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Summary. The present article deals with informative missing (IM) exposure data in matched case–control
studies. When the missingness mechanism depends on the unobserved exposure values, modeling the missing
data mechanism is inevitable. Therefore, a full likelihood-based approach for handling IM data has been
proposed by positing a model for selection probability, and a parametric model for the partially missing
exposure variable among the control population along with a disease risk model. We develop an EM algorithm
to estimate the model parameters. Three special cases: (a) binary exposure variable, (b) normally distributed
exposure variable, and (c) lognormally distributed exposure variable are discussed in detail. The method is
illustrated by analyzing a real matched case–control data with missing exposure variable. The performance
of the proposed method is evaluated through simulation studies, and the robustness of the proposed method
for violation of different types of model assumptions has been considered.
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1. Introduction
The article concerns nonignorable missing covariates in 1:M
(M ≥ 1) matched case–control studies. Let D be the binary
disease indicator variable, S be a set of matching variables,
X∗ = (Z, X) be a set of exposure variables, and R be the
indicator variable of whether a subject has complete covariate
information or not. We assume Z is always observed and X
is partially missing. Generally, matched case–control data are
collected according to the following two steps. In the first step
cases, (X∗

i1,S) are independently sampled from p(X∗,S |D =
1), for i = 1, . . . , n and in the second step controls (X∗

ij ) are
drawn from p(X∗ |D = 0,S = si), for j = 2, . . . ,M + 1. The
risk model we are interested in is

pr(D = 1 |S,X∗) = H{β0(S) + βtX∗}, (1)

where H(u) = {1 + exp (− u)}−1. Here, β0(S) is the stratum
effect defined by the variable S, and β is the log–odds ra-
tio parameter associated with X∗. The standard method for
estimating β is to use conditional logistic regression (CLR),
conditioning on the number of cases within each matched set.
However, in the presence of missing Xs, the CLR method is
inefficient. If the missing value occurs for a case subject, the
CLR analysis completely ignores the stratum where the case
belongs to. On the other hand, for a 1:1 matched case–control
study, appearance of a missing value leads to the deletion of
the entire stratum where the missing value occurs. Therefore,
the CLR analysis not only ignores the subject with missing

X, but also sometimes deletes the entire stratum where the
missing value occurs.

Following the terminology of Little and Rubin (1987), if
the missingness mechanism does not depend on the observed
data, i.e., data are missing completely at random (MCAR), or
missingness depends on the observed data (MAR), in both sit-
uations the CLR analysis produces inefficient estimates of the
parameter. Between the two approaches for handling MAR
data several authors modeled the distribution of the par-
tially missing exposure variable (Satten and Kupper, 1993;
Paik and Sacco, 2000; Satten and Carroll, 2000), and some
authors modeled missingness process (Lipsitz, Parzen, and
Ewell, 1998; Rathouz, Satten, and Carroll, 2002). However,
as noted by Rathouz (2003), if modeling of the distribution
of the missing exposure variable is at all possible, then the
likelihood approach adopted by Satten and Kupper (1993)
yields semiparametric efficient estimator of the parameter of
interest. Adopting the similar type of likelihood, Sinha et al.
(2005) proposed a semiparametric Bayesian inference for han-
dling unobserved heterogeneity in matched case–control study
in the presence of missing exposure variable.

When the missing data are informative (IM), which means
missingness mechanism depends on the unobserved data, fail-
ure to incorporate the missingness mechanism in the anal-
ysis may produce biased and inconsistent results. Ibrahim,
Lipsitz, and Chen (1999) proposed a method for handling
IM covariate data in generalized linear model. However, until
recently there was no work on IM data for matched case–
control study. Recently, Paik (2004) proposed a parametric
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approach for handling nonignorable missing data in matched
case–control studies. The beauty of the proposed likelihood is
that it reduces to the CLR approach when data are fully ob-
served. The method requires (a) the disease risk model speci-
fied in (1); (b) a model for the selection probability; and (c) a
model for the exposure distribution conditional on the match-
ing variables, the completely observed covariates, and the dis-
ease status. The method comprises the following two steps.
First, the parameters of the selection model and the exposure
distributions are estimated through a joint likelihood of R and
X given Z,S, and D. At the second step, a conditional likeli-
hood approach is used to estimate the log–odds ratio parame-
ters by replacing the terms associated with missing covariates
by the corresponding expected value. Indeed, the parameter
estimates obtained at the first step are used in the second
step. Satten and Kupper (1993) and later on Satten and Car-
roll (2000) noted that the parameters of the case distribution
are functions of the parameters of the control distribution and
disease–exposure association parameter β. Paik (2004) indeed
recognizes that fact while pr(D = 1 |Z,S)/pr(D = 0 |Z,S) is
calculated by plugging in the inputed values X∗ for the miss-
ing X in Step 2, however that parametric dependence seems
to be ignored while the parameters for the exposure distri-
bution and the selection model are estimated in Step 1, and
consequently in calculating the inputed value X∗. Hence, the
method essentially estimates the same odds-ratio parameter
twice—once in Step 1 in terms of the parameter of the ex-
posure distribution among the case population, and again in
Step 2, which may entail some loss of efficiency. In addition,
the proposed method assumes that the form of the distribu-
tion of the partially missing exposure variable is the same
for the case and control population. This assumption holds
as long as the distribution of the partially missing exposure
variable is a member of an exponential family of distribu-
tions. As shown in Section 3 the distributions not belonging
to exponential family do not satisfy this assumption, hence
the method is not applicable in that situation. Therefore, a
generalized method is needed to overcome these issues.

The aim of this article is to propose a full likelihood-
based approach for handling informative missing (IM) data in
matched case–control studies. We start with the risk model
(1) and a model for the selection probability. More impor-
tantly, instead of assuming the same form of distribution for
the exposure variable among the cases and the controls, we
pose a parametric form of distribution for the partially miss-
ing exposure variable only among the control population. By
using the disease–risk model and the exposure distribution
among the control population, we are able to obtain the ex-
posure distribution among the cases. This approach avoids
the risk of double estimation of the same log–odds-ratio pa-
rameter, and importantly it does not restrict the exposure
distribution among the cases and controls to be of the same
form. Next, we form the joint likelihood of R, X, and D con-
ditional on Z,S, and T, the number of cases in each matched
set. The maximum likelihood estimates of the parameters are
obtained by using an EM algorithm. The full likelihood-based
approach allows us to estimate the standard error of the pa-
rameters by using observed Fisher’s information matrix. The
general theory of the proposed method for any type of expo-
sure variable is given in Section 2, while three special cases—

Bernoulli, Normal, and Lognormal distribution for the miss-
ing exposure variable—are discussed in Section 3. We apply
the proposed method to analyze a matched case–control data
on endometrial cancer among postmenopausal women living
in Los Angeles. Among several measured covariates, obesity
was missing for about 16% of the study participants, and we
try to analyze the data using different methods considering
obesity as a partially missing exposure variable. The details
of the data analysis are collected in Section 4. Section 5 con-
tains extensive simulation study exploring different missing-
ness mechanism in matched case–control studies. Moreover,
we study how the different methods are affected for differ-
ent types of model violations. Section 6 contains concluding
remarks with some discussion.

Before we conclude this section, we would like to summarize
the main features of this article. We propose a full likelihood–
based approach for handling IM data in matched case–control
studies, allowing any kind of exposure variable. Asymptotic
normality and consistency of the parameters are automatic as
long as the exposure distribution and the missingness mech-
anism are correctly specified. The simulation study indicates
superiority of the proposed methods in terms of bias and ef-
ficiency compared to the existing alternative procedures in
some situations, and robustness for moderate departure from
various model assumptions.

2. Method
Suppose we have n matched sets and each set comprises
one case and M(≥1) controls. As noted earlier, X∗ = (Z, X),
where Z is a p × 1 vector of completely observed covari-
ates, and X is assumed to be a scaler risk factor. Define
β = (β1, β2), where β1 is a p × 1 vector of the log–odds-ratio
parameters associated with Z, and β2 is the log–odds-ratio
parameter associated with X. The indicator variable R = 1 if
X is observed and 0 otherwise. Here, we will use i as an index
for stratum and j as an index for a subject. Furthermore, we
assume that within stratum i, j = 1 stands for a case and the
rest are controls. If there is no missing value, then we estimate
β from the conditional likelihood function

LCLR =

n∏
i=1

P

[
Di1 = 1, Di2 = · · · = DiM+1 = 0 |

{
Z ij , Xij

}M+1

j=1
,

×Si,

M+1∑
j=1

Dij = 1

]

=

n∏
i=1

exp(βτ
1 Zi1 + β2Xi1)

M+1∑
j=1

exp(βτ
1 Z ij + β2Xij )

.
(2)

Note that due to conditioning on T =
∑M+1

j=1 Dij , LCLR be-
comes free from the nuisance parameter β0(Si). However, in
the presence of missing values we base our inference on L, the
joint conditional likelihood of R, X, D given Z,S, and the
conditioning event T, and it is

L = p(R, X, D |Z,S)

= pr(R |X,Z,S, D)p(X |Z,S, D)pr(D |Z,S, T ).
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The above likelihood function is similar to that of Satten and
Carroll (2000) except that they did not consider the selection
model. Rathouz (2003) showed that the maximum likelihood
estimator obtained from the last two terms of L is semipara-
metric efficient for the disease–exposure association parame-
ter for the MAR data. We assume that the selection proba-
bility is given by

pr(Rij = 1 |Xij ,Z ij , Dij ,Si, δ)

= H(δ0 + δτ
ZZ ij + δXXij + δDDij + δSSi). (3)

Let p(Xij |Z ij , Dij = 0,Si,γ, ) be the assumed form of the
distribution of the exposure variable among the control pop-
ulation, then by using result (A.2) of the Web Appendix, we
obtain the distribution exposure among the case population
p(Xij |Z ij , Dij = 1,Si,γ,β). Next, we rewrite L as

L =

n∏
i=1

M+1∏
j=1

{
prRij (Rij = 1 |Xij ,Z ij , Dij ,Si)

×
∫

pr1−Rij (Rij = 0 |Xij ,Z ij , Dij ,Si) dF

(Xij |Z ij , Dij ,Si) × pRij (Xij |Z ij , Dij ,Si)

}

×
n∏

i=1

pr

(
Di1 = 1, Di2 = · · · = DiM+1 = 0 | {Z ij }M+1

j=1 ,

Si,

M+1∑
j=1

Dij = 1

)
. (4)

Note that, as shown in the Web Appendix (equation A.4), the
last term of the likelihood L can be written as

pr

(
Di1 = 1, Di2 = · · · = DiM+1 = 0 | {Z ij }M+1

j=1 ,

Si,

M+1∑
j=1

Dij = 1

)
=

{
pr(Di1 = 1 |Zi1,Si)/pr(Di1 = 0 |Zi1,Si)

}
/

M+1∑
k=1

pr(Dik = 1 |Z ik ,Si)/pr(Dik = 0 |Z ik ,Si),

which is nothing but a function of the marginal odds of the
disease pr(D = 1 |Z,S)/pr(D = 0 |Z,S).

Remark 1. In forming the likelihood, we assume that con-
ditional on the matching variable S, the subjects are inde-
pendent within a stratum. Also, we assume that strata are
independent.

Remark 2. As noted in Breslow (1996), the third term
of the above likelihood can be written as a joint probability
of {Z ij }M+1

j=1 given Si, Di1 = 1, Dij = 0 for j = 2, . . . ,M + 1,
and the conditioning event T ∗, the set of unordered exposure
variable. Thus, the third term of likelihood (4) is

p(Zi1 |Di1 = 1,Si)

M+1∏
j=2

p(Z ij |Dij = 1,Si)

M+1∑
m=1

p(Zim |Di1 = 1,Si)
∏
h�=m

p(Zih |Dih = 1,Si)

.

This result asserts that L can also be interpreted as a joint
likelihood of R, X, and Z given S, D, and the conditioning
event T ∗. This representation of the likelihood conforms with
the retrospective nature of the design by which matched case–
control data are collected.

Remark 3. There is a clear difference between the stan-
dard approach used in prospective or cross-sectional study
design and the proposed method outlined here in terms
of modeling of the exposure distribution. In a case–control
study, more specifically in a retrospective study with outcome-
dependent sampling design, the marginal distribution of the
exposure variable and the intercept parameter of equation (1)
are not identifiable, unless we know the disease prevalence
P (D = 1 |S) in the stratum defined by the variable S. There-
fore, instead of modeling the marginal distribution of the
exposure variable p(X |S,Z), we model the exposure distri-
bution among the control population p(X |D = 0,S,Z).

In order to estimate the parameters we develop an EM
algorithm. The EM algorithm consists of two steps at each
iteration: (i) the E-step and (ii) the M-step. In the E-step, we
take expectation of the complete data likelihood with respect
to the conditional distribution of the unobserved X, i.e., with
respect to p(X |Z ij , Dij ,Si, Rij = 0) and

p(X |Z ij , Dij ,Si, Rij = 0)

=
pr(Rij = 0 |X,Z ij , Dij ,Si)p(X |Z ij , Dij ,Si)

pr(Rij = 0 |Zij , Dij ,Si)
.

Define Θ = (β,γ, δ), then log of the complete data likelihood
is

log{Lcomp(Θ)} =

n∑
i=1

log pr

(
Di1 = 1, Di2 = · · · = DiM+1

= 0 | {Z ij }M+1
j=1 ,Si,

M+1∑
j=1

Dij = 1

)

+
∑

(i,j):Rij =1

{
log p(Xij |Z ij , Dij ,Si)

+ log pr(Rij = 1 |Xij ,Z ij , Dij ,Si)
}

+
∑

(i,j):Rij =0

{
log p(X

(M)
ij |Z ij , Dij ,Si)

+ log pr(Rij = 0 |X (M)
ij ,Z ij , Dij ,Si)

}
,

(5)

where X(M )
ij denotes the unobserved value of X. Therefore, at

the (t + 1)st iteration of the EM algorithm, the E-step is

EΘ(t){log Lcomp(Θ
(t+1))} = L1(Θ

(t+1)) + L2(Θ
(t+1))

+L3(Θ
(t+1) |Θ(t)), (6)
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where L1(Θ) and L2(Θ) are the first and the second term on
the right-hand side of equation (5), and

L3(Θ
(t+1) |Θ(t)) =

∑
(i,j):Rij =0

EΘ(t)

{
log p(X

(M)
ij |Z ij , Dij ,Si)

+ log pr(Rij = 0 |X (M)
ij ,Z ij , Dij ,Si)

}
.

Here, EΘ(t) denotes the expectation with respect to the con-
ditional distribution of the unobserved X conditioning on the
observed data, and evaluated at the previous iterative value
of Θ = Θ(t). In the M-step of (t + 1)st iteration, we maxi-
mize (6) with respect to Θ(t+1) treating Θ(t) as a constant. We
iterate between the two steps until convergence is achieved.

Estimating the Observed Information

Following Louis (1982), we calculate the information matrix
as

IΘ(Θ̂) = −E

[
∂2

∂Θ∂Θτ
log{Lcomp(Θ)}

]
Θ=Θ̂

−E

[
∂

∂Θ
log{Lcomp(Θ)} ∂

∂Θτ
log{Lcomp(Θ)}

]
Θ=Θ̂

.

(7)

The above expectation is with respect to the conditional dis-
tribution p(X |Z, D,S, R = 0). For continuous X, the expec-
tations can be evaluated by the Monte Carlo method. Esti-
mates of the variance–covariance matrix of the parameter can
be obtained by inverting the observed information matrix.

3. Special Cases
3.1 Exponential Family of Distributions

Suppose the distribution of the partially missing exposure
variable among the control population is a member of the
generalized exponential family of distributions. Then,

p(Xij |Z ij , Dij = 0,Si) = exp
[
ξ{Xij ηij − b(ηij )} + c(Xij , ξ)

]
,

(8)

where ηij = γ0 + γτ
ZZ ij + γτ

SSi. The mean and variance of
the above distribution are b′ (ηij ) and ξ−1b

′′
(ηij ), respectively.

c(·, ·) is the normalizing constant. Using the results of Satten
and Kupper (1993), we show in the Web Appendix that

pr(Dij = 1 |Z ij ,Si)

pr(Dij = 0 |Z ij ,Si)

= exp
[
β0(Si) + βτ

1 Z ij + ξ{b(η∗
ij ) − b(ηij )}

]
, (9)

where η∗
ij = ηij + ξ−1 β2. Equation (9) gives us the odds of

the disease conditional only on Z and S, which is used in the
likelihood equation (4). We also show in the Web Appendix
that the distribution of the exposure variable among the cases
is

p(Xij |Dij = 1,Z ij ,Si) = exp
[
ξ{Xij η

∗
ij − b(η∗

ij )} + c(ξ, Xij )
]
.

(10)

Note that the case distribution is also a member of the expo-
nential family of distributions, and its natural parameter η∗

ij

is a function of ηij , β2, and ξ.

Binary Exposure Variable

Between the two special cases, first we assume that the distri-
bution of the exposure variable among the control population
follows a Bernoulli distribution, i.e.,

p(Xij |Z ij , Dij = 0,Si) = exp
[
ηij Xij − log{1 + exp(ηij )}

]
.

(11)

Note the mean and variance are H(ηij) and H(ηij){1 −
H(ηij)}, respectively. By applying equation (10), we obtain
the exposure distribution among the case population
p(Xij |Z ij , Dij =1,Si)= exp[Xij η

∗
ij − log{1+ exp(η∗

ij)}], where
η∗

ij = ηij + β2. Furthermore, the conditional probabil-
ity p(X = 1 |Z ij , Dij ,Si, Rij = 0) becomes H{ψij (θ)}, where
ψij (θ)= ηij +Dij β2 + log{π̄ij (1)/π̄ij (0)}. Here, πij (u)=H(δ0 +
δZZ ij + δXu + δDDij + δSSi)} and π̄ij (u) = 1 − πij (u). Us-
ing all this information, all three functions L1, L2, and L3

of the E-step simplify as

L1(Θ
(t+1)) =

n∑
i=1

[
βτ

1 Zi1 + log

(
1 + eη∗

i1
)(

1 + eηi1
)

− log

[
M+1∑
j=1

exp

{
βτ

1 Z ij + log

(
1 + e

η∗
ij
)(

1 + eηij
)}]]

,

L2(Θ
(t+1)) =

∑
(i,j):Rij =1

[
Xij (ηij + Dij β2)

− log(1 + eηij +Dij β2) + log πij (Xij )
]
,

L3(Θ
(t+1) |Θ(t)) =

∑
(i,j):Rij =0

[
H{ψij (Θ

(t))}(ηij + Dij β2)

− log(1 + eηij +Dij β2)

+H{ψij (Θ
(t))} log π̄ij (1)

+ [1 − H{ψij (Θ
(t))}] log π̄ij (0)

]
.

In the M-step, we maximize L1 + L2 + L3 with respect to the
parameter Θ by the Newton–Raphson method.

Remark 4. The difference between the present approach and
that of Paik (2004) should be noted. In that paper, the author
modeled a binary exposure variable as

p(X |Z, D,S) = exp
[
X(γ0 + γZZ + γSS + γDD)

− log(1 + eγ0+γZZ+γSS+γDD)
]
.

Through our calculations, it turns out that γD = β2. Though
this relation has been recognized in equation (5) of that paper
and subsequently used in forming the conditional likelihood,
the relation has not been taken into account to calculate the
inputed values of the missing Xs, which is denoted by X∗ in
that paper. Therefore, as indicated in the paragraph right be-
fore equation (7) of that article that β2 (in the name of γD) is
estimated once through the likelihood p(R, X |D,Z,S), and
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then again it is estimated using the conditional likelihood
right before equation (6) of that paper.

Normally Distributed Exposure Variable

Here, we assume that the exposure distribution among the
controls follows the normal distribution with mean µij = γ0 +
γτ

ZZ ij + γτ
SS and variance σ2, then

p(Xij |Z ij , Dij = 0,Si)

= exp
{

(µij Xij −
µ2

ij
2 )/σ2 − X2

ij /2σ2 − log(2πσ2)/2
}

.

(12)

Applying equation (10), we obtain the exposure distribution
among the case population as the normal distribution with
mean µ∗

ij = ηij + σ2β2 and variance σ2. Using all this infor-
mation, L1 and L2 of the E-step simplify as

L1(Θ
(t+1)) =

n∑
i=1

[
βτ

1 Zi1 + β2µi1 − log[

M+1∑
j=1

exp{βτ
1 Z ij + β2µij }]

]
,

L2(Θ
(t+1)) =∑

(i,j):Rij =1

[
− 1

2σ2 (Xij − µij + Dij β2σ
2)2 + log πij (Xij )

]
.

In the M-step, we maximize L1 + L2 + L3 with respect to
the parameter Θ by the Newton–Raphson method. Note that
neither the conditional distribution of the unobserved X given
the observed data nor L3 has closed analytic form, and

p(Xij |Z ij , Dij ,Sij , Rij = 0)

∝ {1 − H(δ0 + δτ
ZZ ij + δXXij + δDDij + δSSi)}

exp{−(Xij − µij )
2/2σ2}. (13)

Therefore, the expectation with respect to the conditional
distribution (13) needs to be calculated by some numerical

method. Let X
(b)
ij , b = 1, . . . , B be B random numbers drawn

from (13), then the Monte Carlo approximation of L3 is

L3(Θ
(t+1) |Θ(t)) = B−1

∑
(i,j):Rij =0

B∑
b=1

{
log p(X

(b)
ij |Z ij , Dij ,Si)

+ log pr(Rij = 0 |X (b)
ij ,Z ij , Dij = 0,Si)

}
,

and the B random numbers can be drawn by using the
Metropolis–Hastings algorithm.

3.2 Nonexponential Distribution—Lognormal Distribution
So far, we have discussed exponential family of distribu-
tions for the partially missing exposure variable; however the
proposed method is applicable to any distribution. There-
fore, now we discuss the case where the distribution of
the exposure variable among the controls is a member of
nonexponential distribution, such as lognormal distribution.
Let p(Xij |Z ij , Dij = 0,Si) = exp[−{log(Xij ) − µij }2/2σ2]/

{Xij

√
2πσ2}, for Xij > 0. Here µij = γ0 + γτ

ZZ ij + γτ
SSi. Us-

ing result (A.2) of the Web Appendix, we obtain the expo-
sure distribution among the cases, and it is p(Xij Z ij , Dij = 1,

Si) ∝ exp[β2Xij − {log(Xij )−µij }2

2σ2 ]/{Xij

√
2πσ2}, with the nor-

malizing constant Qij (β2, σ2) = E{exp (β2e
t)}, where t ∼

Normal (µij , σ2). Note that the case and control distri-
butions are not of the same form. Plugging in pr(Dij = 1
Z ij , Si)/pr(Dij = 0 Z ij ,Si) = exp{β0(Si) + βτ

1 Z ij }Qij (β2, σ
2)

in L1, we obtain

L1(Θ) =
exp{βτ

1 Zi1}Qi1(β2, σ
2)

M+1∑
j=1

exp{βτ
1 Z ij }Qij (β2, σ

2)

.

Note that none of L2 or L3 has a closed form expression. Also,
the conditional distribution of the unobserved X given the
observed data does not match with any standard distribu-
tion. Hence, like the normal distribution scenario of the pre-
vious section, one may adopt Metropolis–Hastings algorithm
to generate random numbers from the conditional distribu-
tion, and then use the Monte Carlo method to approximate
the integrals in the E-step. Maximization can be done by the
Newton–Raphson method.

4. Example
The Los Angeles endometrial cancer data comprise 63 strata
and each stratum consists of one case and four controls
(Breslow and Day, 1980). The goal of the study was to assess
important risk factors for endometrial cancer among the post-
menopausal women of an affluent retirement community in
Los Angeles. Controls were chosen from a roster of all women
in the same community, and then matched with a case based
on their age. Among several measured risk factors, the binary
exposure variable obesity was missing for about 16% of the
study participants. We treat obesity as the partially missing
exposure variable (X) and the presence of gall bladder dis-
ease is considered as a binary completely observed covariate
(Z). Obesity was determined accordingly as the BMI value
exceeds the normal value of 30 or not. In the analysis, age
is transformed into [0, 1] scale and then used as a matching
variable S. In the data set, obesity was missing in six out of
63 cases and in 45 out of 252 controls. Though this finding
is not statistically significant (p-value=0.13), we include D in
the selection model. The disease risk model of our interest is
H(β0(S) + β1Z + β2X), where β1 and β2 are the disease-
exposure association parameters for Z and X, respectively.

The exposure distribution among the controls is modeled
as p(X = 1 |Z ,S ,D = 0) = H(γ0 + γZZ + γS S), and so
the exposure distribution among the cases becomes p(X =
1 |Z ,S ,D = 1) = H(γ0 + γZZ + γSS + β2). We analyze
the data by using the CLR technique by the method pro-
posed in Paik (2004), we call it Paik, and by using the newly
proposed method, we call it SM. The results are presented in
Table 1. The standard error (SD) of the Paik method was cal-
culated by the jackknife method, whereas the SD of the SM
method was calculated by equation (7). The results indicate
that the presence of gall bladder disease seems to increase
the risk of having endometrial cancer. From the analyses we
do not find any significant association between the cancer
and obesity. As expected, the CLR method produces largest
standard error for β̂1 and β̂2. The SM produces least stan-
dard error for the parameters among the competitive meth-
ods. The estimates due to the Paik and SM are different from
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Table 1
Results of the analysis of the Los Angeles Endometrial Cancer

Data. Est. and SD represent the estimate and the standard
error, respectively.

Method

CLR Paik SM

Parameter Est. SD Est. SD Est. SD

β1 1.2844 0.3921 1.3098 0.3760 1.2857 0.3741
β2 0.4405 0.3800 0.6879 0.3633 0.5346 0.3091
γ0 0.0288 0.2875 −0.0139 0.3611
γZ 0.1582 0.3623 0.1692 0.3625
γS 0.5390 0.4868 0.5337 0.4850
γD 0.5224 0.3104
δ0 1.1606 0.4031 1.0827 0.4013
δZ 0.4933 0.5616 0.4875 0.5639
δX 0.6560 0.3112 0.8717 0.3146
δD 0.5750 0.4694 0.5493 0.4711
δS −0.0403 0.6456 −0.0635 0.6526

the CLR approach which does not take into account all the
observed data. According to both the methods, the Paik and
SM, we find that missingness mechanism is significantly as-
sociated with the missing observations with p-values 0.0175
and 0.00279, respectively.
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Figure 1. The log odds ratio parameter for obesity and its 95% confidence interval for varying δX for the SM and Paik
method.

Sensitivity Analysis

Usually, little information is available to estimate the parame-
ters of the missingness mechanism. Therefore, several authors
have suggested to perform sensitivity analysis by varying cer-
tain parameters of the missingness mechanism (see Rotnitzky,
Robins, and Scharfstein, 1998; Roy and Lin, 2005). We study
the sensitivity of the estimate of β1 and β2 for a set of values
of δX . Note that when δX = 0, the missingness mechanism
becomes MAR. The sensitivity of the Paik and SM method is
studied when δX ∈ [ − 4, 4]. We set δX to a desired value, and
then determine other parameters of the model by the Paik
and SM method. For a fair comparison, for both the meth-
ods we calculate the standard error of the estimate by the
jackknife method. Figure 1 shows how β̂2 changes with δX for
both the methods along with the 95% confidence interval. Es-
timate of β2 obtained by using the SM method ranges from
0.41 to 0.53 whereas β̂2 of the Paik varies from 0.44 to 0.82.
For a moderate range of values of δX , the regression param-
eter β2 remains insignificant for both the methods. For the
SM method, the other disease–risk parameter β1 varies from
1.2876 to 1.3013 for δX ∈ [− 4, 4], and for the Paik method
it varies from 1.3070 to 1.3378.

5. Simulation
We evaluate the performance of the proposed method using
simulation study. In order to elicit realistic parameter value,
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we are going to use the real data as a prototype. We found
that after rescaling the matching variable age of the orig-
inal data set into [0, 1] interval, it approximately follows
Normal(0.53, 0.242). Therefore, first generate the matching
variable S from the Normal(0.53, 0.242) for a cohort of N =
20,000 subjects. The presence of gall bladder disease was
found to be 19% in the data set. However, in the simulation
study, instead of generating Z from a Bernoulli distribution,
it is generated from the Gamma(a = 0.23,b = 0.8333), where
the parameters a and b are obtained by equating the first
two moments of the gamma distribution with the observed
moments of Z of the original data set. Note that mean of
Gamma(a,b) distribution is ab. Then, we generate the binary
covariate X from the Bernoulli distribution with the success
probability H(0.2239 + 0.5470S + 0.2332Z). The true param-
eter values are set to the estimated value of the parameters
obtained by regressing X on Z and S in the original data set.
Now, we generate the disease variable D from the Bernoulli
distribution with success probability

H(−3.1 + 1.1S + 1.3Z + 0.55X). (14)

Here, we set β1, the log–odds-ratio parameter for Z, and β2,
the log-odds-ratio parameter for X, as 1.3 and 0.55 which are
close to the estimates obtained by using the SM method in the
data analysis. The coefficient of S in (14) reflects twofold in-
crease in the disease risk for changing S from its 10th quantile
to 90th quantile. The intercept parameter is so chosen that
the marginal disease probability is 0.10. Next, we randomly
choose 100 cases from the cohort and then corresponding to
each case we choose one control so that the absolute difference
between the values of the matching variable for the case and
the control subject is not more than 0.009.

We simulate 300 data sets and then for each data set we
create missing data by generating a binary random variable
R according to the following missingness mechanism (MM).

MM1. Missing Completely at Random (MCAR):
logit P(Rij = 1) = 0.66,

MM2. Missing at Random (MAR): logitP(Rij = 1) = Dij ,

MM3. Informative Missing (IM): logitP(Rij = 1) = Xij ,

MM4. IM: logitP(Rij = 1) = 0.5Xij + 0.5Dij ,

MM5. IM: logitP(Rij = 1) = Xij Zij + Dij Xij .

Finally, the data sets are analyzed by the three methods—
the CLR, the Paik method, and the SM method. The results
are given in Table 2. We report the estimated value which is
the average of the estimates across the simulated data sets,
and the mean square error which is the average of the squared
differences between the true and the estimated value.

In all the analyses, we assume that missingness mechanism
is unknown; therefore we model the logit of the selection prob-
ability as a linear function of Z, S, X, and D. Also, no matter
what distribution the exposure variable is generated from, in
the analyses we model the logit of the success probability of
X among the controls as a linear function of S and Z.

Note that when the data are completely observed, the Paik
method reduces to the CLR method, whereas the parameter
estimates of the SM method is then obtained by maximizing

Table 2
Results of the simulation study when P (X = 1 | S ,Z ) =

H(0.2239 + 0.5470S + 0.2332Z). The true values of β1 and
β2 are 1.3 and 0.55, respectively. Est. and MSE stand for

estimate and mean square error.

β1 β2

Method Est. MSE Est. MSE

Fully observed data
CLR&Paik 1.4034 0.1714 0.6075 0.1416
SM 1.3857 0.1568 0.5793 0.1091

MM1: logitP(R = 1) = 0.66
CLR 1.6196 0.8383 0.5645 0.4786
Paik 1.5213 0.3019 0.5294 0.2919
SM 1.3899 0.2067 0.5426 0.1861

MM2: logitP(R = 1) = D
CLR 1.7006 0.9199 0.7887 0.7764
Paik 1.6784 0.4927 0.7328 0.3149
SM 1.4263 0.1964 0.6110 0.1750

MM3: logitP(R = 1) = X
CLR 1.5114 0.5158 0.6042 0.5201
Paik 1.4680 0.1714 0.5911 0.3239
SM 1.3344 0.1131 0.5846 0.2181

MM4: logitP(R = 1) = 0.5D + 0.5X
CLR 1.5711 0.6595 0.5679 0.3925
Paik 1.5840 0.3344 0.5059 0.3066
SM 1.3798 0.1631 0.4708 0.2063

MM5: logitP(R = 1) = DX + XZ
CLR 1.4701 0.5669 0.9890 0.5826
Paik 1.3716 0.2517 1.0096 0.4968
SM 1.3236 0.1568 0.9029 0.2908

L =

n∏
i=1

M+1∏
j=1

p(Xij Zij , Dij , Si)

×
n∏

i=1

pr

(
Di1 = 1, Di2 = · · · = DiM+1 = 0{Z ij }M+1

j=1 ,

Si,

M+1∑
j=1

Dij = 1

)
. (15)

For fully observed data, the difference between these two ap-
proaches is that the SM method models the exposure distri-
bution explicitly whereas the CLR (or Paik) does not model
it. Therefore, for fully observed data, if the SM method mod-
els the distribution of X correctly, it should perform better
than the CLR method by extracting information on β con-
tained in p(X |D ,S ,Z ). In fact, Table 2 actually shows little
bit efficiency gain in the SM compared to the CLR approach
for fully observed data.

As expected, in the presence of the missing observations
the CLR method produces biased and inefficient estimate for
both the parameters β1 and β2, among the three methods.
The Paik method outperforms the CLR in terms of bias and
efficiency. However, among the three methods, the SM shows
better performance in terms of bias and efficiency of the pa-
rameters. Special attention should be given to the missingness
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mechanism MM5, as it considers one kind of violation of the
model assumption of the selection probability. It turns out
that the estimate of β2 is most affected due to this model vi-
olation; however, among the three methods the SM method
is least affected.

Robustness of the different methods is studied under two
types of model violations of the exposure distribution. First,
we consider the situation where the logit of the success prob-
ability of X is not linear in S. Hence, in the simulation, X
is generated from the Bernoulli distribution with the success
probability H(0.2239 + 0.5470S2 + 0.2332Z), and everything
else remains the same as before. While we analyze the data,
we model the logit of the success probability of X as a linear
function of S and Z. The results are presented in Table 3.
There are two situations—when moderate percentage of data
is missing and when the data have no missing observation. For
missing data situation, the SM outperforms the other meth-
ods. It turns out that the estimates are severely affected by
the violation of the model assumption of the selection proba-
bility. As mentioned by the associate editor, for fully observed
data scenario and misspecified model, we expect to see more
biased estimate due to full likelihood–based method (i.e., SM)
compared to the CLR approach. However, the simulation re-
sult does not reflect that fact. After a thorough numerical
investigation, we found that in the domain of S, 0.5470S2 is
almost a linear function of S, and it has slight curvature at

Table 3
Results of the simulation study when P (X = 1 | S ,Z ) =

H(0.2239 + 0.5470S2 + 0.2332Z). The true values of β1 and
β2 are 1.3 and 0.55, respectively. Est. and MSE stand for

estimate and mean square error.

β1 β2

Method Est. MSE Est. MSE

Fully observed data
CLR&Paik 1.3318 0.1013 0.5086 0.1447
SM 1.3228 0.0978 0.5111 0.1296

MM1: logitP(R = 1) = 0.66
CLR 1.5420 0.8412 0.4924 0.2724
Paik 1.4751 0.2047 0.5041 0.2033
SM 1.3616 0.1578 0.5222 0.1545

MM2: logitP(R = 1) = D
CLR 1.6589 0.9999 0.5476 0.5312
Paik 1.5529 0.2565 0.5858 0.3319
SM 1.3408 0.1219 0.5323 0.1913

MM3: logitP(R = 1) = X
CLR 1.5617 0.4823 0.4957 0.4865
Paik 1.5473 0.3012 0.5249 0.3616
SM 1.4145 0.2115 0.5001 0.2621

MM4: logitP(R = 1) = 0.5D + 0.5X
CLR 1.5671 0.7896 0.4533 0.3468
Paik 1.5048 0.1814 0.4601 0.2865
SM 1.3555 0.1075 0.4729 0.1908

MM5: logitP(R = 1) = DX + XZ
CLR 1.4723 0.7850 0.9677 0.8653
Paik 1.4098 0.2460 0.9953 0.5730
SM 1.3620 0.1665 0.8867 0.3678

the boundary of the domain of S. Therefore, for sample size n
= 100, the SM method still performs better than the CLR ap-
proach in terms of bias and MSE. However, if the sample size
(n) is large (n ≥ 500), the data are more likely to include some
of the boundary values of S which show nonlinearity in the
function 0.5470S2, and then one may see more biased estimate
in the SM compared to the CLR (the results are not presented
here). In general, for fully observed data the likelihood–based
approach is expected to produce more biased estimator than
the CLR method when the underlying assumptions are vi-
olated. However, that difference in bias depends on the de-
gree of model violation, numerical effect of the violation on
the variables under consideration, and the sample size of the
data.

Lastly, we consider the situation where the success proba-
bility of the binary exposure variable is not in linear-logistic
form, but a discontinuous function of Z, which is given by

X ∼


Bernoulli(p),where p =

Φ(0.2239 + 0.2332Z), for S > 0.7

Bernoulli(p),where p =

Φ(−0.7Z), for S ≤ 0.7.

(16)

As before, we analyze the data sets using all the three meth-
ods, and in the analyses we model the success probability of X
among the controls using a logistic regression in S and Z. The
results are presented in Table 4. The SM produces least value
of MSE among all the three methods. Overall, though the
Paik offers a significant improvement over the CLR in terms
of bias and efficiency, using SM method one may have more
gain. One should note that for fully observed data situation,
due to misspecified model the SM shows more biased estimate
of β2 than the CLR approach. However, MSECLR, the MSE due
to the CLR, is still higher than that of the SM, MSESM. The
intuitive reason for this behavior is in general σ2

SM � σ2
CLR,

where σ2
SM and σ2

CLR are the variance of the estimator under
the SM and CLR approach, respectively. Therefore, MSE SM =
Bias2

SM + σ2
SM < Bias2

CLR + σ2
CLR = MSECLR even though Bias

SM > Bias CLR. When sample size (n) is large, σ2
SM, σ2

CLR −→ 0,
then the difference in bias is truly reflected through MSE.

Summarizing the results, we conclude that both the Paik
and the SM are sensitive towards the selection model. How-
ever, the SM performs better than the Paik in terms of MSE.
The intuitive explanation of this behavior may be that in
the SM method all parameters are estimated simultaneously
through a joint conditional likelihood. Both the methods are
fairly robust under the misspecification of the distributional
form of the binary exposure variable, and under the mis-
specified form of logitp(X = 1 |Z ,S). Overall, in the presence
of moderate percentage of missing covariate data, both bias
and variance are lower in the SM than the CLR and the
Paik method. The EM algorithm and the CLR method did
not converge for approximately 2% of the data sets. How-
ever, that convergence problem can be avoided by choos-
ing very large sample size. The results are presented based
only on 300 data sets for which all the methods converged.
All the computations were done by using R statistical soft-
ware and the necessary subroutines were written in Fortran

77. For the maximization of the likelihoods, we used nlm()
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Table 4
Results of the simulation study when P (X = 1 | S ,Z ) =

Φ(0.2239 + 0.2332Z)I(S > 0.70) + Φ(−0.7Z)I(S ≤ 0.70).
The true values of β1 and β2 are 1.3 and 0.55, respectively.
Est. and MSE stand for estimate and mean square error.

β1 β2

Method Est. MSE Est. MSE

Fully observed data
CLR&Paik 1.3368 0.1689 0.5411 0.1424
SM 1.2950 0.1394 0.4633 0.0956

MM1: logitP(R = 1) = 0.66
CLR 1.6332 0.7014 0.5965 0.4100
Paik 1.5278 0.2460 0.5277 0.2028
SM 1.3854 0.1624 0.5072 0.1825

MM2: logitP(R = 1) = D
CLR 1.5400 0.6694 0.5877 0.4387
Paik 1.5960 0.3193 0.6508 0.3022
SM 1.3816 0.1480 0.5554 0.1543

MM3: logitP(R = 1) = X
CLR 1.6461 0.8460 0.6267 0.4033
Paik 1.5589 0.2297 0.5632 0.2242
SM 1.3923 0.1503 0.4978 0.1692

MM4: logitP(R = 1) = 0.5D + 0.5X
CLR 1.6021 0.7482 0.4175 0.3903
Paik 1.6091 0.3267 0.5335 0.3463
SM 1.3895 0.1736 0.4516 0.1978

MM5: logitP(R = 1) = DX + XZ
CLR 1.6916 1.1595 0.9521 0.7818
Paik 1.7161 0.5496 1.0567 0.7405
SM 1.4971 0.2744 0.8638 0.3822

function, and for the CLR analysis we used clogit function of
library(survival).

6. Discussion
This article proposes a full likelihood-based method for han-
dling nonignorable missing exposure variable in matched
case–control study. The proposed method can handle any kind
of distribution for the partially missing exposure variable, and
it can also handle varying number of controls in the matched
sets. The simulation study shows that the proposed method
outperforms the existing methods in terms of bias and effi-
ciency under different scenarios of missing data mechanism.
Though this is a model-based approach, the proposed method
is not severely affected by moderate type of model violations.
Depending on circumstances, such as if all the model assump-
tions are true, we may even see that for fully observed data the
full likelihood-based method performs better than the CLR
approach. However, unless there is moderate amount of miss-
ing data one should prefer to use the CLR approach which
does not require to model its covariate distribution.

7. Supplementary Materials
Web Appendices referenced in Sections 2 and 3, and the
data set along with the computer code, are available un-
der the Paper Information link at the Biometrics website
http://www.tibs.org/biometrics.
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