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Abstract

The paper considers the problem of modelling association between two ex-
posure variables in a matched case-control study, where both the exposures
may be partially missing. The exposure variables could all be categorical or
continuous or could be a mixed set of some categorical and some continuous
variables. Association models for the missing exposure variables using the
completely observed covariates and disease status are proposed for each of
the three scenarios. The models account for varying stratum heterogeneity
in different matched sets. Three real data examples accompany the proposed
models. The examples as well as a small scale simulation study indicate that
in presence of missingness and association, modelling the association between
the exposures rather than ignoring it, often leads to better estimates of the
relative risk parameters with smaller standard errors. Estimation of the
model parameters is carried out in a Bayesian framework and the estimates
are compared with classical conditional logistic regression estimates.

AMS (2000) subject classification. Primary 62F10, 62F15, 62H12.
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1 Introduction

The paper addresses inference problems based on matched case-control
studies involving bivariate exposure variables, where both the variables could
be partially missing. The main objective of a case-control study is to assess
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the association between a certain outcome (typically a disease) and the ex-
posure variables to ascertain potential risk factors for the disease. There
are many instances, where the missing exposure variables may themselves
be associated, and one of the key features of this paper is modelling this
underlying association. In particular, we consider three association schemes:
(i) two exposure variables with a bivariate binary distribution, (ii) a set of
continuous exposure variables with an underlying correlation structure, and
(iii) two correlated exposure variables, one binary and the other continu-
ous. We propose a full-likelihood based approach by a parametric modelling
of the missing exposure distribution incorporating their association. Our
model accounts for possible stratum heterogeneity in the exposure distribu-
tion, which may be present in matched studies. Since the model and the
resulting likelihood turn out to be of a complex form with a growing number
of parameters, the parameters are estimated in a fully Bayesian framework
by using the Markov chain Monte Carlo technique.

Outside the case-control context, there has been extensive amount of
work on modelling association among multivariate exposures. Zhao and
Prentice (1990) proposed a pseudo likelihood method for the estimation of
parameters of a quadratic exponential family in terms of the marginal means
and pairwise correlation. Lang et al. (1999) proposed association modelling
in multivariate categorical response data. They formulated generalized log-
linear models that simultaneously model the association structure as well as
the marginal distributions of the responses and outlined how to obtain the
maximum likelihood estimates of the parameters. Ekholm et al. (2000) pro-
posed association models for multivariate binary data through latent vari-
ables and Markov type dependence structure. But so far, to the best of
our knowledge, none of the models have been extended to the case-control
domain.

The second feature of our model is to accommodate partial missingness
in multiple exposure variables. Although the assumption is one of missing at
random (MAR) (see Little and Rubin, 2002), our analysis is based not just
on complete case data (i.e., data from subjects with complete information),
but also on subjects carrying partial information. This is in contrast with the
conditional logistic regression (CLR) model traditionally used for matched
case-control problems, which uses only the complete case data.

Our method is neither similar to that of Lipsitz et al. (1998), and Rathouz
et al. (2002), who proposed modelling the missingness process in matched
case-control studies nor to that of Huberman and Langholz (1999), who used
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missing-indicator method to handle incomplete data in matched studies. It
is more akin to the work by Satten and Kupper (1993a, 1993b), Satten
and Carroll (2000) and Paik and Sacco (2000), who proposed a likelihood
based approach by parametrically modelling the distribution of the exposure
variable.

Though there is a significant volume of literature on various aspects of
case-control studies in the frequentist domain, Bayesian literature related
to this area has been limited (see Mukherjee et al. (2005) for a complete
review). Bayesian literature on case-control studies have mostly been on un-
matched case-control studies (Zelen and Parker, 1986). Recently, Sinha et al.
(2005) proposed a semiparametric Bayesian method of estimation in matched
case-control scenario, when the exposure variable was partially missing. In
Sinha et al. (2005), the association between a single missing exposure and a
completely observed covariate was modelled through a linear regression but
the model does not take into account the possibility of a dependence struc-
ture among the set of multivariate missing exposures themselves. Moreover,
Sinha et al. (2005) consider exposure distributions belonging to the general-
ized exponential family. The current paper is not restricted to that class of
distributions.

Three data-sets are analysed in the paper, each interesting in its own
right. First, we consider the association structure for a bivariate binary ex-
posure in the context of the well-known Los Angeles Endometrial Cancer
Study (Breslow and Day, 1980), which involves natural missingness in one of
the exposures. Second, we consider a data-set (Miller et al., 1983) relating
dietary exposures like the total caloric and fibre intakes to incidence of colon
cancer. In this example, we analyse missingness and measurement error
simultaneously in a matched case-control study. Third, we consider the sce-
nario when there is one binary, and one continuous exposure. A case-control
data-set on fibrocystic breast disease (Pastides et al., 1985) is considered
to illustrate the methodology. One of the significant exposures is partially
missing in this data-set.

In all three examples, we find that by exploiting the association among
the exposures, especially in the presence of missingness, we obtain better
estimates with relatively smaller standard errors, where there is a real asso-
ciation among the exposures. A small scale simulation study supports this
finding.

The rest of the article is organized as follows. In Section 2, we describe
our model, notations and formulation of the likelihood in the presence of
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missingness in a general matched case-control set-up. Section 3 is devoted
to three different association models for multiple exposure variables as de-
scribed above. Each model is accompanied by the corresponding data exam-
ple illustrating the proposed methodology. Section 4 contains a small scale
simulation study to indicate the effect of association modelling when associ-
ation among exposures truly exists. Section 5 is the concluding section with
a discussion of the findings and final remarks.

2 Model and Notations

We consider a 1 : M matched case-control design. For subject j in the
matched set 7, j = 1,..., M +1;4=1,...,s, let D;; be a binary indicator
for the disease status, namely D;; = 1 for case and D;; = 0 for control. For
each subject in the data-set, we observe a p x 1 vector of exposure variables
X;; and a g x 1 vector of covariates Z;; which is completely observed. In
all our examples, we considered p = 2. However, the proposed methodology
in Section 3.2 works for arbitrary p(> 2), and allows the possibility that
different components of X;; may be missing for different subjects. For each
subject, missing values in the vector of exposure variables X;; could occur

in K = 2P ways. For example, if X;; has two components (say XZ-(]-I) and

XZ-(jz)), possible patterns of missingness are (i) both Xi(jl) and Xl(f ) are miss-
ing (i7) Xi(jl) is missing and XZ-(jQ) is observed, (7i7) Xi(jQ) is missing and Xi(jl) is
observed, and (iv) both Xi(jl) and Xi(f) are observed. Let (55, k=1,....K,
represent the indicator variables corresponding to each pattern of missing-
ness. Therefore, for each subject, we observe a vector of indicator variables,
namely A;; = (6}]-, (5,?]-, .. 6g )T, which takes value 1 in exactly one position
and zero in all other positions. We assume that the missingness patterns
are lexicographically ordered, i.e., 5}j = 1 when the missingness pattern is

(0,0,...,0) (denoting all exposures are missing), 6% = 1 if the missingness
pattern is (1,0,...,0), 65*1 = 1 if the pattern is (0,1,...,1), and 6{; =1
if missingness pattern is (1,1,...,1). i.e., the exposure vector is completely
observed.

Let p(Xij|Zi;j, Dij = 0) be the density of the exposure variable in the
control population with respect to a o-finite dominating measure p. Note
that by modelling the distribution of X in terms of the completely observed
covariate Z, one is able to capture stratum heterogeneity measured through
Z, but there may still be some unexplained heterogeneity, which we would
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model through a random intercept term. Let p&(X;;) and p¥(X;;) denote re-
spectively the joint densities of the observed components of X;; correspond-
ing to control and case populations conditional on Z;;, for k = 1,2,..., K.
We omit the conditioning statement for simplicity in notation. When all
the components of X;; are missing we set p§(X;;) = 1 and p}(X;;) = 1.
Also, we consider a prospective odds model for the disease given by P(D;; =
11Xij,Z;5)/P(D;j = 0|Xij5,Zi5) = p(Xij, Zi;), where p(-) is a general non-
negative function. The following two results (see Satten and Kupper, 1993b)
hold without any specific distributional assumption.

LEMMA 1.

I (Dij — 1|Zij) /
= R [ (X, Zi)p(Xij| Zis, Dig = 0)dp(Xij). (2.1)
P(Dj; = 0|Zy;) 3> i3 )P\ 1 Bigs g j

LEMMA 2.

p(X’Z D — 1) . p(Xij’Ziijij = O)p(Xz]7 Zzy) (2 2)
) ijs i = = . .

Thus, by Lemma 2, one is able to derive the exposure distribution in the case
population, from the prospective odds model and the exposure distribution
in the control population. These lemmas will be utilized in deriving the
likelihoods.

It is common to assume a prospective logistic model
P(Dij = 1|Xij, Zij) = H{Boi + 8] Zi; + 53 Xij}, (2.3)

where H(u) = 1/{1 + exp(—u)}, fo;i is a stratum-specific intercept term,
and (1 and (9 are the vectors of log-odds ratio parameters corresponding to
the completely observed covariates Z;; and the exposure variables X;;. In
the case of fully observed data, the conditional likelihood (conditioned on
Zj\i 4{1 D;; = 1) based on this prospective model, eliminates the nuisance
parameters By; and involves only the log odds ratio parameters.

In the presence of missingness, the classical method of conditional logistic
regression (CLR) ignores the partially observed records and drops completely
observed records if there is no completely observed matching records. In case
the data are missing completely at random (MCAR; for definition, see Little
and Rubin, 2002), CLR produces consistent but less efficient estimates of the
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parameters. On the other hand, if the data are missing at random (MAR),
CLR may yield biased estimates (Breslow and Cain, 1988; Paik, 2004).

Sinha et al. (2005) proposed a Bayesian semiparametric method to ac-
count for missing data via modelling of the exposure distribution. The
method proposed there does not incorporate the possible dependence struc-
ture among a set of multivariate exposure variables each with possible miss-
ingness. In Sinha et al. (2005), the information on any particular missing
component of the exposure vector comes only through its association with
the completely observed covariate Z, whereas with our current model, we
also exploit the association of this particular missing component with the
other partially observed components of the exposure vector X and thus gain
in efficiency in case the association truly exists.

The basic structure of the joint likelihood in the presence of missingness
is
p(Dij, Xij, Aij|Zij)=p(Xij|Dij, Aij, Zij) x p(Aij|Dij, Zij) x p(Dij|Zsj).
(2.4)
One should note that there is an underlying asymmetry in the model. We
treat the partially missing exposure X as stochastic, and assume a para-
metric distribution for it. On the other hand, we consider the completely
observed covariate Z as non-stochastic. Theoretically, one can always model
Z with some parametric distribution. However, the Z’s are usually mul-
tivariate with a mixture of categorical and continuous covariates, so that
specifying a true model for its distribution is not an easy task; needless to
say, if the specified model is incorrect, we risk the possibility of biased and
inconsistent estimation.

Following Satten and Carroll (2000), we will assume that (i) the X’s
are missing at random, i.e., p(X;;|D;j, Aij, Zij) = p(Xij|Dij, Zi;), and (ii)
p(Aij|Dij, Zij) does not depend on the log-odds ratio parameters (i.e., 3
and (2).

By Lemmas 1 and 2, and assuming without loss of generality that the
first subject in each stratum is a case, and the rest are controls, one begins
with the joint conditional likelihood

S
Le() = HP<Di1 =1,Di2=0,..., Dips1 = 0,{Xy5, Ay } 14T
i=1

M+1
{2341, Dir= 1> ;
r=1
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which can be written as

s M+1
Le()) o H{P(Dﬂ:l,Dizzo,...,DZ-MH:o,'{zij}ﬁﬁl,ZDir=1>
=1 r=1

M+1

x p(Xi1]Zi1, Din = 1, Aqr) H p(Xij|Zij, Dij = OvAij)}
j=2

ﬁ P(Dsy = 1|Zi1)/P(Dyj = 0|Z1)

3 S P(Dyy = 1|Z4;)/ P(Dyj = 0|Zi5)

s K M+1
T (dstonn ) T (S} b o
i=1 | \k=1 j=2 \k=1

Note that, instead of using a retrospective likelihood, we work with a
joint conditional likelihood of disease variable, exposure variable and missing
value indicator given the completely observed covariates, the stratum effects
and the number of cases in each matched set, which is held fixed by the
matched design.

We may note that the likelihood given in (2.4) does not require the
logistic assumption as given in (2.3), though we will assume the same in our
actual applications in the subsequent sections. The parameters involved in
the above likelihood are estimated in a fully Bayesian framework. As we
will find, there will be no closed form available for the posterior and any
exact Bayesian inference is analytically intractable. Hence, we estimate the
model parameters through Markov chain Monte Carlo numerical integration.
We use standard Metropolis-Hastings algorithm to generate random number
from the conditional distributions (Robert and Casella, 1999).

In the following sections, we present the specific forms of the likelihoods
for the three association scenarios we consider.

3 Three Different Association Models

3.1.  Bivariate binary exposure variables. We first consider the situation

with bivariate binary exposure variables X;; = (Xi(jl), X Z»(jz))T. Assume that

the retrospective density of X;; in the control population to be

p(X'('l)aXi(jz)|Zij7Dij =0) =

)

% exp(@Z(;)Xi(jl) + Ggf)Xi(j) + )\UX(I)X( ))
C
ij

(3.1)
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where CO =1+ exp(G( )) + exp(H( )) + exp(ﬁ( )+ 95?) + Aij). We model
HZ(]), ‘91(]2), and Aj; as 9( ) _ = Yo1i + M12ij, 9§j) = 02i + 225, and Aij; =
Y03i + 7113%i5.

REMARK 1. Note that )\;; is the log-odds ratio between the two random

variables Xi(j) and Xl(J),

p(XZ(])—lX =1|Zqj, Dij=0)p(X})) =0, X7 =0|Zy;, D;=0)

p(X) =0, X _1|Z1]7Dl]_0)p(Xi(j):17Xi(j2):0’Zij7Dij:O)

>\ij = log

Here A;; = 0 implies that the exposure variables are independent in the
control population, and if \;; # 0 then the exposures are associated among
the controls. Larger the departure from 0 stronger is the association.

Also, 01(]1 ) could be interpreted as the logit of the probability of success
of Xi(jl) conditioned on Xi(f) = 0, ie., p(Xi(jl)\Zij,Dij = O,Xi(jQ) =0) =
exp(O(l) (1))/{1 + exp(H(l))} Similarly, 9(2) could be interpreted as the

logit of the probability of success of X (J) given that X M .

Let B2 = (Ba1, 322)”. By Lemma 1, (2.4) and (3.1), one obtains

P(Dij = 1|Zi5) _ Ty (1) ;)

P(Di; = 01Zs;) exp{Boi + b1 Zij + lOg(Cij /Cij )} (3.2)
where C’( b =1+ exp(0;; 0 1 By1) + exp( 2 ¥ Ba) + exp(Q( )+ Gg) + \ij +
Bo1 + 522)

In this situation, there are four possible missing patterns leading to A;; =

((511],5123, (5%, (5;1]) . Using (2.4) and (3.2), we can write the likelihood as

L. ﬁ{ exp{ﬁi‘rzﬂ+log(CZ(11)/Cff))}
S exp{B7 Zi; + log(CZ.(jl) /ey

M+1
X Z(Sllpl 11 X H Z‘Swpo }7

7=2 k=1

where p¥(X;;) and p§(X;;) are the control and the case densities of the ex-
posures respectively. The above likelihood involves (1, B2, 711, Y12, V13,
and vopi, for p = 1,2,3 and ¢ = 1,...,s. We use independent normal
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prior Normal(0, 10) on each set of parameters, and estimate them through a
Markov chain Monte Carlo integration scheme.

EXAMPLE 1. ENDOMETRIAL CANCER DATA. We consider matched case-
control data from the well-known Los Angeles Endometrial Cancer Study
(Breslow and Day, 1980). The cases were matched with four controls on the
basis of age, the community the case lived in, marital status, and the time
the case had entered in the community. The data contains measurements
on several binary covariates: presence of gall bladder disease, obesity, use
of estrogen, to name a few. Several studies have indicated that exogenous
estrogen treatment increases the risk of endometrial cancer (see Schotten-
feld and Fraumeni, 1996). Among other factors, obesity may increase the
risk of endometrial cancer by altering estrogen metabolism. The presence
of gall bladder disease may increase the risk of endometrial cancer and that
could potentially be due to an association of gall bladder disease with obe-
sity or estrogen replacement therapy. With this underlying medical theory
in mind, we reanalysed the LA cancer data-set with obesity and gall bladder
disease as two associated binary exposures. Obesity has 16% missing values
in this data-set. KEstrogen plays the role of a completely observed covari-
ate Z through which parameters related to the bivariate binary exposure
distribution are modelled.

Bivariate binary distribution is assumed for the two exposure variables,
obesity and gall bladder disease in the control population. The related pa-
o
92) = o1 + M1Zij, 95) = Y02i + M2Zij and Aij = Y03i + 713435 We used
independent Normal(0,10) priors for all these regression parameters as well
as for 821 and (33. For each of our examples, we performed three analyses.
The first is our proposed method of Bayesian analysis accounting for the
association among the exposure variables (denoted by AM). The second is a
Bayesian method following Sinha et al. (2005), where the missing exposure
variables are assumed to be independent but each component of the expo-
sure variable is related with the completely observed covariate Z through a
linear regression (this model is denoted by IM) and the third one is the usual
conditional logistic regression (CLR).

rameters 6 Hg) and \;;’s are modelled in terms of Z (estrogen use) as:

We carried out the three analyses on the observed data. We reran all
the three methods when 30% observations on the exposure variable (the
presence of gall bladder disease) were deleted completely at random. We
then compared the performance of the three methods in the presence and
absence of missingness.
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TABLE 1. RESULTS OF THE ENDOMETRIAL CANCER DATA EXAMPLE

Method Estrogen-Use Gall-Bladder  Obesity CPO
Results with no missing data
AM Mean 2.18 1.11 0.67 -336.82
s.e. 0.42 0.40 0.39
Lower HPD 1.48 0.35 -0.24
Upper HPD 3.15 1.94 1.40
M Mean 2.23 1.11 0.65 -335.57
s.e. 0.45 0.41 0.41
Lower HPD 1.42 0.35 —-0.20
Upper HPD 3.20 1.95 1.43
CLR Mean 1.95 1.26 0.42
s.e. 0.50 0.44 0.40
Lower CL 0.98 0.41 -0.36
Upper CL 2.93 2.11 1.19
Results with 30% Artificial Missingness on Gall-Bladder
AM Mean 2.37 1.31 0.75 —379.72
s.e. 0.45 0.50 0.40
Lower HPD 1.56 0.25 -0.28
Upper HPD 3.32 2.42 1.50
M Mean 2.52 1.70 0.64 -378.50
s.e. 0.49 0.56 0.42
Lower HPD 0.66 0.68 -0.22
Upper HPD 3.45 2.86 1.40
CLR Mean 1.69 0.87 0.07
s.e. 0.64 0.58 0.55
Lower CL 0.45 -0.27 -1.00
Upper CL 2.94 2.01 1.15

The summary of results is given in Table 1. Here, “Mean” is the posterior
mean, “s.e.” is the posterior standard deviation, “Lower HPD” and “Upper
HPD” are the lower and upper end of the HPD region respectively, “Lower
CL” and “Upper CL” are the lower and the upper ends of the confidence
limit respectively. There is 16% natural missingness in obesity. For the
observed data, we notice that use of estrogen and gall bladder disease are
both significant risk factors for endometrial cancer. Although there is very
little numerical difference between the estimates obtained from the AM and
IM models, the AM model yields estimates with slightly smaller standard
error. In contrast, for CLR we observe significantly higher standard errors
both in complete and missing data situations. With artificial missingness in
gall bladder disease, we notice a significant difference in the estimates, and
in the standard errors between AM and IM. AM produces estimates with
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smaller standard error than IM, and the AM estimates are relatively closer
to their original observed data counterparts. As expected, CLR produces
worse estimates in the presence of missing exposure variable.

Table 2 gives the estimates of the other regression parameters present in
the AM and IM model. Here, “Mean” is the posterior mean, “S.E.” is the
posterior standard deviation. Missing data means the data with 30% artifi-
cial missingness on the gall-bladder disease. The estimate of the parameter
Y13 suggests that the association between the two exposures is moderately
weak for this data-set.

TABLE 2. SECONDARY MODEL PARAMETER ESTIMATES FOR ASSOCIATION AND
INDEPENDENCE MODELLING OF THE ENDOMETRIAL CANCER DATA EXAMPLE

Parameter Association modelling Independence modelling
Full Data  Missing Data  Full Data Missing Data
Y11 Mean -1.40 -1.81 -1.17 -2.07
S. E. 0.45 0.53 0.35 0.49
Y12 Mean 0.19 0.26 0.22 0.25
S.E. 0.30 0.31 0.30 0.32
Y13 Mean 0.44 0.33
S.E. 0.53 0.63

3.2.  Multiple continuous exposures. In this section we consider a vector
of multiple continuous exposure variables X;;. It is assumed that X;; has a
multivariate normal distribution in the control population, i.e.,

[Xij|Z,-j, Dij = 0] ~ Normal(&lj, E), (33)
where 0;; = 0, + 71Z;j. Now using (3.3) in Lemma 1, one obtains
P(D;j = 1|Zy) / T T
2\ ly) . 7. X
P(DZ] :O|ZZ]) eXp{ﬂOZ—'_ﬂl l]+62 Z]}
1 1 _
x B2 exp{—5 (X — 0i5)" X7 (Xij — 0i5) }dX

1
= exp{Boi + B Zij + 33 0ij + 555252}- (3.4)

The joint conditional likelihood is obtained as

s K M+1
exp{BfZis+610,1}
LCo(H M+1 : - XZ P (Xin XH Z 596 (Xi5)
i=1 Z exp{37Z,;+70,,} k=1 k=1
=1



390 S. Sinha, B. Mukherjee and M. Ghosh

Often we face the problem of handling measurement error in measuring
continuous exposure variables. Examples can be found in Carroll et al.
(1993), Roeder et al. (1996), Gustafson et al. (2000, 2002) among others.
In nutrition studies, for example, measurement error occurs naturally in
recording data on a person’s dietary intake. Since our second example is one
in which we need adjustment for measurement error in the values of multiple
continuous exposures, we briefly discuss an adjustment method we used to
deal with measurement error and missingness simultaneously.

Assume that we observe an error-prone variable T instead of the true
values of the exposure X. We assume an additive error structure T;; =
Xij+Uij,g=1,...,M+1,i=1,...,s, and also assume that conditional
on X;;, the disease variable D;; is independent of T;;. Further, we assume
the non-differential measurement error model (as described in Carroll and
Stefanski, 1994),

[UZ]’X”] ~ Normal(C, Eu) (36)

As stated earlier, we assume a multivariate normal distribution of the ex-
posure variable in the control population. Note that the first factor of (3.5)
does not involve X;;. Hence,we should only replace the other two factors in
(3.5) by the distributions of Ty;, j =1,..., M + 1.

Using additive error structure, (3.3), (3.4) and (3.6), one can obtain the
distributions of T in the control and case populations as

[Tij|Z,~j, Dij = 0] ~ Normal(C + 91‘]‘, Y+ Eu); (37)

[Tij|Zz-j, Dij = 1] ~ Normal(C + aij + X062, X + Eu) (38)

Let pf(T;;) and pf(T;;) be the densities of observed components of T;; in
case and control population respectively corresponding to missingness pat-
terns k = 1,..., K. So the modified likelihood in the presence of measure-
ment error and missingness is

s M+1
Lo = [[{P|DPa=1Dia=0,...,Dips1 = o‘{Z}jﬂgl, Y D=1
i=1 j=1
M+1
xp(Ti|Zir, Ain, Din = 1) X H p(TijlZij, AijDij = 0) ¢,
j=2
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which can be written as

s M+1
exp(B Zin+610:1)
LCO(H M+1 . ? 251]01 il XH Z‘Syp(]
=1 j =2 —

S exp(B Zi+550i)
B (3.9)

The likelihood in (3.9) involves 1, (2, Y0i, 71 along with C, and X, of the
error distribution. We replace C and ¥, by their estimates obtained from a
validation data-set. We use independent normal priors for the components of
B1, B2, y0i and y1. We write ¥ = ((0y;)) = VRV, where R is the correlation
matrix, and V = Diag(ol{2, e 011,;,/)2).

For our example, we consider only two exposures and assume a uni-
form (—1, 1) prior on their correlation coefficient and inverse gamma priors
on the variance components of the exposure variables. When we consider
more than two exposures, we will have to assume a prior ensuring a valid
multivariate covariance matrix (Barnard et al., 2000). Finally, we run a
Metropolis-Hastings algorithm to generate random numbers from the poste-
rior distribution of the parameters.

REMARK 2. Often it is more appropriate to jointly model the validation
data (which allows us to estimate the error distribution) and the primary
data to reduce the bias of estimation. Since our main goal here is illustrating
the proposed method of handling association, and not to develop any novel
method of handling measurement error, we use the naive method to get
information about C and ¥, from the validation data as in Armstrong et
al. (1989).

EXAMPLE 2. CoLON CANCER STUDY. Here we consider a matched case-
control data from a colon cancer study in Canada (see Miller et al., 1983),
where 171 male cases of colon cancer were individually matched by age and
neighbourhood of residence to 171 controls. Each subject’s data is based
on a quantitative diet history questionnaire referring to two-month period
antedating the diagnosis of colon cancer in the cases, and a corresponding
time period in the controls. Height and weight are measured for each study
individual apart from their measurement on intake of calories, protein, total
fiber, and R carotene. The goal of the study is to see the effect of the two
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continuous exposure variables, namely total calories (X)) and fiber intake
(X)) on the risk of colon cancer. An interesting feature of this data-set
is that reliability and validity studies reveal that the measurement on the
exposure variables are subject to a correlated measurement error structure.

Armstrong et al. (1989) dealt with the issue of measurement error in
this data-set. We propose a Bayesian alternative in order to correct for the
measurement error and then model the association of the adjusted exposures
in terms of completely observed covariates such as height and weight of
the subject. We also study the effect of missingness in this situation by
introducing artificial missingness in the exposures.

There was an initial study, which investigated the validity of the data by
comparing dietary histories reported by 16 healthy volunteers with detailed
weighed food records kept by the volunteers’ spouse. The spousal records
were considered as a gold standard. The sample mean and the sample disper-
sion of the difference between these two records served as a direct estimate
of the parameters of the distribution of the measurement error. Therefore
the estimate of the mean of U;; namely, C and its dispersion matrix ¥, are
obtained from this validation data. We consider height and weight as two
covariates.

Sample means of recorded and reported intakes for total calories and
fiber from the validation data were T = (32.0,31.9) and X = (25,20.4);

their mean difference serves as an estimate of C, namely, C = (6.9,11.5).
The moment estimate of >, from the validation data is

o _ (566 35.1
v~ \ 351 701 )

and consequently, 3, is replaced by 3, in the likelihood in (3.9).

For the association model, we used independent Normal(0,10) priors for
the components of 81, B2, v0; and 1. We used inverse gamma priors with
scale parameter 100 and shape parameters 3 and 2.9 respectively on the
variance components of X. For the independence modelling, we set the
correlation coefficient between the two exposure variables to zero (i.e., we
assume both ¥ and ¥, to be diagonal) in the above likelihood and carry out
our analysis. For the conditional logistic regression analysis, we first obtain
the estimates by CLR method and then make necessary correction for the
measurement error in the exposure variables as suggested by Armstrong et
al. (1989).
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TABLE 3. RESULTS OF THE COLON CANCER DATA EXAMPLE

Method Height Weight Calory Dietary ail 03(2 px,x, CPO
Results with no missing data
AM Mean 0.42 0.58  0.064 -0.049 39.53 59.06 0.37
s.e. 0.82 0.85 0.031 0.026 7.78 9.56 0.09 -250.07

Lower HPD -1.15 -1.15 0.02 -0.10 24.10 40.50 0.19
Upper HPD 2.05 2.21 0.15 -0.01 54.95 77.89 0.56

IM Mean 0.34 0.70  0.065 -0.01 38.93 61.31
s.e. 0.84 0.79  0.021 0.021 6.82 9.99 —272.92

Lower HPD -1.12 -1.00 0.02 -0.04 24.90 44.20

Upper HPD 2.25 2.01 0.10 0.03 53.15 82.90

CLR Mean 0.39 0.57  0.098 -0.036
s.e. 0.89 0.86 0.034 0.021

Lower CL -1.35 -1.13  0.031 -0.077

Upper CL  2.13 2.25  0.165 0.005

Results with 20% missingness on Calory and Dietary Fiber

AM Mean 0.50 0.63  0.089 -0.036 23.77 43.22 0.09
s.e. 0.83 0.87  0.032 0.033 540 837 0.16 -300.19

Lower HPD -1.16 -1.14 0.04 -0.10 15.00 25.88 —0.25

Upper HPD  2.09 2.25 0.16 0.02 35.50 58.80 0.40

IM Mean 0.43 0.55  0.086 —0.046 23.95 41.62
s.e. 0.86 0.80  0.047  0.035 529 7.81 —329.87

Lower HPD -1.12 -1.02 0.01 -0.08 14.10 29.21

Upper HPD 2.25 1.95 0.17 0.01 36.07 61.56

CLR Mean 2.16 -1.95 0.093 -0.119
s.e. 1.55 1.46  0.058 0.043

Lower CL  -0.88 -4.81 -0.021 -0.203

Upper CL  5.20 0.91 0.207 -0.035

The results are presented in Table 3. Here, “Mean” is the posterior mean,
“s.e.” is the posterior standard deviation, “Lower HPD” and “Upper HPD”
are the lower and the upper end of the HPD region respectively, “Lower CL”
and “Upper CL” are the lower and the upper end of the confidence limit
respectively. The CLR estimate of the exposures are obtained after the
correction proposed by Armstrong et al. (1989). Once again, we notice that
with the introduction of artificial missingness, the AM model has an edge
over the IM model.

3.8.  One binary exposure and the other belonging to an exponential fam-
ily. In this section, we consider the modelling of a mixed set of continuous
and categorical exposures. Though we write our model with the categorical
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exposure to be binary, the methods may easily be extended to any categorical
exposure.

Suppose that X i(jl) and X Z-(]?) are two exposure variables for the 5 subject
(1)

in the i*" stratum. We assume that X i 18 binary and the conditional density

of Xi(j?) given Xi(jl) belongs to a general exponential family model for all 4
and j. Let

(X(l) =1|Zij, Dyj = 0) = m;;, (3.10)

where we model logit(m;;) =7y01i + 71 Zij. The conditional distribution of
Xi(j?) given XZ(J»l) is assumed to be

p(X| |ZW,DU_0X() 0) = exp

00, X7 — b(0oiy)
+c
b0

015, X2 — b(0y;
( ’ZU,DU—O X(l) )—exp{ 1ij Z]¢ (1J)+C(X-('2),¢1>
1

(3.12)
where 0p;; = Y02 + ngij and 0155 = 7y03; + ngij. This implies that the
marginal distribution of Xi(jQ) is a two component mixture of distributions
that belongs to the exponential family for both the case and the control
populations.

REMARK 3. In the special case when X i(j2)
with the parametrization,

is a binary exposure variable

p(XZij, Dij = 0, XD = 0) = exp{f0;; XL — log(1 + exp(doi;))} (3.13)
p(X |Zij7Dij =0, X() = ) = exp{ﬁm ( ) log( —I—exp(Hlij))} (314)
and p(X U |Z”,D ij = 0) = exp{&; X l] —log(1 +exp(&;))}, the joint distri-
bution of X Z-(j) and X Z-(j) is the bivariate binary distribution (3.1) of Section
3.1 with QZ(JI) = fij + log{(l + eXp(H()ij))/(l + exp(Guj))}, 01(]2) = 901']' and
Aij = 0135 — boij-
The joint conditional likelihood is obtained as

M=1

Le O<H i Zéﬁp’f <11 (Z%m ) |

(3.15)



BIVARIATE EXPOSURES IN MATCHED CASE-CONTROL STUDIES 395

where

gij = (1—m)exp { b(0oij + ¢oizz) () }

b(61i5 + ¢1822) — b(0145)
o1

+7i5 €Xp { + ﬂQl} . (316)

Independent Normal(0,10) priors were assigned to the different compo-
nents of B, B2, Y1, 72,73, and 7p;. Note that the extension of this method
to the situation when conditional distribution of XZ(J2 ) given Xi(jl) belongs
to a multi-parameter generalized exponential family, is straightforward and
does not need any extra calculation. However, extension of this model is
restricted to a general categorical exposure Xi(jl) with a few categories only,
and it does not apply to count data.

EXAMPLE 3. BENIGN BREAST DISEASE DATA. This data is part of
a large case-control study done in 1979 at two hospitals in New Haven,
Connecticut (see Pastides et al., 1985) to assess the risk factors for benign
fibrocystic breast diseases. The original data consist of 255 women (cases)
aged 20-74 years with biopsy confirmed fibrocystic breast lesions and 790
controls at two hospitals in New Haven, Connecticut during 1979 (Pastides
et al., 1985). The purpose of the study was to ascertain whether known
risk factors for malignant breast cancer are also established risk factors for
this type of benign breast diseases. There are many variables recorded in
this data-set including demographic characteristics of the patient, medical
history information and history of breast cancer in the family. The fraction
of the data used in our analysis consists of 50 strata each of which contains
1 case and 3 controls. Controls were matched with a case on the basis of
their age at the time of interview. The data-set was discussed in Section 7.8
of Hosmer and Lemeshow (2000). Cases were found to have a significantly
higher level of education, a recent history of medical check-ups and a higher
age at first pregnancy. The latter two exposures have natural missingness
in the data-set. For the purpose of our analysis, we consider education as
the completely observed covariate Z. History of medical checkups and age
at first pregnancy are considered as the two exposure variables, say X
and X3, both containing natural missingness. Here Z and X are defined
specifically as follows:

7. _ 1 if the ij*" subject has a junior college degree or above,
Y10 otherwise;
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| 1 if the i7" subject had regular medical checkups,
0 otherwise.

We model log{m;;/(1 — mi;)} = ~01: + 71Zij, and the canonical parameters
involved in the distributions of X are modelled as Ooij = Y02i +72Z;; and
Oij = Yo3i +734i5. X (2) was re-scaled by a factor of 10. We further assume
that

[Xi(jQ)]Zij, D;; = O,Xi(jl) = 0] ~ Normal(6;j,02), and

[X1(32)|ZZ]’DU = 1’Xz(]1) = 1] ~ Normal(@lij,J%).

It follows that the marginal distribution of X® in both the case and
the control populations is a mixture of two normal distributions. For each
of the parameters [3; (since Z is a single covariate), B2, v1, Y2, 73 and o1,
Yo2i, Yo3i, for i = 1,2,...,s we use independent Normal(0,10) priors. For
both of 0(2) and o%, we use inverse gamma prior with shape parameter 2.9
and scale parameter 0.80. The posterior means of the parameters are taken
as our estimates.

TABLE 4. RESULTS FOR THE BENIGN BREAST DISEASE DATA

Method Education Regular Medical Age at First CPO
Checkups Pregnancy

AM Mean -0.62 1.47 1.86 —277.11
s.e. 0.43 0.43 0.50
Lower HPD -1.40 0.65 0.78
Upper HPD 0.38 2.42 2.85

M Mean -0.38 1.61 1.50 —285.86
s.e. 0.42 0.43 0.52
Lower HPD -1.20 0.78 0.44
Upper HPD 0.40 2.53 2.47
CLR Mean -0.41 1.37 1.31
s.e. 0.50 0.49 0.56
Lower CL -0.57 0.41 0.21
Upper CL 1.39 2.33 2.41

The results are presented in Table 4. Here, “Mean” is the posterior mean,
“s.e.” is the posterior standard deviation, “Lower HPD” and “Upper HPD”
are the lower and the upper end of the HPD region respectively, “Lower CL”
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and “Upper CL” are the lower and the upper end of the confidence limit re-
spectively. For the independence model, we assume that the marginal distri-
bution of X2 is a single normal distribution. Here, the important exposure
age at first pregnancy, had 11% missing values in the original data-set. We
notice some interesting numerical differences between AM and IM estimates
with AM estimates reflecting a more pronounced effect of the established
risk factors. CLR is less efficient than any of the Bayesian methods in the
presence of missingness.

3.4. Model comparison. An important part of the above analysis is
model comparison. For each of the above examples, we compute the Condi-
tional Predictive Ordinate (CPO) statistic (Gelfand and Dey, 1994) under
the AM and IM models (models 1 and 2, say). Let fi; and fy be the two
densities under models 1 and 2. Then conditional predictive ordinate (CPO)
for the observation j under model 7, ¢ = 1, 2, is given by

CPOy, = filojlo_;) = / fi(0; 1607 (Bilo_;)d6;.

where o; is the jth observation, o_; is the data without the jth observation
and 6; is the set of parameters under model i. The ratio CPO1;/CPOy;
measures how well model 1 supports the observation o; compared to model
2 based on the remaining data o_;. As an overall aggregate summary of how
well the data are supported by model ¢, one often uses the sum

CPO; =Y 1og(CPO;).
j=1

A Dbetter model leads to a higher value of C' PO statistic. Note that we can
rewrite CPO;; as

1 ~1
C'POZ = (/ 77['(91‘0)d01> s
’ filo4167)
where 0 = (01,...,0,). So CPO;j can be estimated (Chen et al., 2000) by
L

o= ()

k=1 fz’(ongk)

where 9(1), e QZ(L) are L. MCMC samples of the parameter(s) 6;.

%
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For the LA cancer study (Example 1), there is essentially no difference
between the CPO values for the two models, whereas for both the colon
cancer study and the benign breast disease study (Examples 2 and 3), the
AM model has a higher value of the CPO statistic than the IM model,
indicating that the AM model is more adequate in those examples.

4 Simulation

To study the effectiveness of association modelling in the context of
matched case-control study, we performed a small simulation study. The
performance of the association modelling was compared with the indepen-
dence modelling and the conditional logistic regression method in two differ-
ent situations, when two exposure variables are associated, and when they
are independent.

To simulate a realistic data-set, we used the endometrial cancer data as
a prototype. We generated a hypothetical 1:1 matched data-set with 100
strata, a covariate Z and two binary exposure variables X M and X@. The
true values of the parameters 31, (o1, P22, and 11, Y12 and 13 were taken
as 2.18, 1.11, 0.67, —1.40, 0.19, and 0.34 respectively. These are close to
the estimates of the parameters obtained by analysing the data-set through
association modelling approach. The stratum specific intercept terms vp1;,
Y02, and 7p3; were generated from Normal(—1.40,2.37), Normal(0.42, 2.85),
and Normal(—1.8,2.38) respectively. The means and the variances of these
distributions were chosen in the ballpark of the corresponding posterior dis-
tributions in our data analysis with association model.

In the original data-set, 58% of the subjects used estrogen, so the covari-
ate Z was generated as a Bernoulli random variable with success probability
0.58.

Second, we generated the binary disease indicator D. For the i** stratum,
it may be easily noted that

1

P(Djy = 1|Djy + Dig = 1,731, Zi2, S;) = EOREOR

1+ exp{61(Ziz — Zin)} &5~y
(4.1)
where Ci(](.) ) and Cz-(jl) are as defined in (3.1) and (3.2). The disease indicators
were generated both for the independence model with A;; = 0 and for the

association model with A;; = v03;+713Z;;. In both cases, GS) = Yo1i+711 %35,



BIVARIATE EXPOSURES IN MATCHED CASE-CONTROL STUDIES 399

and 01(]2 ) = Y02i + V124;j. We generated binary random variables with the
above probability structure, and conditional on the fact that the simulated
value for D;; isa 1 (i.e., the subject is a case), we generated a binary exposure

variable (Xl(l1 ) ) from a Bernoulli distribution with success probability
= C; ' exp(6)) 1 0% + ), -1
pri = Cip exp(0;y” + Par){1 + exp(6;1” + Air + f22)} -

Conditional on X 1(11 ), the second binary exposure variable (X i(12 )) was gener-
ated from a Bernoulli distribution whose success probability is

eXP{AuXi(ll)-i-@g)-i-ﬁm}
T+exp{Ain XD +6%) 1855}

k3

P2ij1i =

If the simulated value for D;; is 0 (i.e., the subject is a control) we gen-
erated XZ-(l1 ) from a Bernoulli distribution with success probability p1; =
exp(ﬂﬁ)){l + exp(ﬂg) + )\il)}/C’i(f). Subsequently, conditional on Xi(ll)),
Xl(l2 ) s generated from a Bernoulli distribution with success probability
P2i1i = exp{Hg) + )\ilXZ.(ll)}/(l + exp{ﬁg) + )\ilXZ-(ll)}). Once we have simu-
lated D;; in the above manner, D;o = 1 — D;;. The corresponding exposure
variables are then generated accordingly.

We replicated the simulation 100 times, generating 100 different data sets
and obtained the parameter estimates for the full data by the three methods
(AM, IM and CLR). We then created missing data by randomly deleting
20% of the exposure observations, which essentially generated a prototype
MCAR (missing completely at random, in the sense of Little and Rubin,
2002) data. However, as indicated in (2.4), the proposed formulation remains
valid for MAR data, as long as the missingness mechanism does not depend
on the missing exposure observations. To illustrate this, we also generated
MAR data by simulating two indicator variables R; and Rs independently
corresponding to two exposure variables with success probability

exp(0.4 +2D +2.52)

P(R; = 1|X1, X2, Z, D) = for i = 1,2
(Bi = 11X0, X2, 2, D) = o S a v oD v 252) 1= b

The parameters of the above probability distribution is so chosen that on
an average P(R = 1) is equal to 0.80. For each type of missing data, we
recalculated all the estimates by the three methods (i.e., AM, IM, and CLR).

For the Bayesian methods, (i.e., AM and IM), we used Normal(0, 10)
prior for all the parameters. We experimented with several choices of priors
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and noticed that assuming sharp priors on the nuisance parameters ~yg; does
affect the posterior distribution of relative risk parameters and recommend
using flat priors on the nuisance parameters.

The methods were compared by calculating mean squared error (MSE) of
the parameter estimates that take into account both the biases and variances
of the estimates.

TABLE 5. RESULTS OF THE SIMULATION STUDY WHEN THE DATA WERE GENERATED WITH
ASSOCIATION AMONG EXPOSURES WITH \i; = 7o03i + 0.34Z;;, 703: ~ NORMAL(—1.80,2.38)

Associated Exposures
Method Full data MCAR data MAR data
/81 /821 522 ﬂl /821 622 /81 ﬂ21 /822
AM Mean 2.1866 1.0512 0.6353 2.1596 1.0349 0.6369 2.1420 1.0668 0.6559
Var  0.0737 0.0660 0.0586 0.0797 0.0703 0.0716 0.0709 0.0789 0.0813
MSE 0.0737 0.0695 0.0598 0.0801 0.0759 0.0726 0.0723 0.0807 0.0814

IM Mean 2.1582 1.0117 0.6057 2.1026 0.9908 0.5965 2.1239 1.0281 0.6278
Var 0.0761 0.0661 0.0586 0.0853 0.0814 0.0806 0.0739 0.0881 0.0979
MSE 0.0766 0.0757 0.0627 0.0913 0.0955 0.0861 0.0771 0.0948 0.0997

CLR Mean 2.2096 1.1489 0.6866 2.3169 1.1743 0.6625 2.4427 1.1812 0.7087
Var  0.1167 0.1264 0.0867 0.2975 0.4039 0.2920 0.1455 0.3540 0.1527
MSE 0.1176 0.1279 0.0869 0.3163 0.4081 0.2921 0.2145 0.3591 0.1543

TABLE 6. RESULTS OF THE SIMULATION STUDY WHEN THE DATA WERE GENERATED
WITH INDEPENDENT EXPOSURES WITH LOG-ODDS RATIO );; = 0.00

Independent Exposures
Method Full data MCAR data MAR data
B B21 B22 B Ba21 B22 B1 Ba1 B22
AM Mean 2.0886 1.0669 0.6298 2.1192 1.0344 0.6183 2.1156 1.0826 0.5546
Var  0.0812 0.0490 0.0710 0.0902 0.0543 0.1176 0.0729 0.0749 0.0698
MSE 0.0895 0.0508 0.0726 0.0939 0.0600 0.1203 0.0761 0.0755 0.0731

IM Mean 2.0856 1.0579 0.6661 2.1102 1.0662 0.6400 2.1210 1.0855 0.5794
Var  0.0821 0.0483 0.0701 0.0942 0.0545 0.1142 0.0719 0.0716 0.0656
MSE 0.0909 0.0571 0.0702 0.0991 0.0564 0.1181 0.0755 0.0723 0.0738

CLR Mean 2.1759 1.1300 0.6490 2.3215 1.1265 0.7290 2.3981 1.2262 0.5993
Var  0.1236 0.0922 0.0949 0.3013 0.1627 0.3678 0.2104 0.2723 0.1744
MSE 0.1236 0.0926 0.0953 0.3213 0.1629 0.3718 0.2580 0.2858 0.1794

The results of the simulation study under different types of missing data
are presented in Tables 5 and 6. Here, “Mean” is the mean of the 100 esti-
mates corresponding to the 100 simulated data-sets while MSE is the mean
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squared error. The true parameter values are 3y = 2.18, o7 = 1.11 and
B2o = 0.67. AM and IM stand for association and independence modelling
respectively. The study results are fairly clear. When the exposure variables
are truly associated (Table 5) and partially missing, AM performs better
than IM and CLR in terms of MSE. There is approximately 12-19% reduc-
tion in the MSE of the estimators when comparing AM with IM. When the
exposure variables are not associated (Table 6), AM and IM perform com-
parably and both outperform CLR. AM allows the possibility to borrow in-
formation on missing values of an exposure variable from the other observed
components of the exposure variable via the association structure and also
through the completely observed covariate. But, due to independence as-
sumption, IM is not able to extract information on the missing components
of an exposure variable from the observed components of the exposure vari-
able, it can only use the completely observed covariate information. Thus,
in the presence of association and missingness IM is less efficient. As a prac-
tical guideline, if one observes significant association among the exposure
variables in a preliminary or similar study by calculating some ad hoc mea-
sures such as correlation coefficient or odds ratio, or if there is a pre-existing
scientific basis for expecting the exposures to have a moderately strong as-
sociation, one should proceed to employ AM method for analysing missing
data.

5 Concluding Remarks

To summarize the findings of this article, we note that this is the first
attempt to account for multivariate association among exposures in missing
data situations in a matched case-control study. Through our examples, we
find that the association model outperforms the independence model when
one has two strongly associated exposures and an informative completely
observed covariate. We also present a brief discussion of treatment of miss-
ingness and measurement error under the same framework. As mentioned in
the introduction, the proposed model presents a way to deal with categori-
cal and continuous exposures simultaneously. Moreover, the work presented
here for binary exposures can be extended to a general categorical exposure
in a straightforward way. The model also accounts for stratum heterogene-
ity on exposure distributions through a stratum-specific intercept term while
modelling the parameters in the exposure distribution. Thus this paper of-
fers an ensemble of statistical methods for unorthodox data situations in a
matched case-control study.
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A limitation of the proposed method is that in the absence of missingness,
the analysis does not reduce to CLR analysis as there is a stringent para-
metric structure of the joint distribution of the exposures. This naturally
entails some robustness issues, when the posed parametric exposure density
model is incorrect. However, this limitation of our method is germane to any
method that poses a parametric model for the exposure distribution. We
recommend using our method only in the presence of missingness and rec-
ognize this resultant model bias versus efficiency dilemma. Rathouz (2003)
proposed an alternative approach for handling missing data, which in fact
reduces to CLR analysis with completely observed data, but his techniques
could not be adapted to our framework.
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