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Abstract: Matched case–control designs are commonly used in epidemiological studies for estimating the

effect of exposure variables on the risk of a disease by controlling the effect of confounding variables.

Due to retrospective nature of the study, information on a covariate could be missing for some subjects. A

straightforward application of the conditional logistic likelihood for analyzing matched case–control data

with the partially missing covariate may yield inefficient estimators of the parameters. A robust method has

been proposed to handle this problem using an estimated conditional score approach when the missingness

mechanism does not depend on the disease status. Within the conditional logistic likelihood framework, an

empirical procedure is used to estimate the odds of the disease for the subjects with missing covariate values.

The asymptotic distribution and the asymptotic variance of the estimator when thematching variables and the

completely observed covariates are categorical. The finite sample performance of the proposed estimator is

assessed through a simulation study. Finally, the proposed method has been applied to analyze two matched

case–control studies. The Canadian Journal of Statistics 38: 680–697; 2010 © 2010 Statistical Society of

Canada

Résumé: Des designs cas-contrôle appariés sont souvent utilisés dans des études épidémiologiques afin

d’estimer l’effet des variables d’exposition sur le risque d’une maladie en contrôlant l’effet des variables

parasites. Par la nature rétrospective de l’étude, l’information sur les covariables peut être manquante chez

certains sujets. L’application directe de la vraisemblance logistique conditionnelle pour analyser les données

cas-contrôle appariées avec des covariables manquantes partiellement peut conduire à des estimations in-

efficaces des paramètres. L’auteur propose une méthode robuste pour traiter ce problème en utilisant une

approche par score conditionnel estimé lorsque le mécanisme responsable des valeurs manquantes ne dépend

pas du statut de la maladie. Dans le cadre de la vraisemblance logistique conditionnelle, il utilise une

procédure empirique pour estimer les cotes de la maladie pour les sujets ayant des valeurs de covariables

manquantes. L’auteur obtient aussi la distribution et la variance asymptotiques de l’estimateur lorsque les

variables d’appariement et les covariables complètement observées sont catégorielles. La performance pour

de petits échantillons de l’estimateur proposé est évaluée à l’aide d’une étude de simulations. Finalement,

il applique la méthode proposée à l’analyse de deux études cas-contrôle appariés. La revue canadienne de
statistique 38: 680–697; 2010 © 2010 Société statistique du Canada

1. INTRODUCTION

In this paper we propose a nonparametric method for dealing with a partially missing covariate in

matched case–control studies which are commonly used in clinical and epidemiological research.

In amatched case–control study each case or diseased subject ismatchedwith a number of controls

or nondiseased subjects based on some confounding variables which possibly have influence on
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the disease risk as well as on the covariate of interest. For analyzing a matched case–control data

usually a conditional logistic likelihood is used which allows us to estimate the log-odds ratio

parameters without estimating the stratum-specific intercept parameters involved in the disease

risk model.

For a missing data scenario a straightforward use of the conditional logistic likelihood yields

inefficient and possibly biased estimates of the parameters depending on the missingness mecha-

nism. The reason for loss of efficiency is that in order to apply the conditional logistic likelihood

in its standard form to the partially missing data one has to discard completely the subjects with

incomplete information. Moreover, if a missing value occurs for a case subject, the entire stra-

tum in which the case belongs has to be removed from the analysis. This method is known as

complete-case analysis. For handling binary missing covariate data epidemiologists may use the

missing-indicator method proposed by Huberman & Langholz (1999) which can be easily im-

plemented in any statistical software. Although the method can be conveniently applied without

much effort, it could produce biased estimates if the covariate status for matched cases and con-

trols are dependent which can arise via the matching variables. As the method is a compromise

between the complete-case analysis and an unmatched analysis of the data, it is more efficient

than the complete-case analysis (Li, Song & Gary, 2004). However, the method is not applicable

if the partially missing covariate is a continuous or a categorical variable with more than two

categories.

Therefore, for handling any type of partiallymissing-at-randomcovariate data (Little&Rubin,

2002, p. 12) other researchers either suggested to model the distribution of the partially missing

covariates parametrically (Paik & Sacco, 2000; Satten & Carroll, 2000; Sinha et al., 2005) or

to model the missingness probability parametrically (Lipsitz, Parzen & Ewell, 1998; Rathouz,

Satten & Carroll, 2002). Even though the later approaches are usually less efficient, they could

be useful if the distribution of the partially missing covariate is difficult to model parametrically.

In the context of modelling the distribution of the partially missing covariate, Paik & Sacco

(2000) and Satten & Carroll (2000) used different types of conditional likelihood, and the former

method is relatively more robust to the distribution of the partially missing covariate and Satten

and Carroll’s method is more efficient. Sinha et al. (2005) used the Satten and Carroll type of

conditional likelihood and modelled the unobserved stratum effect on the parametric distribution

of the partially missing covariate via a nonparametric Bayesian approach. Sinha, Mukherjee &

Ghosh (2004) extended the idea of Sinha et al. (2005) in the context of multiple disease category

data. For handling nonignorable missing data in matched case–control studies, Paik (2004) and

Sinha & Maiti (2008) proposed two parametric approaches. The methods proposed in Paik &

Sacco (2000) and Paik (2004) are applicable if the partially missing covariate is a member of the

canonical exponential family of distributions, whereas the methods of Satten & Carroll (2000),

Sinha et al. (2005), Sinha, Mukherjee & Ghosh (2004), and Sinha & Maiti (2008) are applicable

to any distribution for the partially missing covariate. In any case, realistic parametric models for

partially missing covariates are difficult to construct and the methods based on parametric model

assumptions are not robust to model misspecification.

Recently Sinha &Wang (2009) proposed a method for handling missing covariate data where

they used a kernel density approach instead of using a parametric model for the distribution

of the partially missing covariate. Although the article made an important advancement in this

field, there are certain difficulties in the application of the method. First of all, in order to make

the asymptotic theory work one needs to work with a higher order kernel (order more than 2)

which can be easily constructed from a given kernel. However, a kernel of order more than 2

may produce negative value for the expected disease odds, although logically it must always be

positive. Therefore, whenever they encountered this problem in the data analysis and simulation,

they had to set the expected value of the disease odds to an arbitrary small positive number without
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any real theoretical justification. Second, for handling boundary effects (Karunamuni & Alberts,

2005) one needs to incorporate boundary corrections which involve intensive computation. Third,

the choice of an appropriate bandwidth is crucial for timely and accurate parameter estimation.

Therefore, a suitable and easy nonparametricmethod is neededwhich can circumvent these issues.

In this article we propose an easily implemented nonparametric method which is robust to the

distribution of the partiallymissing covariate. The theoretical justification and practical implemen-

tationof thismethod ismuchmore straightforward thanSinha&Wang (2009).Unlike kernel-based

nonparametric approach, we do not need to deal with the issue of bandwidth selection, boundary

effects, or occasional negative estimate of pr(Y = 1|Z, S)/pr(Y = 0|Z, S). A brief outline of the

proposed method is given below, and the details are given in Section 3. Let Y , S, Z, and X be the

binary disease indicator variable, a set of matching variables, a set of covariates which is always

observed, and the partially missing covariate, respectively. Within the framework of a conditional

logistic likelihood we replace the odds of the disease pr(Y = 1|S, X, Z)/pr(Y = 0|S, X, Z) by

pr(Y = 1|S, Z)/pr(Y = 0|S, Z) if the covariateX ismissing, and pr(Y = 1|S, Z)/pr(Y = 0|S, Z)

is estimated nonparametrically. One advantage of the conditional likelihood that we are using is

that the contribution of the subjects with fully observed covariate remains the same as their con-

tribution to the conditional logistic likelihood without missing data. In our proposed method we

assume that both S and Z are categorical, and the missingness mechanism is independent of the

disease variable Y and partially missing variable X which will be referred to as case-independent

missing-at-random data. We have studied the asymptotic property of the estimator and obtained

an analytical formula for the asymptotic standard error of the estimator which are described in

Section 4. For deriving the asymptotic distribution we used the empirical process theory which

has not been used previously in this context. In essence, our inference is based on an estimated

conditional logistic likelihood, and the estimates are obtained by solving an estimated conditional

score equation. The original idea of estimated likelihood can be found in Pepe & Fleming (1991)

and Carroll & Wand (1991). However, the application of this idea in a conditional likelihood

framework is new.

We would like to point out that our formulation of the likelihood is similar to that of Paik

& Sacco (2000), but there is an important distinction. Paik & Sacco (2000) modelled the distri-

bution of the partially missing covariate given the completely observed covariates, the matching

variables, and the disease status through a member of the generalized exponential family of dis-

tributions, and their method produces consistent parameter estimator under missing-at-random

data and if the assumed parametric models are correct. On the contrary, we empirically estimate

the distribution of the partially missing covariate only among the controls given the completely

observed covariates and the matching variables. Our method produces consistent estimators of

the parameters if the data are missing completely-at-random or the missingness mechanism does

not depend on the disease status. Through a simulation study we assess the performance of the

proposed method. Also, in the simulation study we show how we handle continuous S or Z. The

details of the simulation study are given in Section 5. The simulation study not only shows the

efficiency gain of our method compared to the complete-case analysis but also shows the advan-

tage of our method over an useful parametric method when a realistic parametric model for X

is difficult to construct. For the purpose of illustration we apply the proposed method to analyze

the Los Angeles Endometrial Cancer data (Breslow & Day, 1980) and the low-birth-weight data

for the state of Alabama in the year of 1968, and the details of the data analyses are collected in

Section 6. Section 7 contains a discussion.

2. MODEL AND ASSUMPTION

Suppose that we have an 1:M matched case–control data with n strata. For the jth subject in the

ith stratum we assume a logistic disease risk model
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pr(Yij = 1|Si, Zij, Xij) = H{β0i(Si) + βT
1Zij + β2Xij}, j = 1, . . . , (M + 1), i = 1, . . . , n,

where H(u) = exp(u)/{1 + exp(u)}. The intercept parameter β0i(Si) is an unknown function of

the matching variables, S, and β1 and β2 are the log-odds ratio parameters corresponding to Z

and X, respectively. For notational convenience and save some space, we will denote pr(Yij =
1|Xij, V ij)/pr(Yij = 0|Xij, V ij), the odds of the disease for the jth subject in the ith stratum, by

exp{β0i(Si)}Oij , where V ij = (ST
i , ZT

ij)
T and Oij = exp(βT

1Zij + β2Xij). Then the conditional

logistic likelihood function is

L =
n∏

i=1




M+1∏
j=1

O
Yij

ij

/
M+1∑
k=1

Oik


 .

The parameter estimates are obtained by solving the estimating equation Sβ = 0, where

Sβ ≡
n∑

i=1

M+1∑
j=1

{
Yij − Oij∑M+1

k=1 Oik

}
∂ log(Oij)

∂β
,

and β = (βT
1 , β2)

T. For dealing with missing data we introduce nonmissing value indicator R

which takes on one if X is observed for a subject and zero otherwise.

2.1. Missingness Mechanism
We assume

pr(R = 1|X, V , Y ) = pr(R = 1|V ) ≡ π(V ),

thus the missingness mechanism depends neither on the unobserved variable nor on the disease

status. Furthermore, we assume π(V ) does not depend on β. Observe that this case-independent

missing-at-random mechanism is more restrictive than the missing-at-random mechanism (Little

& Rubin, 2002) where pr(R = 1|X, V , Y ) may depend on both V and Y . On the other hand, this

mechanism is more flexible than missing-completely-at-random where missingness mechanism

does not depend on X, V , or Y .

In the complete-case analysis β is obtained by solving

Scc
β ≡

∑
{

i:
∑M+1

j=1
RijYij=1,

∑M+1

j=1
Rij(1−Yij)≥1

}
∑

{j:Rij=1}

{
Yij − Oij∑M+1

k=1 RikOik

}
∂ log(Oij)

∂β
= 0,

(1)

and it is easy to verify that the complete-case analysis produces consistent estimators for the

parameters when the data are missing-completely-at-random.

3. ESTIMATION METHODOLOGY

Let p(x, z|y, s) and p(z|y, s) be the conditional probability of observing X = x and Z = z given

Y = y and S = s andZ = z given Y = y and S = s, respectively. In amatched case–control study

the sampling is done from p(Xij, Zij|Yij = y, Si) or p(Zij|Yij = y, Si) depending on whether we

observe X (i.e., Rij = 1) or not (i.e., Rij = 0), and following the idea of Hosmer & Lemeshow

(2000) and Paik & Sacco (2000) for case-independent missing-at-random data, the unconditional
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likelihood is (ignoring the terms which are independent of β)

n∏
i=1

M+1∏
j=1

pRij (Xij, Zij|Yij, Si)p
1−Rij (Zij|Yij, Si),

and the conditional likelihood after conditioning that each stratum has one case subject and M

controls is

Lc =
n∏

i=1

[
M+1∏
j=1

pRij (Xij, Zij|Yij, Si)p
1−Rij (Zij|Yij, Si)

÷
M+1∑
k=1

{
pRik (Xik, Zik|1, Si)p

1−Rik (Zik|1, Si)
∏
j �=k

pRij (Xij, Zij|0, Si)p
1−Rij (Zij|0, Si)

]
.

(2)

After dividing the numerator and denominator of (2) by∏n
i=1

∏M+1
j=1 pRij (Xij, Zij|0, Si)p

1−Rij (Zij|0, Si), we obtain the conditional likelihood un-

der missing data

Lc =
n∏

i=1


M+1∏

j=1

{RijOij + (1 − Rij)Qij}Yij

/
M+1∑
k=1

{RikOik + (1 − Rik)Qik}

 ,

where

Qij ≡ pr(Yij = 1|Zij, Si)/pr(Yij = 0|Zij, Si).

Let P(x|V , Y = 0) be the conditional cumulative distribution function of X among the controls

given V , that is, P(x|V , Y = 0) ≡ pr(X ≤ x|V , Y = 0). Then after a few steps of algebra one can

show that

Qij =
∫

{pr(Yij = 1|x, Zij, Si)/pr(Yij = 0|x, Zij, Si)} dP(x|V ij, Y = 0). (3)

When P(x|V , Y = 0) is known, β is estimated by solving the score equation Sm
β ≡ ∂Lc/∂β = 0,

where

Sm
β =

n∑
i=1

(Yij − Dij)

{
Rij

∂ log(Oij)

∂β
+ (1 − Rij)

∂ log(Qij)

∂β

}
.

with

Dij = RijOij + (1 − Rij)Qij∑M+1
k=1 {RikOik + (1 − Rik)Qik}

.

For case-independentmissing-at-randomassumption,E(Sm
β ) = 0 asE(Yij|{Rik, Xik, V ik}M+1

k=1 ) =
Dij .
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Since, P(x|V , Y = 0) is not known, we estimate Qij using an empirical estimate of

P(x|V , Y = 0) (Pepe & Fleming, 1991). The empirical estimates of P(x|V , Y = 0) are

P̂(x|V , Y = 0) =
∑n

i=1

∑M+1
j=1 I(Xij ≤ x, Rij = 1, V ij = V , Yij = 0)∑n

i=1

∑M+1
j=1 I(Rij = 1, V ij = V , Yij = 0)

,

where I is the indicator function, and this yields an unbiased estimate of Qij

Q̂ij =
∑n

k=1

∑M+1
l=1 OklI(Rkl = 1, V kl = V ij, Ykl = 0)∑n

k=1

∑M+1
l=1 I(Rkl = 1, V kl = V ij, Ykl = 0)

=
∫

pr(Yij = 1|x, Zij, Si)

pr(Yij = 0|x, Zij, Si)
dP̂(x|V ij, Y = 0).

When X is a categorical variable, dP(x|V ij, Y = 0) = pr(X = x|V ij, Y = 0) and it is estimated

by

dP̂(x|V ij, Y = 0) =
∑n

i=1

∑M+1
j=1 I(Xij = x, Rij = 1, V ij = V , Yij = 0)∑n

i=1

∑M+1
j=1 I(Rij = 1, V ij = V , Yij = 0)

.

Now, we estimate β by solving the estimated-score equation

Sem
β ≡

n∑
i=1

(Yij − D̂ij)

{
Rij

∂ log(Oij)

∂β
+ (1 − Rij)

∂ log(Q̂ij)

∂β

}
= 0,

where

D̂ij ≡ RijOij + (1 − Rij)Q̂ij∑M+1
k=1 {RikOik + (1 − Rik)Q̂ik}

.

We would like to point out that we estimate Qij given in (3) empirically based on the observed

data on X among the control population. In matched case–control study usually the covariate

distribution varies across the strata. The dependence of the covariate distribution on the strata

could be of two types. First, the covariate X belongs to a family of distributions whose mean,

variance, or other parameters can depend on the stratification variable functionally. Second, the

covariate X has different distributions for each stratum. For instance, X has a normal distribution

for stratum i = 1 and an exponential distribution for stratum i = 2. In our estimation procedure

we cannot accommodate the second possibility as it would require theoretically infinite number

of controls in each stratum which is practically impossible. None of Satten & Carroll (2000), Paik

& Sacco (2000), Rathouz, Satten & Carroll (2002), and Sinha et al. (2005) tries to address the

second possibility in themissing data context. Furthermore, even under the first type of dependence

between the covariateX and the stratification variables S, the disease probability does vary across

the strata, and consequently, it requires a conditional likelihood method for efficient estimation

of the parameters.

4. ASYMPTOTIC RESULTS

In this section we study the asymptotic behaviour of the proposed estimator. We assume that

the number of controls in each stratum, M is fixed. Let nyr be the number of observations with

Y = y andR = r, for r, y = 0, 1, and define n+r ≡ n0r + n1r. We assume that n+0/n01 → ρ1 and
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n10/n01 → ρ2 as the sample size n → ∞. Furthermore, define I = limn→∞ −(1/n)(∂Sem
β /∂β).

In the Appendix we show that in a neighbourhood of the true β, the solution β̂ obtained by solving

Sem
β = 0 is consistent for β. We also show that the β̂ is asymptotically normally distributed with

the following influence function representation, that is,

√
n(β̂ − β) = I−1 1√

n

n∑
i=1

Qni + op(1),

where Qni are independently and identically distributed (i.i.d.) mean zero random variables and

Qni =
M+1∑
j=1

[
(Yij − Dij)

{
Rij

∂ log(Oij)

∂β
+ (1 − Rij)

∂ log(Qij)

∂β

}

− ρ1(1 − Yij)Rij

{
∂Oij

∂β
E

(
D

Q

∣∣∣∣V = V ij, R = 0

)
− OijE

(
D

Q2

∂Q

∂β

∣∣∣∣V = V ij, R = 0

)}

+ ρ2(1 − Yij)Rij

{
∂Oij

∂β
E

(
1

Q

∣∣∣∣V = V ij, Y = 1, R = 0

)

− OijE

(
1

Q2

∂Q

∂β

∣∣∣∣V = V ij, Y = 1, R = 0

)}]
.

Therefore, the sandwich variance estimator of β̂ is (1/n2)Î−1
(
∑n

i=1 Q̂niQ̂T
ni)Î−1

, where Î =
−(1/n)∂Sem

β /∂β and its expression is given in the Appendix. In Q̂ni we replace Dij , Qij , and

∂Q/∂β by D̂ij , Q̂ij , ∂Q̂/∂β and the expectations are replaced by the corresponding empirical

averages.

5. SIMULATION STUDY

Weassessed the performance of our proposedmethod through two sets of simulation studies. In the

first set of simulations we considered 1:1matched case–control data sets with a binaryX and in the

second set of simulations we considered 1:2 matched case–control data sets with a continuous X.

In order to creatematched case–control data we initially simulated (S,Z,X, Y ) for every subject of

a large cohort, and then based on the values of S we created 1:1 and 1:2 matched case–control data

withn = 500 strata.We simulatedS from aNormal(0, 1) distribution, andZ from aBernoulli(p =
0.35) distribution. For the first and second scenarios, we simulated X given S and Z from

a Bernoulli{p = H(−2 + Z + S)} distribution and a two-component mixture of normal distri-

butions (1/2)Normal(1.2 + S + Z, 0.62) + (1/2)Normal(−1.2 − S − Z, 0.62), respectively. For

given values of S, X, and Z, we simulated Y from a Bernoulli{p = H(β0 + 1S + β1Z + β2X)}
distribution, and we set β0 = −3.5, β1 = 0.5, and β2 = 1 which resulted in approximately 8%

diseased subjects in every cohort.

In order to create missing values in X for every subject of a matched case–control

data we simulated a nonmissing value indicator R from a Bernoulli distribution. If R takes

on one we consider X is observed, otherwise X is missing. We considered four different

missingness mechanisms with logit{pr(R = 1|S, X, Y, Z)} = 0.6 + 0.5Z + 0.35S, logit{pr(R =
1|S, X, Y, Z)} = −0.1 + 0.5Z + 0.35S, logit{pr(R = 1|S, X, Y, Z)} = 0.45 + Y + 0.35Z, and

logit{pr(R = 1|S, X, Y, Z)} = 0.25 + Y + Z, respectively. These four missingness mechanisms

resulted in approximately 30%, 50%, 30% and 30% missing data, respectively. The first

two missing mechanisms are case-independent missing-at-random. The third and fourth miss-

ingness mechanisms were considered to assess the amount of bias in our proposed method
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when the missingness mechanism actually depends on the disease status and other observed

variables.

Under each scenario and each missingness mechanism we generated 500 data sets, and each

simulated data set was analyzed by the following methods. First, we assumed that there was no

missing value, and the fully observed data were analyzed by the conditional logistic likelihood

method. Next, we considered the data with missing values in X and estimated the parameters

by the complete-case method, by our proposed method which is referred to as estimated-score

approach, and by the missing-indicator method of Huberman & Langholz (1999). Note that the

missing-indicator method was applied only for the case of binaryX. Furthermore, each simulated

data set was analyzed by a parametricmethod. Between the two alternative parametric approaches,

Satten & Carroll (2000) and Paik & Sacco (2004), we chose to compare with the method of Paik

and Sacco because their conditional likelihood is similar to our conditional likelihood and easy to

implement. However, we point out that the method of Paik and Sacco is not exactly the parametric

counterpart of our method. Their method required us to model the distribution ofX parametrically

in terms of S, Y , and Z. Note that for the analysis of the data sets by our proposed method we

had to transform the continuous matching variable to a categorical variable, and we redefined S

as follows:

S =




0 if S < a0

k if ak−1 < S < ak for k = 1, 2, 3

4 if S > a3,

where a0, a1, a2, and a3 are the 25th, 40th, 60th, and 75th percentiles of the observed values of

continuous S. While we categorize continuous variables we should keep in mind that there should

be at least a few observations for each possible combinations of the resultant set of categorical

variables V , the nonmissing indicator R, and the disease status Y . Indeed with categorized S our

model is slightly misspecified which, in turn, allows us to judge the performance of our method

under slight model misspecification. For both parameters β1 and β2, we present the estimates

(EST), the mean squared error (MSE), the true standard error (TSE) which is obtained from the

estimates across the simulated data sets, themean estimated standard error (ESE), and the coverage

probability (CP) based on the 95% Wald-type confidence intervals. The ESE for the parametric

approach was calculated based on the jackknife method, and the ESE for the estimated-score

approach was obtained by the sandwich formula given in Section 4.

The results for scenario 1 are presented in Table 1. The complete-case analysis shows maxi-

mum bias in the estimate of β2 for case-independent missing-at-random. The missing-indicator

method shows maximum bias in the estimate of β1 for all types of missing data except the third

missingnessmechanism. Intuitive explanations of high bias inβ1 for themissing-indicatormethod

are (1) the association between X and Z and (2) incorporation of the missing indicator (Rc) in the

analysis where logit{pr(Rc = 1|S, X, Y, Z)} = logit{pr(R = 0|S, X, Y, Z)}. Note that Rc depends

on Z which may cause some multicollinearity problem. This fact is somewhat evident in the sim-

ulation results as the bias in β1 increases with the percentage of missing data. Also, the magnitude

of this bias depends on how the missing indicator is associated with Z and other variables. For

case-independent missing-at-random data, the parametric and the estimated-score method per-

form equally well in terms of bias and variance. Here we point out that for the parametric analysis,

we correctly modelled the distribution of X given S, Z, and Y using a linear-logistic model. Im-

portantly, the gain in efficiency in the estimated-score approach compared to the complete-case

method is very significant. For case-dependent missing data, the estimated-score method shows

maximum bias in the estimate of β2 compared to any other methods. The simulation results

indicate that the standard error of the estimated-score approach is somewhat smaller than the

parametric approach. Intuitively, we can say that this parametric approach is not the exact para-
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Table 1: Simulation results for 1:1 matched data.

β1 β2

Method EST MSE TSE ESE CP EST MSE TSE ESE CP

Fully observed data 0.50 0.02 0.14 0.14 0.95 1.01 0.03 0.16 0.16 0.94

Logit{pr(R = 1|S, X, Y, Z)} = 0.6 + 0.5Z + 0.35S, approximately 30% missing data

Complete case 0.50 0.04 0.20 0.20 0.96 1.03 0.05 0.23 0.22 0.95

Missing indicator 0.56 0.03 0.14 0.14 0.93 0.99 0.03 0.18 0.18 0.95

Parametric 0.50 0.02 0.15 0.14 0.94 1.00 0.04 0.19 0.19 0.95

Estimated score 0.51 0.02 0.15 0.14 0.93 1.01 0.03 0.19 0.19 0.96

Logit{pr(R = 1|S, X, Y, Z)} = −0.1 + 0.5Z + 0.35S, approximately 50% missing data

Complete case 0.51 0.07 0.27 0.26 0.94 1.05 0.09 0.29 0.29 0.96

Missing indicator 0.59 0.03 0.14 0.14 0.90 0.98 0.04 0.20 0.20 0.94

Parametric 0.50 0.02 0.15 0.15 0.95 1.01 0.05 0.22 0.21 0.95

Estimated score 0.51 0.02 0.15 0.15 0.94 1.00 0.04 0.20 0.21 0.96

Logit{pr(R = 1|S, X, Y, Z)} = 0.45 + Y + 0.35Z, approximately 30% missing data

Complete case 0.44 0.04 0.20 0.19 0.94 1.02 0.05 0.22 0.22 0.95

Missing indicator 0.49 0.02 0.15 0.15 0.95 1.01 0.04 0.16 0.19 0.93

Parametric 0.50 0.02 0.15 0.14 0.94 0.98 0.03 0.18 0.18 0.95

Estimated score 0.52 0.02 0.14 0.14 0.96 0.89 0.04 0.16 0.16 0.90

Logit{pr(R = 1|S, X, Y, Z)} = 0.25 + Y + Z, approximately 30% missing data

Complete case 0.33 0.07 0.20 0.19 0.82 1.02 0.05 0.22 0.22 0.95

Missing indicator 0.38 0.04 0.15 0.15 0.86 1.00 0.04 0.19 0.19 0.94

Parametric 0.50 0.02 0.15 0.14 0.94 0.99 0.03 0.18 0.18 0.94

Estimated score 0.54 0.02 0.14 0.14 0.97 0.91 0.03 0.16 0.16 0.91

The partially missing covariate X was simulated from the Bernoulli distribution with success probability p(X =
1|Z, S, Y ) = H(−2 + Z + S). The true values of β1 and β2 are 0.5 and 1, respectively. EST, MSE, TSE, ESE,

and CP stand for estimate, mean squared error, true standard error, estimated standard error, and the coverage

probability based on the 95% Wald-type confidence intervals.

metric counterpart of our nonparametric approach. Secondly, the parametric approach essentially

estimates the log-odds ratio parameter twice ignoring the relationship between the distributions

of the covariate among the cases and controls which has been discussed at length in Sinha &Maiti

(2008).

The results for scenario 2 are presented in Table 2. For case-independent missing-at-random

data, the estimated-score approach shows least bias in the estimates ofβ1 andβ2, and themaximum

bias is observed in the parametric method. Note that in the parametric method we modelled the

distribution of X by a normal distribution whose mean was a linear function of S, Z, and Y . Thus,

the bias of the parametric method is due to a model misspecification. Also, the estimated-score

approach has least MSE values for case-independent missing-at-random data. When the missing-

ness depends on the disease status strongly, the estimated score and the parametric approaches

show significant bias in the estimate of β2.

Our approach requires thatV must be categorical with a relatively small number of categories.

Thismay actually be a potential problem if precisematching variables are unknownand a surrogate
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Table 2: Simulation results for 1:2 matched data.

β1 β2

Method EST MSE TSE ESE CP EST MSE TSE ESE CP

Fully observed data 0.49 0.04 0.19 0.20 0.96 1.02 0.01 0.09 0.09 0.97

Logit{pr(R = 1|S, X, Y, Z)} = 0.6 + 0.5Z + 0.35S), approximately 30% missing data

Complete case 0.49 0.07 0.27 0.27 0.96 1.03 0.02 0.14 0.13 0.98

Parametric 0.81 0.13 0.18 0.18 0.62 0.93 0.01 0.07 0.07 0.77

Estimated score 0.51 0.04 0.19 0.18 0.93 1.01 0.01 0.10 0.10 0.95

Estimated score∗ 0.55 0.03 0.18 0.16 0.92 0.97 0.01 0.08 0.08 0.92

Logit{pr(R = 1|S, X, Y, Z)} = −0.1 + 0.5Z + 0.35S, approximately 50% missing data

Complete case 0.48 0.14 0.37 0.34 0.95 1.05 0.05 0.21 0.17 0.96

Parametric 0.93 0.22 0.18 0.18 0.36 0.90 0.02 0.07 0.07 0.64

Estimated score 0.51 0.05 0.21 0.18 0.92 1.02 0.01 0.12 0.11 0.95

Estimated score∗ 0.57 0.04 0.19 0.16 0.86 0.97 0.01 0.09 0.09 0.90

Logit{pr(R = 1|S, X, Y, Z)} = 0.45 + Y + 0.35Z, approximately 30% missing data

Complete case 0.42 0.07 0.24 0.24 0.93 1.02 0.01 0.12 0.11 0.95

Parametric 0.59 0.04 0.19 0.19 0.94 1.10 0.02 0.10 0.10 0.87

Estimated score 0.48 0.03 0.17 0.15 0.93 0.92 0.01 0.08 0.07 0.74

Estimated score∗ 0.52 0.03 0.16 0.15 0.92 0.88 0.02 0.06 0.06 0.50

Logit{pr(R = 1|S, X, Y, Z)} = 0.25 + Y + Z, approximately 30% missing data

Complete case 0.31 0.10 0.25 0.24 0.87 1.02 0.01 0.12 0.11 0.95

Parametric 0.57 0.04 0.19 0.20 0.96 1.09 0.02 0.10 0.10 0.88

Estimated score 0.49 0.03 0.17 0.15 0.94 0.92 0.01 0.08 0.07 0.77

Estimated score∗ 0.54 0.03 0.16 0.15 0.92 0.89 0.02 0.07 0.07 0.55

The partially missing covariate X was simulated from (1/2)normal(1.2 + S + Z, 0.62) + (1/2)normal(−1.2 −
S − Z, 0.62). The true values of β1 and β2 are 0.5 and 1, respectively. EST, MSE, TSE, ESE, and CP stand for

estimate, mean squared error, true standard error, estimated standard error, and the coverage probability based on

the 95% Wald-type confidence intervals.

∗The results of the estimated-score approach when the matching variable S was ignored from the analysis.

is used (e.g., same household or same community) which is assumed to ensurematching on a range

of unmeasured covariates. Thus, in order to judge the performance of our method when matching

variables are not properly taken into account in the analysis, we analyzed the simulated data sets

under scenario 2 without considering S in the estimation of Qij . The corresponding results are

presented in Table 2 and indicated by ∗ notation. The results indicate that the magnitude of these

biases depend heavily on the missingness mechanism. Also, these biases depend on how strongly

S and X are associated (results not shown here).

In summary, we can conclude that the proposed estimated-score approach produces least

biased estimate of the parameters when the missingness mechanism does not depend on the

disease status. The gain in efficiency for estimating β2 could be as high as 57% compared to the

complete-case analysis. If the missingness mechanism depends on disease status, the estimated-

score method produces biased estimates and the magnitude of bias depends on the percentage of

missing data and the degree of association between the missing indicator and disease status.
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6. DATA EXAMPLES

6.1. Los Angeles Endometrial Cancer Data
The Los Angeles Endometrial data (Breslow & Day, 1980) have been analyzed in many articles,

such as, Satten & Carroll (2000), Sinha &Maiti (2008), and Sinha &Wang (2009), among others.

In order to study the effect of several risk factors on endometrial cancer, a study was conducted

among post-menopausal women in an affluent retirement community of Los Angeles. The data

consist of n = 63 cases and each case was matched with M = 4 controls based on age and

residence in the same community as the case subject. Among several measured risk factors, the

binary exposure variable obesity was missing for about 16% of the study participants. Obesity, a

binary indicator variable, is treated as the partially missing exposure variable (X) and presence

of gall-bladder disease is considered as a binary completely observed covariate (Z). We will treat

age as the matching variable (S). Furthermore, Y indicates the disease status and R stands for the

nonmissing value indicator.

We assume that data are missing-at-random, although there is no way to validate this as-

sumption. Next, we fit a simple logistic regression model to find the effect of S, Y , and Z on the

missing probability, and the results do not indicate that missingness mechanism is associated with

the disease status Y .

In the analysis age was used as a matching variable. The disease risk model of our interest is

H(β0i + β1Zij + β2Xij), where β1 and β2 are the disease-exposure association parameter for Z

and X, respectively. The data were analyzed by four different methods.

First, we analyzed the data by the complete-case method. Second, we analyzed the data using

the parametric approach. For the parametric method the distribution of the missing covariate was

modelled as logit{pr(X = 1|S, Z, Y )} = γ0 + γ1S + γ2Z + γ3Y . For this parametric analysis the

matching variable (S) was first transformed into [0, 1] scale by subtracting the minimum of the

observed ages and then dividing it by the range of the observed ages. The estimates (standard

error) of γ0, γ1, γ2, and γ3 were 0.115(0.319), 0.118(0.387), 0.543(0.539), and 0.479(0.335),

respectively. These estimates are used to obtain the estimates of β1 and β2. Third, we analyzed

the data using the missing-indicator method. In the missing-indicator method, missing values of

X are replaced by 0, and we refer to the new variable as X∗. Then, we use simple conditional

logistic regression analysis using Z, X∗, and (1 − R) as the covariates.

Finally, we apply the estimated-score approach to this data set. We categorize the matching

variable age into five groups as described in Section 5, and make sure that none of the cell

frequencies of the contingency table based onS,Z, andY whenR = 1, is zero.Whenwe categorize

a continuous variable we need to keep in mind that a larger number of categories may be more

flexible in terms of modelling the association between the variable and X at the cost of increased

variance of the estimators. On the other hand, a smaller number of categories may produce a

smaller variance at the expense of losing some important features of that association. The results

of these analyses are presented in Table 3, and we found that, based on all four methods, presence

of gall-bladder disease has a statistically significant effect of the risk of endometrial cancer at 5%

level of significance. None of the methods, except the parametric approach, shows any statistical

evidence of association between obesity and the risk of endometrial cancer. However, the standard

errors for the parametric and the estimated-score approach are somewhat lower than that of the

complete-case and the missing-indicator methods.

6.2. Low-Birth-Weight Data for the State of Alabama
For the purpose of illustration of the proposed method we considered the birth data for the state of

Alabama during the year of 1968. Themicro data file is available on the Center for Disease Control

Website, http://www.cdc.gov/nchs/data_access/Vitalstatsonline.htm.
The data contain a total of 31,801 live births in Alabama which consist of 66.2% White, 0.20%
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Table 3: The results of the analyses of the Los Angeles Endometrial Cancer Data.

Method Presence of gall bladder disease Obesity

Complete case

EST 1.28 0.44

SE 0.39 0.38

P-value <0.01 0.24

Parametric

EST 1.27 0.60

SE 0.36 0.29

P-value <0.01 0.04

Missing indicator

EST 1.28 0.65

SE 0.38 0.36

P-value <0.01 0.07

Estimated score

EST 1.35 0.63

SE 0.37 0.34

P-value <0.01 0.06

EST, estimate; SE, standard error.

Negro, and 33.6% other non-White. A total of 2,831 newborns had birth weight <2,500 g which

is generally considered as low-birth-weight. Low-birth-weight is one of the possible causes

of infant mortality, and the children with low-birth-weight are at increased risk of lifelong

disabilities such as blindness, deafness, and cerebral palsy, making this an extremely important

indicator of child well-being. The data contain information on several variables, such as mother’s

age, race, gestation period, number of live born children, etc. One important feature of the data

is that gestation period was missing for many subjects. The subjects with birth weight <2,500 g

will be considered as cases (Y = 1) and otherwise controls (Y = 0). From this cohort of live

births who were White we randomly selected n = 500 cases and each case was matched with two

controls based on mother’s age, and the controls were also chosen from the White population.

After forming the 1:2 matched case–control data we found gestation period was missing for

about 10% of the subjects. The goal was to estimate the effect of number of live born children

and gestation period on the risk of having low-birth-weight baby in the White population taking

into account the confounding effect of mother’s age. Here we treated the number of live born

children as a categorical variable, Z, which was defined as

Z =




1 if the number of children born alive is one

2 if the number of children born alive is two

3 if the number of children born alive is three

4 if the number of children born alive is more than three.

We treated Z = 1 as the reference category. Gestation period was measured in weeks, and in

our sampled data the minimum and maximum values of gestation period were 20 and 43 weeks,

respectively. We defined X = (gestation period − 20)/4.28, and analyzed the data treating X
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Table 4: Results of the analysis of the low-birth-weight data.

Method Number of live born children Gestation period

2 3 >3

Complete case

EST −0.29 0.42 0.67 −3.61

SE 0.24 0.29 0.32 0.34

P-value 0.23 0.14 0.04 <0.01

Parametric

EST 0.16 0.12 0.19 −3.18

SE 0.21 0.25 0.28 0.26

P-value 0.46 0.62 0.50 <0.01

Estimated score

EST 0.16 0.15 0.25 −3.16

SE 0.22 0.24 0.27 0.23

P-value 0.47 0.54 0.36 <0.01

EST, estimate; SE, standard error.

and Z as the two risk factors. Importantly, we found that among the cases, X was missing for

approximately 8.6% of the subjects whereas among the controls, it was missing for about 10% of

the subjects. Therefore, ignoring the effect of S andZ, a two-sample test for proportions indicates

no statistical evidence of the claim that the missingness mechanism depends on the disease status

of the subjects.

First, we analyzed the data using the complete-case method. Second, we analyzed the data

using the parametric approach described in Section 5. Since, gestation period was a continuous

variable, wemodelled it by a normal distribution in the parametric method. Third, we analyzed the

data using the estimated-score approach. For our analysis, we categorized the matching variable

age into five groups as described in Section 5.

The results are presented in Table 4. In all three methods we find that gestation period has a

statistically significant effect on the risk of having low-birth-weight baby.Overall, longer gestation

period reduces the risk of low-birth-weight baby.More specifically, based on the proposedmethod

the risk of a low-birth-weight baby is exp(3.159) = 23.54-fold higher for a gestation period

of <4.28 weeks. The strong association between gestation period and low-birth-weight is not

surprising as longer gestation period allows the baby to grow larger in mother’s womb, and thus

reduces the risk of low-birth-weight. Although the distribution of gestation period is clearly non-

normal (Figure 1), due to small percentage ofmissing values there is no significant difference in the

results due to the estimated-score and the parametric approach. This phenomenon is somewhat

supported by the results from the simulation scenario 2 and when missingness mechanism is

independent of disease status. In that scenario, we observe that the difference in the estimates

of β2 for the parametric and the estimated-score approach increases with overall percentage of

missing data.

Only the complete-case analysis shows a statistically significant effect of more than three live

born children on the risk. The estimate of the effect ofmore than three live born children is different

for the parametric and the estimated-score approach. An intuitive explanation of this discrepancy
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Figure 1: Histogram of the observed gestation period measured in weeks in the matched case–control data
on low-birth-weight study.

could be the following. First, a simple logistic regression of nonmissing value indicator (R) on

S, Y , and Z reveals that Z = 4 is strongly associated with R. Second, the simulation scenario 2

revealed that when the missingness mechanism is strongly associated with Z and the model for

X is incorrect, the parametric method could produce highly biased estimate for β1, yielding a big

difference in the estimates of β1 for the parametric and the estimated-score approach. Thus, in

this example, possibly a wrong model for the partially missing covariate and strong dependence

of R on Z cause a difference in the effect of more than three live born children.

7. DISCUSSION

We propose a nonparametric method for handling missing covariate data in a matched case–

control study when the missingness mechanism does not depend on the disease status. Although,

due to the matching and the constraint on the number of cases on each strata, the actual test for

testing this assumption regarding the missingness mechanism is difficult to construct, a logistic

regression for R using S, Y , and Z as explanatory variables, may provide some indications of

possible association between R and Y .

For case-independent missing-at-random data, the proposedmethod produces consistent solu-

tion for any type of distribution of the partially missing covariate, and the method is very efficient

compared to the complete-case analysis. For instance, the results of the simulation scenario 1

indicates that the gain in efficiency in using the proposed method could be as much as 43.9%

and 52% for the estimation of β1 and β2, respectively, compared to the complete-case analysis.

Indeed the gain in efficiency depends primarily on the percentage of missing data.
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The estimated-score method produces biased estimate of β2 when themissingness mechanism

depends on disease status. For instance, the simulation scenario 2 indicates that when the odds of

missing data among controls is 2.72 times the odds of missing data among cases, the bias in the

estimate of β2 is about 8–9% in the estimated-score method. Another limitation of our method is

that V = (S, Z) must be categorical. If the number of categories based on V is large for a data set

with limited sample size, the method may not work properly. More clearly, in the estimated-score

method, we partition the control subjects without missing data based on V , and large number of

categories of V may result in some groups without any observation, or very few observations. In

that situations, we either ignore some of the components ofV ormerge some of the categories, and

in either cases we may lose some important information which may result in biased estimators.

Finally, in this paper we have not dealt with more than one missing covariate which is a part of

our future research plan.

We believe that the proposed method could be useful for handling missing covariate data in

case-cohort or nested case–control studies. The computer code for the simulation and data analysis

is available from the author upon request.
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APPENDIX
Expressions for ∂Sem

β /∂β

Partition the estimated-score function as Sem
β = (SemT

β1
, Sem

β2
)T.

∂Sem
β1

∂β1

= −
n∑

i=1

M+1∑
j=1

(
ZijZ

T
ijD̂ij − ZijD̂ij

M+1∑
k=1

ZT
ikD̂ik

)

∂Sem
β1

∂β2
= −

n∑
i=1

M+1∑
j=1

[
RijOijXij + (1 − Rij)(∂Q̂ij/∂β2)∑M+1

k=1 {RikOik + (1 − Rik)Q̂ik}

− D̂ij

∑M+1
k=1 {RikOikXik + (1 − Rik)(∂Q̂ik/∂β2)}∑M+1

k=1 {RikOik + (1 − Rik)Q̂ik}

]
Zij

∂Sem
β2

∂β2
=

n∑
i=1

M+1∑
j=1

(Yij − D̂ij)(1 − Rij)
∂2 log(Q̂ij)

∂β2
2

−
n∑

i=1

M+1∑
j=1

{
RijXij + (1 − Rij)

∂ log(Q̂ij)

∂β2

}

×
[

RijOijXij + (1 − Rij)(∂Q̂ij/∂β2)∑M+1
k=1 {RikOik + (1 − Rik)Q̂ik}

− D̂ij

∑M+1
k=1 {RikOikXik + (1 − Rik)(∂Q̂ik/∂β2)}∑M+1

k=1 {RikOik + (1 − Rik)Q̂ik}

]

Regularity Conditions
(A1) π(V ) > 0 almost surely in V .

(A2) Q(V ) = E{pr(Y = 1|V , X)/pr(Y = 0|V , X)} is bounded away from zero uniformly in V

on any compact set and in β in an open neighbourhood of β0, the true value of β.

(A3) The information matrix I is positive definite.

(A4) ∂2(Sem
β )/∂β∂βT can be bounded by an integrable function of (Y, R, XR, Z) in an open

neighbourhood of β0.

Proof of Consistency
The asymptotic unbiasedness of the estimated-score function follows from

n−1Sem
β ≈ n−1Sm

β ,

and the unbiasedness of Sm
β is followed from the fact that E(Yij|{Rik, Xik, V ik}M+1

k=1 ) = Dij . The

rest of the consistency proof easily follows from Theorem 1 of Pepe & Fleming (1991).

In order to derive the asymptotic distribution of the estimator we need the following Lemma.

Let nyr(v) be the number of observationswith Y = y,R = r, andV = v, for y = 0, 1 and r = 0, 1,

and n+r(v) ≡ n0r(v) + n1r(v).
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Lemma 1. Uniformly for all v in any given compact set,

∂ log{Q̂(v)}
∂β

− ∂ log{Q(v)}
∂β

= 1

n01(v)Q(v)

n∑
k=1

M+1∑
l=1

(1 − Ykl)RklI(V kl = v)

{
∂Okl

∂β
− Okl

Q(v)

∂Q(v)

∂β

}
+ op(1/

√
n)

Proof. Let P(·|v, Y = 0) be the distribution of X given Y = 0 and V = v. Note that Q =∫
O dP and (∂Q/∂β) = ∫

(∂O/∂β) dP are both linear functionals of P and both are Hadamard

differentiable. Now, under assumption (A2), the result follows from to the application of the

functional delta Theorem 20.8 and its chain rule of van der Vaart (2007, p. 298). �

Influence Function Representation of β̂

We write

n−1/2Sem
β = n−1/2Sm

β + T2 + T3 + T4,

where

T2 ≡ n−1/2
n∑

i=1

M+1∑
j=1

(Dij − D̂ij)

{
Rij

∂

∂β
log(Oij) + (1 − Rij)

∂

∂β
log(Qij)

}
= op(1),

T3 ≡ −n−1/2
n∑

i=1

M+1∑
j=1

(1 − Rij)

{
∂ log(Q̂ij)

∂β
− ∂ log(Qij)

∂β

}
D̂ij,

and

T4 ≡ n−1/2
n∑

i=1

M+1∑
j=1

Yij(1 − Rij)

{
∂

∂β
log(Q̂ij) − ∂

∂β
log(Qij)

}
.

Now, using Lemma 1 and then rearrangement of the summations, and then using the strong law

of large number we can write

T3 = −n−1/2
n∑

i=1

M+1∑
j=1

(1 − Rij)
1

n01(V ij)Qij

×
n∑

k=1

M+1∑
l=1

(1 − Ykl)RklI(V kl = V ij)

{
∂Okl

∂β
− Okl

Qij

∂Qij

∂β

}
Dij + op(1)

= −n−1/2
n∑

k=1

M+1∑
l=1

(1 − Ykl)Rkl

n+0(V kl)

n01(V kl)

{
(∂Okl/∂β)

n+0(V kl)

n∑
i=1

M+1∑
j=1

(1 − Rij)Dij

Qij

I(V ij = V kl)

− Okl

n∑
i=1

M+1∑
j=1

(1 − Rij)Dij

Q2
ij

∂Qkl

∂β
I(V ij = V kl)

}
+op(1)
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= − ρ1n
−1/2

n∑
k=1

M+1∑
l=1

(1 − Ykl)Rkl

{
∂Okl

∂β
E

(
D

Q

∣∣∣∣V = V kl, R = 0

)

−OklE

(
D

Q2

∂Q

∂β

∣∣∣∣V = V kl, R = 0

)}
+ op(1).

Following the similar approach we can write

T4 = n−1/2
n∑

k=1

M+1∑
l=1

(1 − Ykl)Rkl

n10(V kl)

n01(V kl)

{
(∂Okl/∂β)

n+0(V kl)

n∑
i=1

M+1∑
j=1

(1 − Rij)Yij

Qij

I(V ij = V kl)

− Okl

n∑
i=1

M+1∑
j=1

(1 − Rij)Yij

Q2
ij

∂Qkl

∂β
I(V ij = V kl)

}
+ op(1)

= ρ2n
−1/2

n∑
k=1

M+1∑
l=1

(1 − Ykl)Rkl

{
∂Okl

∂β
E

(
1

Q

∣∣∣∣V = V kl, Y = 1, R = 0

)

− OklE

(
1

Q2

∂Q

∂β

∣∣∣∣V = V kl, Y = 1, R = 0

)}
+ op(1).

After adding the four terms and ignoring the terms of order op(1) we obtain the expression of

Qni. Now a Taylor’s series expansion of Sem
β yields n−1/2Sem

β = {−n−1∂Sem
β∗ /∂β∗}n1/2(β̂ − β0),

where β∗ is between β̂ and β0. Since {−n−1∂Sem
β∗ /∂β∗} converges to I, an invertible matrix,

in probability, and n−1/2Sem
β is approximately a sum of i.i.d. random variables, the asymptotic

normality of β̂ now follows by the application of the central limit theorem.
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