646 0.103 0.157 0.109 0.072 0.076 0.113 0.115 0.082
0.7 0.451 0.054 0.454 0.144 0.138 0.231 0.109 0.112 0.074 0.264 0.161

H0 : β1 − β2 = 0 versus H0 : β1 − β2 ≠ 0

0.3 0.129 0.397 0.646 0.338 0.433 0.086 0.076 0.338 0.458 0.094 0.079
0.4 0.068 0.361 0.679 0.287 0.408 0.064 0.059 0.277 0.412 0.073 0.078
0.5 0.052 0.296 0.675 0.213 0.370 0.063 0.055 0.219 0.379 0.053 0.053
0.6 0.059 0.221 0.653 0.174 0.351 0.073 0.075 0.168 0.343 0.077 0.077
0.7 0.120 0.177 0.671 0.133 0.305 0.099 0.080 0.142 0.328 0.103 0.083

X ∼ 0.25(Snq + Sq + Z)+ Gamma(2,
√
2)

H0 : β1 = 0 versus H0 : β1 ≠ 0

−0.2 0.575 0.423 0.321 0.430 0.329 0.193 0.176 0.404 0.305 0.227 0.185
−0.1 0.159 0.133 0.113 0.143 0.115 0.103 0.076 0.152 0.127 0.120 0.101
0 0.056 0.048 0.054 0.049 0.051 0.043 0.038 0.049 0.050 0.048 0.045
0.1 0.218 0.174 0.144 0.163 0.129 0.112 0.120 0.169 0.146 0.150 0.123
0.2 0.698 0.539 0.445 0.507 0.401 0.208 0.180 0.500 0.411 0.245 0.220

H0 : β1 = 0.5 versus H0 : β1 ≠ 0.5

0.3 0.646 0.646 0.923 0.414 0.360 0.212 0.111 0.413 0.356 0.259 0.142
0.4 0.219 0.296 0.714 0.214 0.191 0.121 0.058 0.198 0.162 0.132 0.068
0.5 0.051 0.085 0.436 0.172 0.178 0.029 0.022 0.167 0.126 0.033 0.029
0.6 0.176 0.059 0.159 0.120 0.155 0.094 0.069 0.077 0.092 0.119 0.072
0.7 0.491 0.225 0.067 0.391 0.291 0.205 0.109 0.326 0.279 0.252 0.137

H0 : β1 − β2 = 0 versus H0 : β1 − β2 ≠ 0

0.3 0.156 0.215 0.341 0.162 0.165 0.039 0.030 0.165 0.157 0.054 0.033
0.4 0.085 0.113 0.264 0.091 0.107 0.029 0.031 0.092 0.097 0.032 0.031
0.5 0.054 0.065 0.161 0.076 0.098 0.027 0.019 0.072 0.081 0.022 0.022
0.6 0.080 0.051 0.089 0.062 0.082 0.033 0.036 0.056 0.074 0.041 0.039
0.7 0.138 0.076 0.061 0.135 0.112 0.057 0.065 0.144 0.121 0.072 0.069

and

ϑl,rc =


m

m
l=1

Wl

m
l=1

Wl

m
l=1

W 2
l


−1 

(T̄l − δ̂0,rc − δ̂1,rcWl)

(T̄l − δ̂0,rc − δ̂1,rcWl)Wl


.

For the CMLmethod δ0, δ1, and σ 2
W were estimated from the calibration data using the method described in Section 5. Thus,

for testing the hypotheses we used T
adj
1 and T

adj
2 . For the sake of comparison we also present the power of the test T0 when

there are no measurement errors.

Simulation results: For testing H0 : β1 = 0, the NV, RC, and the CML method maintain the level for all scenarios. However,
the NV shows more power than the RC and the CML approach. For testing H0 : β1 = 0.5, the NV and the RC method do
not maintain the nominal levels, and result in biased tests whereas the CML method maintains the level and the power
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of the CML method increases as β1 moves away from 0.5. Furthermore, the power of the CML approach increases with
the size of the calibration data. Similarly, for testing H0 : β1 − β2 = 0, the NV and the RC method turn out to be
biased. Overall, as κ = σ 2

W/σ
2
X increases the power of the CML method decreases. The simulation results indicate that

the proposed method is quite robust for moderate departure from the normal distribution assumption of X . The results also
indicate that overall the power of the CML method is lower when E(W |X) = 0.5 + 0.75X compared to the scenario when
E(W |X) = 0.5 + X .

6. Analysis of the colon cancer data

Background information: Here we analyze a 1:1 matched case-control data on colon cancer which was taken from the Study
of Diet andHealth conducted in twometropolitan areas Toronto and Calgary of Canada during the period 1976–1978 [7]. The
matched data consisted of n = 171 male colon cancer patients aged between 35 and 75, and each case was matched with
a control based on age and neighborhood of residence. We refer to Jain et al. [7] for details on recruiting cases and controls
into the study. Apart from demographic information each subject responded to a diet questionnaire which was aimed at
measuring nutrient intakes. This data set was previously analyzed by Armstrong et al. [1].

In this study we will be looking for the effect of dietary fiber on colon cancer. Since fiber intake measured via dietary
questionnaire involves measurement errors, an external calibration study was conducted to estimate this error. In the
external study m = 16 healthy volunteers reported dietary histories considered as W along with the detailed weighted
food records kept by the volunteers’ spouses. The later variable is considered as an unbiased measurement (T ) for the true
dietary intakes.
Analyses and results: In the analysis we consider body mass index as Z , and log of dietary fiber intake as X, Y denotes the
disease status as if a subject has colon cancer or not. The log of dietary fiber measured via diet questionnaire is considered
as W . The assumed model is pr(Y = 1|S, X, Z) = H(β0(S) + β1X + β2Z), and we test H0 : β1 = 0 against H1 : β1 ≠ 0
at 5% level of significance, where β1 represents the log-odds ratio parameter corresponding to dietary fiber intake. For the
naive test we obtain T0(W , Y , Z, β̃Naive) = 0.462. Thus, we do not have sufficient evidence to reject H0 at 5% level. Next, we
compute the score test based on the RC approach. It may be noted here that we first estimate E(X |W ) = δ0,rc +δ1,rcW based
on the calibration data. The test statistic due to the RCmethod is 0.353. Hence, we do not rejectH0 at 5% level of significance.
For the CML approach we get δ̂0 = 3.16, δ̂1 = 0.303, ˆσ 2

W = 0.0499, and the test statistic is T
adj
1 = 0.266. Hence, we also do

not reject H0 at 5% level. Since, H0 is accepted based on all three approaches, there is no need to test any non-zero value for
β1. However, for the purpose of illustration we conduct a test if the odds ratio corresponding to log of fiber intake is 2. That
means we test H0 : β1 = log(2) against H1 : β1 ≠ log(2). The test statistics due to the naive, regression calibration, and the
proposed methods are 12.562, 5.272, and 4.889, respectively, and the corresponding theoretical p-values are 0.0004, 0.022,
and 0.027, respectively. We also conduct a test for the log-odds ratio parameter corresponding to log of BMI. Here we test
H0 : β2 = log(2) against H1 : β2 ≠ log(2). The test statistics due to the naive, regression calibration, and the proposed
methods are 0.012, 0.011, and 0.044, respectively, and the corresponding theoretical p-values are 0.913, 0.916, and 0.834,
respectively. Therefore, we fail to reject the null hypothesis here.

7. Discussion

We propose score tests for testing hypothesis in a matched case-control study when a covariate is measured with
errors which in turn may help for finding optimal sample size for designing such studies. The methods include a general
score test involving several model parameters. We also provide the theory when the errors are calibrated from an external
data set, and incorporated into the analysis. Although, in the proposed method we assumed a normal model for X among
controls conditional on the stratification variables, and the error-free covariates, the simulation study indicates very
satisfactory performance of the method even when the model assumption is moderately violated. One of the limitations
of the proposed method and any other methods which correct bias due to measurement errors is inflated uncertainty
resulting in large standard error of estimators or low power of any test. This uncertainty does not decrease by increasing
sample size.

In principle, the proposed approach can be applied to when one takes a more flexible model for X and the error
distribution. In future,wewill develop score tests for handlingmultiplicativemeasurement errorswhich are also common in
observational studies. Another potential research problem is to develop a generalized score test when both the distributions
of X and the errors are unspecified.
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Appendix A. Components of the score vector and the Hessian matrix

Define θ ≡ (βT
2 , α0, α

T
1 , α

T
2 , σ

2
α , σ

2)T , thus (∂ l/∂θ) = [(∂ l/∂β2)
T , (∂ l/∂α0), (∂ l/∂α1)

T , (∂ l/∂α2)
T , (∂ l/∂σ 2

α ), (∂ l/∂σ
2)]T .

Also, define ζ = (δ1/ξ){1 − δ21/(Bξ)}. Then the score functions are

∂ l
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The components of the Hessian matrix are
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Appendix B. Proof of Result 1

A1. The density function of the observed data is measurable for each parameter θ = (βT , ψT )T in Θ , a compact subset of
the Euclidean space.

A2. ∂ l(θ)/∂θ is a measurable function of Vi ≡ (Yij, Zij,Wij, j = 1, . . . , (M + 1)) for each θ ∈ Θ , and continuously
differentiable function of θ for each Vi in the sample space.

A3. |∂2l(θ)/∂θk∂θl| and |∂ l(θ)/∂θk∂ l(θ)/∂θl| are dominated by functions integrable with respect to the data density for all
Vi and for all θ ∈ Θ .

A4. θ∗
= (β∗T , ψ∗T )T is in the interior ofΘ , and A∗

β·ψ is non-singular.

Under the assumption thatΘ is compact andQ (β) is continuous inβ , the restricted parameter spaceΘ0 = {θ ∈ Θ∩Q (β) =

0} is also compact. Under the regularity assumptions, θ̃ → θ∗ almost surely where θ∗
∈ Θ0.

For the sake of convenience we will denote (∂ li/∂β) evaluated at β = β̃ and ψ = ψ̃ by (∂ li(β̃, ψ̃)/∂β). Let β̃ and ψ̃ be
the estimators under H0. Then

1
n

n
i=1

∂ li(β̃, ψ̃)
∂β

+


∂Q (β̃)
∂β

T

λ̂ = 0, (B.8)

Q (β̃) = 0, (B.9)

1
n

n
i=1

∂ li(β̃, ψ̃)
∂ψ

= 0, (B.10)
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where λ̂ is the estimator of an r × 1 vector of Lagrangian multipliers. Under the regularity assumptions, the estimators are
consistent. Using the mean value theorem and assumption A2, we can write

1
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n
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∂ li(β̃, ψ̃)
∂β

=
1
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+ Ānββ(β̃ − β∗)+ Ānβψ (ψ̃ − ψ∗), (B.11)
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+ Ānψβ(β̃ − β∗)+ Ānψψ (ψ̃ − ψ∗), (B.12)

where β̄n lies on the line segment between β∗ and β̃ , and ψ̄ lies on the line segment between ψ∗ and ψ̃ , and ¯(·) signifies
that (·) is evaluated for β = β̄ and ψ = ψ̄ . Eq. (B.12) implies that
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+ Ānψβ(β̃ − β∗)


. (B.13)

Also, under H0, we can re-write (B.9) as Q (β̃) = Q (β∗) +


∂Q (βĎ

n )/∂β

(β̃ − β∗) = 0, where βĎ

n is on the line segment

joining β∗ and β̃ . From the above expression we obtain {∂Q (βĎ
n )/∂β}(β̃ − β∗) = 0 by setting Q (β∗) = 0. Now replacing

(B.12) into (B.8) and then using the expression (B.13) for (ψ̃ − ψ∗)we obtain
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whereDn(β̄, ψ̄) ≡ [I−Ānβψ Ā−1
nψψ ]. Since β̄ → β∗, ψ̄ → ψ∗ almost surely, Ānβψ

a.s
→ A∗

βψ , Ānψψ
a.s
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ψψ , and Ānβ·ψ → A∗

nβ·ψ .
Thus, Ānβ·ψ is also non-singular almost surely for large n. Now, premultiplying (B.14) by
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By using Slutsky’s theorem we get
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Next, using the multivariate central limit theorem we obtain that under H0,

√
nλ̂ ∼ Normal(0,Q ), where the variance–

covariance matrix is
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Therefore, under H0
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asymptotically follows a χ2

r , a chi-square distribution with r degrees of freedom. The result follows after replacing the
unknown parameters by their consistent estimators.

Appendix C. Proof of Result 2

This proof is similar to the previous proof. Thus, we just outline the main steps. The estimators are obtained by solving
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alongwith Eq. (B.9), where φ̂ is a
√
m-consistent estimator of φ obtained from the external calibration data. Therefore, write
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where ϑis are 3-dimensional measurable functions such that E(ϑi) = 0, components of E(ϑiϑ
T
i ) are finite and ϑi and ϑi′ are

independent for i ≠ i′. Now, (1/n)
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Also, from (C.16) and using the mean-value theorem we get
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Now using (C.17)–(C.19) into (C.15) we obtain
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where Dn(β̄, ψ̄, φ̄) ≡ [I − Ānβψ Ā−1
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nψψ Ānψφ]. Define D∗
= limn→∞ Dn(β

∗, ψ∗, φ∗). Premultiplying both
sides by n1/2

{∂Q (β̄)/∂β}Ā−1
nβ·ψ and setting n1/2

{∂Q (β̄)/∂β}(β̃ − β∗) = 0 we obtain

∂Q (β̄)
∂β

Ā−1
nβ·ψDn(β̄, ψ̄, φ̄)



1
√
n

n
i=1

∂ li(β∗, ψ∗, φ∗)/∂β

1
√
n

n
i=1

∂ li(β∗, ψ∗, φ∗)/∂ψ
n
m

1
√
m

m
l=1

ϑl


+

√
n
∂Q (β̄)
∂β

Ā−1
nβ·ψ


∂Q (β̃)
∂β

T

λ̂ = 0
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which implies

√
nλ̂n

d
=


∂Q (β∗)

∂β
A∗−1
β·ψ


∂Q (β∗)

∂β

T−1
∂Q (β∗)

∂β
A∗−1
β·ψD

∗



1
√
n

n
i=1

∂ li(β∗, ψ∗, φ∗)/∂β

1
√
n

n
i=1

∂ li(β∗, ψ∗, φ∗)/∂ψ

√
ρ

1
√
m

m
l=1

ϑl


.

Using the multivariate central limit theorem we obtain
√
nλ̂ ∼ Normal(0,Q ), where

Q = var(
√
nλ̂) =


∂Q (β∗)

∂β
A∗−1
β·ψ


∂Q (β∗)

∂β

T−1
∂Q (β∗)

∂β
A∗−1
β·ψD

∗CD∗A∗−1
β·ψ


∂Q (β∗)

∂β

T

×


∂Q (β∗)

∂β
A∗−1
β·ψ


∂Q (β∗)

∂β

T−1

, and

C =

E[{∂ li/∂β}{∂ li/∂β}] E[{∂ li/∂β}{∂ li/∂ψT
}] 0

E[{∂ li/∂ψ}{∂ li/∂βT
}] E[{∂ li/∂ψ}{∂ li/∂ψT

}] 0
0 0 ρE[ϑlϑ

T
l ]


β=β∗,ψ=ψ∗,φ=φ∗

.

Hence Result 2 follows. In computing the test statistics we replace the expectations by the empirical averages, and replace
β∗, ψ∗, and φ∗ by the corresponding consistent estimators under H0.
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