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Abstract: We propose a consistent and locally efficient estimator to estimate the model parameters for a
logistic mixed effect model with random slopes. Our approach relaxes two typical assumptions: the random
effects being normally distributed, and the covariates and random effects being independent of each other.
Adhering to these assumptions is particularly difficult in health studies where in many cases we have limited
resources to design experiments and gather data in long-term studies, while new findings from other fields
might emerge, suggesting the violation of such assumptions. So it is crucial if we could have an estimator
robust to such violations and then we could make better use of current data harvested using various valu-
able resources. Our method generalizes the framework presented in Garcia & Ma (2016) which also deals
with a logistic mixed effect model but only considers a random intercept. A simulation study reveals that
our proposed estimator remains consistent even when the independence and normality assumptions are vi-
olated. This contrasts from the traditional maximum likelihood estimator which is likely to be inconsistent
when there is dependence between the covariates and random effects. Application of this work to a Hunt-
ington disease study reveals that disease diagnosis can be further improved using assessments of cognitive
performance. The Canadian Journal of Statistics xx: 1–25; 2018 c© 2018 Statistical Society of Canada

Résumé: Insérer votre résumé ici. We will supply a French abstract for those authors who can’t prepare it
themselves. La revue canadienne de statistique xx: 1–25; 2018 c© 2018 Société statistique du Canada

1. INTRODUCTION

A mixed effect logistic model is commonly used for analyzing clustered binary data arising
in longitudinal studies of behavioral, social, health, and biomedical science. In the mixed effect
logistic model, the logit of the success probability of the response is modeled as a linear function
of fixed and random effect components. The observed data are (Yij ,Xij ,Zij), j = 1, · · · ,mi

and i = 1, · · · , n, where Yij is the binary response variable, Xij is a p-vector that exerts a fixed
effect and Zij is a q-dimensional random variable that has a random effect Ri ∈ Rq . Here, i and
j denote the index for clusters and the subject within a cluster, respectively. The random effect
is completely unobserved and we assume mi > q for identifiability for all i. This identifiability
requirement will become self-evident in Section 2. The mixed effect logistic model is

pr(Yij = 1|Xij ,Zij ,Ri) =
exp(XT

ijβ + ZT
ijRi)

1 + exp(XT
ijβ + ZT

ijRi)
, j = 1, · · · ,m, i = 1, · · · , n, (1)
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and the main objective is to consistently estimate the p-dimensional regression coefficient β in
the presence of the unobserved random effect.

The standard maximum likelihood approach estimates β assumes that Ri has a parametric
distribution (e.g., multivariate normal with zero mean and positive definite variance-covariance
matrix) and is independent of the covariates Xij and Zij . When the distribution for Ri is mis-
specified, however, the approach can yield biased parameter estimates and distorted type-I error
rates (Heagerty & Kurland, 2001; Agresti, Ohman, & Caffo, 2004; Litiére, Alonso, & Molen-
berghs, 2007; Litiére, Alonso, & Molenberghs, 2008). The misspecification may occur in terms
of mis-specifying the shape of the distribution, incorrectly assuming independence between the
covariates and the random effect, or incorrectly assuming independence between the cluster size
and the random effect. A good review on the potential bias due to misspecification of the distri-
bution of Ri can be found in Neuhaus, McCulloch, & Boylan (2011).

More flexible models for the distribution of Ri have been considered to circumvent the mis-
specification bias, but under limited settings. For linear mixed models, Zhang & Davidian (2001)
proposed a smooth semi-nonparametric probability density for random effect and Zhang et al.
(2008) proposed a negatively skewed random effect density. However, extending either method
to generalized linear models is non-trivial, and imposing smoothness constraints or a skewness
condition introduces computational complexities that we can actually avoid.

In this paper, we propose estimating parameters in the mixed effect logistic model without im-
posing any distributional assumptions on the random effect. Taking a semiparametric approach,
we treat the distribution of Ri as a nuisance parameter and demonstrate that consistent estimates
of β are obtained regardless of how the distribution of Ri is specified. We thus avoid unnecessary
assumptions, such as a particular distributional shape for Ri (Zhang & Davidian, 2001; Zhang
et al., 2008) and the independence between covariates and the random effect Ri. Our method
generalizes the framework presented by Garcia & Ma (2016) which also deals with a logistic
mixed effect model but only considered a random intercept. The presence of the random slope
terms in our model means that their method no longer applies. Extending the result from random
intercept to random slope is not as straightforward as it seems.

The rest of this paper is organized as follows. In Section 2, we develop semiparametric effi-
cient estimator for β. We demonstrate that the proposed estimator is consistent regardless of the
assumed model for the distribution of Ri, and the estimator achieves the asymptotic efficiency
when the distribution for Ri is correctly modeled. In Section 3, we demonstrate through extensive
simulation studies that the proposed estimator is robust to different distributional assumptions of
Ri, including different distributional shapes and dependence structures with covariates. The ro-
bustness property of the new estimator contrasts to the large biases of the maximum likelihood
estimator when the distribution of Ri is misspecified. In Section 4, we apply our method to an-
alyze a dataset from a study of Huntington disease and discover that the maximum likelihood
estimator may result in misleading results about the importance of cognitive measures in rela-
tionship to diagnosis of Huntington disease. In contrast, our method detects one more cognitive
measure crucial in determining the diagnostic result of Huntington disease. The paper ends with
a brief discussion in Section 5. All technical details are given in an Appendix.

2. MAIN RESULTS

2.1. Notation and assumptions

Let Yi = (Yi1, . . . , Yim)
T

denote a m-dimensional vector, Xi = (Xi1, . . . ,Xim) denote a
p×m matrix, and Zi = (Zi1, . . . ,Zim) denote a q ×m matrix. Without loss of generality, as-
sume that the first q columns of Zi form an invertible matrix. For notational simplicity and ease
of presentation, we used a common m. We could also change m to mi to account for different
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cluster sizes.
Let f to denote various densities described by the subindices. The likelihood for the ith

cluster formed by the model in Equation (1) is

fY,X,Z(yi,xi, zi;β) =

∫
fY|R,X,Z(yi | ri,xi, zi,β)fR,X,Z(ri,xi, zi)dµ(ri)

=

∫ m∏
j=1

exp[yij(x
T

ijβ + rT
i zij)− log{1 + exp(x

T

ijβ + rT
i zij}]fR,X,Z(ri,xi, zi)dµ(ri),

where µ(·) denotes the dominating measure. Throughout, we let fR,X,Z(ri,xi, zi) be completely
unspecified. To estimate β without needing to specify this distribution, we take a semiparametric
approach as described next.

2.2. Consistent and efficient estimator
Our approach is rooted in treating fR,X,Z(r,x, z) as an infinite dimensional nuisance param-

eter and using semiparametric techniques to estimate β (Tsiatis, 2006). The approach involves
first deriving the space spanned by this infinite-dimensional nuisance parameter. This space, re-
ferred to as the nuisance tangent space, and its orthogonal complement are derived in a similar
way as Section S1 of Garcia & Ma (2016). The orthogonal complement of the nuisance tangent
space serves as an intermediate calculation for the estimator of interest. Specifically, the efficient
score function for β, denoted Seff , is obtained by projecting the score function with respect to β,

Sβ(Y,X,Z) ≡
∂

∂β
log{fY,X,Z(Y,X,Z,β)}

= E

[
∂

∂β
log{fY|R,X,Z(Y | R,X,Z,β)} | Y,X,Z

]
, (2)

onto the orthogonal complement of the nuisance tangent space. That is,

Seff(Y,X,Z,β) = Sβ(Y,X,Z)− E{h(R,X,Z) | Y,X,Z},

where h is a p-dimensional function that satisfies

E{Sβ(Y,X,Z) | R,X,Z} = E[E{h(R,X,Z) | Y,X,Z} | R,X,Z].

To allow exchanging integration and differentiation in Equation (2), we assume that both
fY|R,X,Z(Y | R,X,Z,β) and its partial derivative ∂fY|R,X,Z(Y | R,X,Z,β)/∂β are con-
tinuous functions of β and R. The practical implementation of the procedure described above
is however infeasible, because we are unable to perform the above computation without the true
distribution form of the random effect. To this end, we adopt a working model for fR|X,Z, de-
noted f∗R|X,Z, and perform the above calculation under such a working model. We provide the
detailed expressions below, with all the affected quantities marked with ∗. Under such a working
model, the score function with respect to β is

S∗β(Y,X,Z) = E∗
[
∂

∂β
log{fY|R,X,Z(Y | R,X,Z,β)} | Y,X,Z

]
, (3)

and the locally efficient score function is

S∗eff(Y,X,Z,β) = S∗β(Y,X,Z)− E∗{h∗(R,X,Z) | Y,X,Z},
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Here, the “locally efficient score” means a function containing a working model in it. When a
misspecified working model is used, the function has mean zero, and when a correct working
model is used, the function is identical to the efficient score function, i.e. Seff(Y,X,Z,β). An
estimator based on solving the estimating equation formed by the locally efficient score function
is named a locally efficient estimator. A locally efficient estimator subsequently has the property
that if a misspecified working model is used, the estimator is consistent. When a correct working
model is used, the estimator is efficient. Further, h∗ is a p-dimensional function that satisfies

E{S∗β(Y,X,Z) | R,X,Z} = E[E∗{h∗(R,X,Z) | Y,X,Z} | R,X,Z]. (4)

An estimator of β is then obtained from solving the estimating equation

n∑
i=1

S∗eff(yi,xi, zi,β) = 0. (5)

Using a working model f∗R|X,Z to replace the true form of fR|X,Z enables us to proceed with
the computation. Of course, there is a cost involved with such a replacement. Fortunately, the
cost is only in terms of estimation efficiency. The replacement does not affect the consistency of
the resulting estimator.

Theorem 1. The estimator β̂ solving Equation (5) satisfies

√
n(β̂ − β0)→ N{0,A−1B(A−1)T}

in distribution when n→∞. Here, β0 is the true value of the parameter β, A =
E {∂S∗eff(Y,X,Z,β0) /∂β

T
}

and B = var{S∗eff(Y,X,Z,β0)} = E{S∗eff(Y,X,Z,β0)
⊗2}.

Additionally, if the true fR|X,Z is used in constructing the estimator, the resulting estimator β̂
achieves the optimal estimation efficiency bound.

The proof of Theorem 1 is in the Appendix. Theorem 1 implies that we are free to choose
the form of f∗R|X,Z without incurring penalties on consistency or distorted type I error rates as in
(Heagerty & Kurland, 2001; Agresti, Ohman, & Caffo, 2004; Litiére, Alonso, & Molenberghs,
2007; Litiére, Alonso, & Molenberghs, 2008). If f∗R|X,Z happens to be the true model, then the
estimator for β achieves the optimal efficiency bound. For computational simplicity, we therefore
choose the posited model of f∗R|X,Z as a standard normal distribution. In the simulation results
given in Tables 5, 6, 7, 8, we show that even when the true dsitribution fR|X,Z is not from a
standard normal, our estimator for β is still consistent. Regarding the estimation of the covariance
matrix of our estimator, we estimate the derivative ∂S∗eff(Y,X,Z,β0)/∂β

T through numerical
difference, and approximate the expectations via sample average.

A computational challenge in forming the estimating equation is solving Equation (4) for h∗

as it is an ill-posed integral equation. However, as demonstrated next, a simple transformation of
the response variable Yij and covariate Zij allows us to avoid solving this ill-posed problem.

2.3. Simplification of estimating equations
To circumvent the ill-posed problem in Equation (4), we transform the response variable Yi

and covariate Zij such that the transformed variables satisfy properties similar to the classical
sufficiency and completeness.

Let Wi =
∑m
j=1 YijZij , Ui = (Yi(q+1), . . . , Yim)T. Write Zi = (Zi1, · · · ,Zim) =

(ZiL,ZiR), where ZiL ∈ Rq×q and ZiR ∈ Rq×(m−q). That is, ZiL is the left q × q submatrix
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of Zi and ZiR is the right q × (m− q) submatrix of Zi. Let

Mi =

(
ZiL ZiR

0(m−q)×q I(m−q)×(m−q)

)
, M−1

i =

(
Z−1
iL −Z−1

iL ZiR

0(m−q)×q I(m−q)×(m−q)

)
.

Under this notation, we transform Yi as

Yi = M−1
i

(
Wi

Ui

)
.

The matrix Mi is invertible because we assumed that the first q columns of Zi form an invertible
matrix. The one-to-one mapping from (Zi,Yi) to (Wi,Ui) allows us to take advantage of certain
sufficiency and completeness properties of Wi and Ui as described in Theorem 2.

Theorem 2. The variables Wi and Ui satisfy the following two properties:

(a) Sufficiency of W:
fU|W,R,X,Z(u | w, r,x, z) = fU|W,X,Z(u | w,x, z) = fU|X,Z(u | x, z),
fR|U,W,X,Z(r | u,w,x, z) = fR|W,X,Z(r | w,x, z).

(b) Completeness of W:
For any function a(w,x, z), if E{a(W,X,Z) | R,X,Z} = 0, then a(W,X,Z) = 0.

The proof of Theorem 2 is in Appendix. The sufficiency and completeness properties in
Theorem 2 allow us to form a statistic free of the random slope associated with Z and remove
the component containing the random slope from the estimating equation. Indeed Theorem 2
(a) yields that E{h∗(R,X,Z) | Y,X,Z} in Equation (4) is actually equal to E{h∗(R,X,Z) |
W,X,Z}. The advantage of this equality is that the conditional expectation of h∗(R,X,Z)
given (W,X,Z) satisfies

E∗{h∗(R,X,Z) |W,X,Z} = E{S∗β(Y,X,Z) |W,X,Z}

and E{S∗β(Y,X,Z) |W,X,Z} has a closed form, given by∑
u S∗β{M−1(WT,uT)T,X,Z} exp{(XT

1 β, . . . ,X
T
q β)(−Z−1

L ZRu) + (XT
(q+1)β, . . . ,X

T
mβ)u}∑

u exp{(XT
1 β, . . . ,X

T
q β)(−Z−1

L ZRu) + (XT
(q+1)β, . . . ,X

T
mβ)u}

.(6)

where the summation
∑

u is over all possible u ∈ Rm−p such that each entry in u is either 0 or
1, and u satisfies that Wi = ZiLYi1 + ZiRu. Here Yi1 is the subvector of Yi formed by the
first q elements.
Therefore, the estimating equation (5) which originally involved solving an ill-posed problem is
now of the form

n∑
i=1

n∑
i=1

[S∗β(Yi,Xi,Zi)− E{S∗β(Yi,Xi,Zi) |Wi,Xi,Zi}] = 0. (7)

All terms in the estimating equation can be explicitly constructed without needing to solve
an ill-posed problem. The construction of S∗β(Yi,Xi,Zi) does require specifying a proposed
model f∗R|X,Z, but by Theorem 1, the model does not need to be correctly specified to ensure
consistency. Therefore, we have constructed a simple estimation method that does not impose
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stringent assumptions on the unknown random effect, nor does it involve heavy computation.
All terms in the new estimating equation are easy to compute with the most difficult part being
E{S∗β(Yi,Xi,Zi) |Wi,Xi,Zi} , which we will use the Gaussian quadrature to deal with.

In summary, our algorithm for computing β̂ involves:
Step 1. Specify a working model for f∗R|X,Z. For convenience, we suggest to model f∗R|X,Z us-
ing a normal distribution.
Step 2. Compute the function S∗β(Y,X,Z), as in Equation (3) where the expectations are com-
puted under f∗R|X,Z from Step 1.
Step 3. Compute E{S∗β(Yi,Xi,Zi) |Wi,Xi,Zi} using Equation (6).
Step 4. Solve the estimating equation (7) to obtain β̂.

3. SIMULATION STUDY

3.1. Design of Simulation
We compared the performance of our estimator to the traditional normal-based maximum

likelihood estimator (MLE). We used the glmer in R package lme4 (Bates, Maechler, & Bolker,
2016) to compute the maximum likelihood estimator. The assumption of the MLE is that the ran-
dom effect is normally distributed, and that covariates and the random effects are independent.
In comparison, our estimator does not assume that the random effect follows a specific distribu-
tional form, nor do we require independence between the covariates and the random effect. In this
simulation study, we assess the sensitivity of our estimator and the MLE when these assumptions
do not hold.

We generated 1000 data sets from the logistic random slope model in (1) with each data
set having a sample size n = 500. We considered mi = 3 covariates. We set the true parame-
ter as β = (0.35, 0.6,−0.4)T. To assess the distributional assumption of the random effect, we
generated data according to four different distributions:

1. Standard Normal random effect. Ri is from a standard normal distribution.
2. Mixed Normal random effect: Ri is from a mixture of normal distribution with 80% of the

data from Normal(3,1), and 20% of the data from Normal(6,1.5).
3. Gamma random effect. Ri is from a Gamma distribution with shape parameter 1 and scale

parameter 1.25.
4. Student-t random effect. Ri is from a student-t distribution with degree of freedom 3.

Thus, the distributional shapes of the random effect include the standard bell-shaped form, bi-
modality, heavy tailness and skewness. The deviations from the standard bell-shaped form will
allow us to assess how well our estimator performs in comparison to the MLE which assumes
the random effect is indeed standard normal.

Under each of these four distributional assumptions for the random effect, we generated three
different sets of covariates, first assuming their independence from the random effect:

1. Zij is from the Bernoulli distribution with success probability 0.5, and Xij is from Nor-
mal(0.5,1);

2. Zij is from the Poisson distribution with parameter 0.5, and Xij is from Normal(0.5,1);
3. Zij is from the Geometric distribution with success probability 0.7, and Xij is from Nor-

mal(0.5,1).
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Therefore, in total we considered 12 different cases: four ways of generatingRi’s in combination
with three ways of generating the covariates.

We further considered 12 additional cases similar to the above except that we introduced
dependency between the random effect and covariates. This is aimed to assess deviations from
the second assumption of the MLE in which the random effects and covariates are assumed to be
independent. In the dependency case, we generated Xij from Normal(0.5Ri, 1) to achieve the
dependency between Ri and Xij’s. The generation of Zij’s were the same as before.

In summary, these settings were designed to investigate the performance of both the semi-
parametric estimator and the MLE when the random effect distribution is mis-specified, in com-
bination with different covariate combinations of X and Z. For all data generation settings, we
centered the generated random slopes to have zero mean to accommodate the standard normal-
based MLE. In the proposed method, for all dependent and independent cases, we assumed the
random effect is Normal(0,1) distribution and is independent of all the covariates. This is of
course not a valid assumption in all the settings considered above.

3.2. Simulation Results
We compared the performance of the semiparametric estimator and MLE in terms of their

bias, sample variance, estimated variance, and 95% coverage probabilities. The results of the
independent cases are given in Tables 1 to 4 and those for the dependent cases are given in
Tables 5 to 8.

Tables 1 to 4 show that when covariates and random effects are independent, the semipara-
metric estimator has comparable performance to that of the MLE in terms of bias and the 95%
coverage probabilities meeting the nominal level. While we expected the semiparametric estima-
tor to be consistent based on Theorem 1, we were initially surprised by the robustness of MLE to
deviations from normality. However, Neuhaus, Hauck, & Kalbfleisch (1992) demonstrated that
the MLE actually performs quite well for mixed effect models when the random effect is not nor-
mally distributed. In terms of estimation variability, the semiparametric estimator has somewhat
larger variability compared to the normal-based MLE, although the difference in variabilities is
small. This is also within our expectation since MLE adopts stronger modeling assumptions and
must have smaller estimation variability.

The results in Tables 5 to 8 indicate a different phenomenon. In the case when the covariates
and random effect are dependent, inconsistency of the MLE starts to manifest. Specifically, the
biases of the estimates from the normal-based MLE are sufficiently large, and they cause the
coverage of the 95% confidence intervals to be completely off from the nominal level. In con-
trast, the biases of estimates from our proposed estimator is still very small, and the coverage
probability of 95% confidence intervals remain close to their nominal level. This clearly demon-
strates that if we treat the random effect as independent from the covariates while in fact there
is dependency between the two, the normal-based MLE loses its robustness and gives severely
biased estimates with very small variability. Subsequently, inference based on MLE will be mis-
leading. On the contrary, the semiparametric estimator continues to provide consistent estimation
and valid inference results.

Summarizing the observations, the semiparametric estimator is a much more reliable method
unless it is clear that the random effect and the covariates are independent of each other. Be-
cause the random effect is not observable, it is often difficult to determine its relation with the
covariates. Thus, we recommend implementing the semiparametric estimator in general.

We also record the execution time of running 50 simulations using our estimator under one
setting noted in Table 9. The CPU for this simulation is Intel I7-8700k@4.4GHz and the size
of RAM is 32GB. From Table 9, the execution time increases as the cluster size increases or
the number of parameters increases. These values show that the computation is generally suffi-
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ciently fast and we can use a single-thread R to run the entire simulation without engaging super
computers with thousands of threads.

We also considered small sample performance, such as sample size n = 25 or n = 50. The
algorithm does not converge in such sample sizes. As we gradually increase the sample size, we
start to have some sensible results when the sample size n = 220. We report simulation results
for n = 220 in Tables S.1 to S.8 in the supplement. Overall, the general conclusion based on
n = 220 is the same as based on n = 500. The computing code is placed in the Supplementary
Materials .

4. ANALYSIS OF A HUNTINGTON DISEASE STUDY

Huntington disease (HD) is a rare neurodegenerative disease linked to deterioration of the
central nervous system. Its symptoms include unwanted choreatic movements, behavioral and
psychiatric disturbances and dementia (Ross, 2010). The Cooperative Huntington Observational
Research Trial (COHORT) was a large observational, longitudinal study of HD conducted from
2005 to 2011 that evaluated different cognitive and motor impairments associated with HD. The
study included n=3211 participants who were annually evaluated over a four year time span.
We focused on those subjects who had at least 4 consecutive visits during this study. Our main
objective in analyzing COHORT is to investigate if cognitive measures are important determining
the possibility of occurrence of HD. This objective stems from recent results that a major sign
of HD is cognitive decline, and such decline can be observed long before motor symptoms first
appear (Ross, 2010).

To assess the association between cognitive measures and occurrence of HD, we modeled
the data using the mixed effect logistic model in (1). For each person i = 1, . . . , n, and visit
j = 1, . . . ,m withm = 6, we set the response variable Yij as 1 if the person was diagnosed with
HD, and 0 otherwise. Diagnosis of HD occurs when the participant’s extrapyramidal signs are
unequivocally associated with HD and the diagnosis is determined by a trained clinician. We set
Zi to be the gender for subject i. We set Xij’s to be a set of four different motor and cognitive
measures. Specifically, we set X1ij to be the total motor score (TMS), defined as the sum of total
motor impairments as evaluated using the Unified Huntington Disease Rating Scale (Huntington
Study Group, 1996). We setX2ij to be the score from the Symbolic Digit Modality Test (SDMT),
a test that assesses the cognitive impairment by some simple substitution tasks, such as visual
scanning, attention, and motor speed. We set X3ij to be the stroop color score (SCOLOR), a test
that assesses the cognitive impairment by recording how many X’s printed in blue, red, or green
ink that a subject correctly verbally stated its color in a certain amount of time. We set X4ij to
be the stroop word score (SWORD), a test that assesses the cognitive impairment by recording
the number of color words (blue, red, green) printed in black ink that a subject correctly verbally
reads in a certain amount of time. We set X5ij to be the stroop interference score (SINTER), a
test that assesses the cognitive impairment by recording how many color words that were printed
in colored ink (eg. BLUE printed in green ink or BLUE printed in blue ink) and correctly verbally
read by a subject in a certain amount of time. Lastly, we set Ri to be the random slope associated
with Zi.

We applied our proposed estimator and the standard-normal MLE to assess the association
between cognitive impairments and occurrence of HD. We suspect that the cognitive covariates
and random effect are dependent based on clinical results from Downing et al. (2008). They
found gender differences in cognitive function. Females tended to outperform males on tests
of memorization and language skills. Males tended to outperform females on tasks involving
mathematical reasoning and visuospatial ability. These results suggest that if we assess the impact
of cognitive measures on HD occurrence, we may have that cognitive measures and the random
effect are dependent through gender. This would imply that the MLE could yield misleading
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results because it assumes independence, whereas our estimator does not.
We performed our analysis in two steps. In the first step, we analyzed three subsets of

the data: the 1404 subjects who had four clinical visits, the 775 subjects who had five vis-
its, and the 132 subjects who had six visits. In each of the three sub-data sets, we imple-
mented the semiparametric estimator to obtain estimators β̂1, β̂2, β̂3, where β̂1=(β̂1tms, β̂1sdmt,
β̂1scolor, β̂1sword, β̂1sinter), β̂2=(β̂2tms, β̂2sdmt, β̂2scolor, β̂2sword, β̂2sinter), β̂3=(β̂3tms,
β̂3sdmt, β̂3scolor, β̂3sword, β̂4sinter). We then perform the second step by taking a weighted
average of the results, i.e. we set β̂=(β̂tms, β̂sdmt, β̂scolor, β̂sword, β̂sinter).

The weighted average is denoted as β̂ =
∑3
i=1 wiβ̂i, where the weights are proportional

to the inverse of the variances of β̂i. That is, wi is a diagonal matrix, with its jth element
wij = v−1

ij /(
∑3
i=1 v

−1
ij ), where vij = var(β̂ij). The variance of the final estimator is var(β̂j) =

(
∑3
i=1 v

−1
ij )−1. For comparison, we also implemented the normal-based MLE in the similar

fashion.
Table 10 shows the results from both estimators. The semiparametric estimator indicates that

cognitive scores from SDMT, SCOLOR, SWORD are not statistically significant, as their 95%
confidence intervals contain zero. On the other hand, it detects TMS and SINTER to be sig-
nificant covariates, both positively associated with the probability of developing HD. However,
MLE indicates that only TMS score is statistically significant, while all the other four covariates
are not statistically significant. The difference from the two analysis indicates that there is de-
pendence between the random slope and the covariates. Based on both the theoretical results and
the simulation experience, we believe the results from MLE can be misleading.

This result implies that if we adopt MLE on the data set to determine which covariates are
needed for diagnosis of HD, we might neglect a vital covariate stroop interference score. The
importance of stroop interference score coincided with clinical findings in Paulsen et al. (2013),
where they found that prodromal HD patients have declined response shifting, and inhibition
depends on efficient response shifting, while inhibition is necessary for stroop interference test.
Based on these observations and our analysis results, we recommend using TMS and SINTER
jointly to determine the occurrence of HD.

5. DISCUSSION

We proposed a locally efficient estimator using a semiparametric approach in a mixed ef-
fect logistic model with random slope. Locally efficient means even when we use a misspecified
working model, the resulting estimator of β is still consistent. If the true model happens to be
the proposed working model, then the estimator is efficient. The method does not assume in-
dependence between the random slope and the covariates, and does not estimate or model the
distribution of the random slope. In fact, an important advantage of the estimator is its consis-
tency regardless whether or not the distribution of the random effect is correctly modeled, and
regardless if there is dependency between the random slopes and the covariates. Our method is
developed under the mixed effect model with binary response under the logit link function. It will
be interesting and valuable to investigate if the general approach can be adapted to incorporate
the probit link or log-log link for the binary response, and to more general models in handling
count or continuous response.

Sometimes, there is evidence that a random effect is discrete, hence it is natural to consider
the treatment of a discrete random effect. In fact, if a random effect is discrete with infinitely
many categories, we would recommend to ignore its discreteness and use a continuous working
model for its distribution for computational purpose. In fact, our derivation has not assumed the
random effect is continuous so the results derived before indeed apply. If a random effect is
discrete with finitely many categories, the problem actually drastically simplifies. Indeed, in this
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case, treating the random effect probability masses as additional parameters, the original problem
is a pure parametric model and a simple MLE will yield the efficient estimator.
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APPENDIX

Proof of Theorem 1.
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Because E{S∗eff(Y,X,Z,β0)} = 0, we can expand around β0 to obtain

0 = n−1/2
n∑
i=1

S∗eff(yi,xi, zi, β̂)

= n−1/2
n∑
i=1

S∗eff(yi,xi, zi,β0) + n−1
n∑
i=1

∂S∗eff(yi,xi, zi,β
∗)

∂βT
n1/2(β̂ − β0)

= n−1/2
n∑
i=1

S∗eff(yi,xi, zi,β0) + E

{
∂S∗eff(Y,X,Z,β0)

∂βT

}
n1/2(β̂ − β0) + op(1),

where β∗ lies on the line connecting β̂ and β0. Therefore,

n1/2(β̂ − β0) = E

{
∂S∗eff(Y,X,Z,β0)

∂βT

}−1

n−1/2
n∑
i=1

S∗eff(yi,xi, zi,β0) + op(1).

This implies that n1/2(β̂ − β0)→ Normal(0,A−1BA−T ) ,A = E{∂S∗eff(Y,X,Z,β0)/∂β
T}

and B = var{S∗eff(Y,X,Z,β0)}. Finally, it is easy to check that when f∗R,X,Z(r,x, z) =

fR,X,Z(r,x, z), −A = −E{∂Seff(Y,X,Z,β0)/∂β
T} = var{Seff(Y,X,Z,β0)} = B since

Seff is the efficient score vector. Hence, the variance-covariance simplifies to B−1 and the esti-
mator is efficient.

Proof of Theorem 2.
Sufficiency:

fU|W,R,X,Z(u | w, r,x, z)

= pr(U = u |W = w,R = r,X = x,Z = z)

=

exp{
∑m
j=1 YijX

T
ijβ + rT(

∑m
j=1 YijZij)}/[

∏m
j=1{1 + exp(XT

ijβ + ZT
ijr)}]

∣∣∣
ZiYi=(wT,uT)T∑

Yis.t.ZiYi=w exp{
∑m
j=1 YijX

T
ijβ + rT(

∑m
j=1 YijZij)}/[

∏m
j=1{1 + exp(XT

ijβ + ZT
ijr)}]

=
exp{(XT

i1β, . . . ,X
T
iqβ)(ZiLw − Z−1

iL ZiRu) + (XT
i(q+1)β, . . . ,X

T
imβ)u+ rTw}∑

u exp{(XT
i1β, . . . ,X

T
iqβ)(ZiLw − Z−1

iL ZiRu) + (XT
i(q+1)β, . . . ,X

T
imβ)u+ rTw}

=
exp{(XT

i1β, . . . ,X
T
iqβ)(−Z

−1
iL ZiRu) + (XT

i(q+1)β, . . . ,X
T
imβ)u}∑

u exp{(XT
i1β, . . . ,X

T
iqβ)(−Z

−1
iL ZiRu) + (XT

i(q+1)β, . . . ,X
T
imβ)u}

= fU|X,Z(u | x, z).
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Similarly,

fR|U,W,X,Z(r | u,w,x, z)

= pr(R = r | U = u,W = w,X = x,Z = z)

=
(
fR,X,Z(r,x, z) exp{

m∑
j=1

YijX
T
ijβ + rT(

m∑
j=1

YijZij)}

/[

m∏
j=1

{1 + exp(XT
ijβ + ZT

ijr)}]
∣∣∣
ZiYi=(wT,uT)T

)

/
(∫

fR,X,Z(r,x, z) exp{
m∑
j=1

YijX
T
ijβ + rT(

m∑
j=1

YijZij)}

/[

m∏
j=1

{1 + exp(XT
ijβ + ZT

ijr)}]
∣∣∣
ZiYi=(wT,uT)T

dr
)

=
fR,X,Z(r,x, z) exp(w

Tr)/[
∏m
j=1{1 + exp(XT

ijβ + ZT
ijr)}]∫

fR,X,Z(r,x, z) exp(wTr)/[
∏m
j=1{1 + exp(XT

ijβ + ZT
ijr)}]dr

= fR|W,X,Z(r | w,x, z).

Completeness:

E{a(W,X,Z) | R,X,Z}

=

∫
a(w,X,Z)fW|R,X,Z(w | R,X,Z)dµ(w)

=

∫
a(w,X,Z)

exp{(XT
i1β, . . . ,X

T
iqβ)(ZiLw − Z−1

iL ZiRu) + (XT
i(q+1)β, . . . ,X

T
imβ)u+RTw}∏m

j=1{1 + exp(XT
ijβ + ZT

ijR)}

dµ(u)dµ(w)

= b(R,Xi,Zi)

∫
a(w,X,Z) exp[{(XT

i1β, . . . ,X
T
iqβ)ZiL +RT}w]dµ(w),

where

b(R,Xi,Zi) =

∫
exp{(XT

i1β, . . . ,X
T
iqβ)(−Z

−1
iL ZiRu) + (XT

i(q+1)β, . . . ,X
T
imβ)u}dµ(u)∏m

j=1{1 + exp(XT
ijβ + ZT

ijR)}

is a positive function. Thus, E{a(W,X,Z) | R,X,Z} = 0 implies

∫
a(W,X,Z) exp[{(XT

i1β, . . . ,X
T
iqβ)ZiL +RT}w]dµ(w) = 0.

This implies the Laplace transformation of a is zero, hence a(W,X,Z) = 0.

The Canadian Journal of Statistics / La revue canadienne de statistique DOI:



2018 13

TABLE 1: Simulation results when random effect and covariates are independent. Bias, sample variance
(var), averaged estimated variance (v̂ar), and the empirical coverage percentage of the 95% confidence

interval (CI) for the semiparametric estimator and the normal-based MLE are reported. The true parameter
β = (0.35, 0.6,−0.4)T. Results are based on 1000 simulations with n = 500, mi = 3. Biases are

multiplied by 100, var and v̂ar are multiplied by 1000.

Semiparametric Estimator Normal-based MLE

bias var v̂ar CI bias var v̂ar CI

Ri ∼ 0.8N(3, 1) + 0.2N(6, 1.5) and centered Xij ∼ N(0.5, 1) Zi ∼ Bernoulli(0.5)

β̂1 2.59 3.40 3.28 94.7% 0.44 0.45 0.44 94.6%

β̂2 3.03 3.82 3.67 96.1% 0.48 0.49 0.50 96.2%

β̂3 −2.94 3.76 3.38 94.4% −0.38 0.43 0.45 95.5%

Ri ∼ 0.8N(3, 1) + 0.2N(6, 1.5) and centered Xij ∼ N(0.5, 1) Zi ∼ Poisson(0.5)

β̂1 3.29 3.82 3.35 94.1% 0.21 0.45 0.43 94.4%

β̂2 3.19 4.03 3.76 95.4% 0.25 0.48 0.49 95.4%

β̂3 −2.62 3.93 3.45 94.1% −0.30 0.44 0.44 95.9%

Ri ∼ 0.8N(3, 1) + 0.2N(6, 1.5) and centered Xij ∼ N(0.5, 1) Zi ∼ Geometric(0.7)

β̂1 1.16 2.53 2.49 95.3% 0.078 0.41 0.41 95.6%

β̂2 2.39 2.93 2.88 95.3% 0.13 0.47 0.47 94.0%

β̂3 −1.59 2.74 2.58 95.3% 0.11 0.44 0.42 95.0%

TABLE 2: Simulation results when random effect and covariates are independent. Bias, sample variance
(var), averaged estimated variance (v̂ar), and the empirical coverage percentage of the 95% confidence

interval (CI) for the semiparametric estimator and the normal-based MLE are reported. The true parameter
β = (0.35, 0.6,−0.4)T. Results are based on 1000 simulations with n = 500, mi = 3. Biases are

multiplied by 100, var and v̂ar are multiplied by 1000.

Semiparametric Estimator Normal-based MLE

bias var v̂ar CI bias var v̂ar CI

Ri ∼ Gamma(1, 1.25) and centered Xij ∼ N(0.5, 1) Zi ∼ Bernoulli(0.5)

β̂1 2.17 3.34 3.09 95.4% −2.33 0.38 0.39 92.8%

β̂2 2.69 4.00 3.51 94.5% −2.62 0.46 0.45 92.1%

β̂3 −1.77 3.30 3.13 94.9% −3.02 0.42 0.40 92.1%

Ri ∼ Gamma(1, 1.25) and centered Xij ∼ N(0.5, 1) Zi ∼ Poisson(0.5)

β̂1 1.88 3.56 3.29 95.0% −2.02 0.38 0.40 94.2%

β̂2 1.90 4.05 3.78 94.5% −2.61 0.45 0.45 93.1%

β̂3 −1.24 3.46 3.38 95.1% −2.91 0.41 0.41 93.8%

Ri ∼ Gamma(1, 1.25) and centered Xij ∼ N(0.5, 1) Zi ∼ Geometric(0.7)

β̂1 1.82 2.58 2.43 95.4% −2.00 0.37 0.38 94.2%

β̂2 3.42 3.08 2.83 94.6% −1.97 0.44 0.44 93.5%

β̂3 −2.60 2.52 2.49 95.3% −2.33 0.38 0.39 94.4%
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TABLE 3: Simulation results when random effect and covariates are independent. Bias, sample variance
(var), averaged estimated variance (v̂ar), and the empirical coverage percentage of the 95% confidence

interval (CI) for the semiparametric estimator and the normal-based MLE are reported. The true parameter
β = (0.35, 0.6,−0.4)T. Results are based on 1000 simulations with n = 500, mi = 3. Biases are

multiplied by 100, var and v̂ar are multiplied by 1000.

Semiparametric Estimator Normal-based MLE

bias var v̂ar CI bias var v̂ar CI

Ri ∼ t(3) and centered Xij ∼ N(0.5, 1) Zi ∼ Bernoulli(0.5)

β̂1 2.47 4.12 3.80 95.3% −1.70 0.55 0.53 94.4%

β̂2 5.51 5.21 4.44 93.4% −1.22 0.60 0.60 94.3%

β̂3 −3.61 4.39 3.91 95.4% −2.10 0.54 0.55 94.3%

Ri ∼ t(3) and centered Xij ∼ N(0.5, 1) Zi ∼ Poisson(0.5)

β̂1 3.05 3.78 3.58 95.1% −1.15 0.51 0.53 95.2%

β̂2 4.29 4.61 4.11 94.4% −0.90 0.59 0.60 95.4%

β̂3 −2.73 3.87 3.67 95.0% −1.70 0.52 0.54 94.8%

Ri ∼ t(3) and centered Xij ∼ N(0.5, 1) Zi ∼ Geometric(0.7)

β̂1 2.37 3.38 3.02 94.3% −0.81 0.49 0.50 95.5%

β̂2 2.77 4.00 3.47 94.2% −1.22 0.57 0.56 93.5%

β̂3 −2.07 3.43 3.07 94.3% −1.28 0.53 0.51 94.6 %

TABLE 4: Simulation results when random effect and covariates are independent. Bias, sample variance
(var), averaged estimated variance (v̂ar), and the empirical coverage percentage of the 95% confidence

interval (CI) for the semiparametric estimator and the normal-based MLE are reported. The true parameter
β = (0.35, 0.6,−0.4)T. Results are based on 1000 simulations with n = 500, mi = 3. Biases are

multiplied by 100, var and v̂ar are multiplied by 1000.

Semiparametric Estimator Normal-based MLE

bias var v̂ar CI bias var v̂ar CI

Ri ∼ N(0, 1) Xij ∼ N(0.5, 1) Zi ∼ Bernoulli(0.5)

β̂1 2.44 3.42 3.25 95.3% 0.57 0.49 0.49 95.5%

β̂2 3.60 4.28 3.75 94.9% 0.70 0.51 0.55 96.0%

β̂3 −3.41 3.20 3.39 96.0 % −0.40 0.52 0.50 94.5%

Ri ∼ N(0, 1) Xij ∼ N(0.5, 1) Zi ∼ Poisson(0.5)

β̂1 2.56 3.42 3.35 94.2% 0.25 0.47 0.47 95.4%

β̂2 4.76 4.48 3.88 94.1% 0.60 0.51 0.53 95.8%

β̂3 −3.46 3.32 3.47 95.7% −0.64 0.50 0.48 94.6%

Ri ∼ N(0, 1) Xij ∼ N(0.5, 1) Zi ∼ Geometric(0.7)

β̂1 1.99 3.28 2.94 95.2% 0.44 0.45 0.47 96.1%

β̂2 3.96 3.76 3.36 94.8% 1.19 0.53 0.53 95.1%

β̂3 −1.86 3.13 2.96 95.2% −0.71 0.47 0.48 95.7 %
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TABLE 5: Simulation results when random effect and covariates are dependent: Xij ∼ Normal(0.5Ri, 1).
Bias, sample variance (var), averaged estimated variance (v̂ar), and the empirical coverage percentage of

the 95% confidence interval (CI) for the semiparametric estimator and the normal-based MLE are
reported. The true parameter β = (0.35, 0.6,−0.4)T. Results are based on 1000 simulations with

n = 500, mi = 3. Biases are multiplied by 100, var and v̂ar are multiplied by 1000.

Semiparametric Estimator Normal-based MLE

bias var v̂ar CI bias var v̂ar CI

Ri ∼ 0.8N(3, 1) + 0.2N(6, 1.5) and centered Zi ∼ Bernoulli(0.5)

β̂1 1.74 3.76 3.25 94.6% 25.91 0.48 0.44 2.3%

β̂2 2.72 3.85 3.72 96.0% 25.12 0.49 0.51 5.1%

β̂3 −3.98 3.81 3.39 94.4% 29.41 0.42 0.41 0.9%

Ri ∼ 0.8N(3, 1) + 0.2N(6, 1.5) and centered Zi ∼ Poisson(0.5)

β̂1 2.49 3.39 3.31 96.2% 25.40 0.43 0.44 1.6%

β̂2 3.44 3.89 3.73 95.2% 24.32 0.50 0.51 4.8%

β̂3 −3.52 3.77 3.41 94.7% 28.68 0.41 0.41 0.8%

Ri ∼ 0.8N(3, 1) + 0.2N(6, 1.5) and centered Zi ∼ Geometric(0.7)

β̂1 1.86 3.12 2.76 94.1% 23.68 0.44 0.42 3.9%

β̂2 3.15 3.70 3.18 93.2% 23.02 0.52 0.49 7.4%

β̂3 −2.32 2.89 2.84 95.5% 27.28 0.41 0.40 2.3%

TABLE 6: Simulation results when random effect and covariates are dependent: Xij ∼ Normal(0.5Ri, 1).
Bias, sample variance (var), averaged estimated variance (v̂ar), and the empirical coverage percentage of

the 95% confidence interval (CI) for the semiparametric estimator and the normal-based MLE are
reported. The true parameter β = (0.35, 0.6,−0.4)T. Results are based on 1000 simulations with

n = 500, mi = 3. Biases are multiplied by 100, var and v̂ar are multiplied by 1000.

Semiparametric Estimator Normal-based MLE

bias var v̂ar CI bias var v̂ar CI

Ri ∼ Gamma(1, 1.25) and centered Zi ∼ Bernoulli(0.5)

β̂1 2.39 2.86 2.82 95.4% 20.73 0.39 0.41 8.2%

β̂2 2.95 3.65 3.22 94.7% 20.16 0.51 0.48 16.6%

β̂3 −1.90 3.22 2.86 95.2% 23.35 0.40 0.39 5.0%

Ri ∼ Gamma(1, 1.25) and centered Zi ∼ Poisson(0.5)

β̂1 2.73 3.12 3.07 95.8% 20.31 0.38 0.41 9.1%

β̂2 3.17 4.11 3.55 94.6% 19.67 0.49 0.48 17.5%

β̂3 −2.18 3.44 3.18 94.4% 22.72 0.39 0.40 6.2%

Ri ∼ Gamma(1, 1.25) and centered Zi ∼ Geometric(0.7)

β̂1 2.50 2.65 2.63 95.9% 19.80 0.40 0.41 10.8%

β̂2 3.05 2.94 3.00 95.5% 19.05 0.49 0.47 19.6%

β̂3 −1.29 2.85 2.67 94.8% 21.40 0.39 0.39 8.2%
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TABLE 7: Simulation results when random effect and covariates are dependent: Xij ∼ Normal(0.5Ri, 1).
Bias, sample variance (var), averaged estimated variance (v̂ar), and the empirical coverage percentage of

the 95% confidence interval (CI) for the semiparametric estimator and the normal-based MLE are
reported. The true parameter β = (0.35, 0.6,−0.4)T. Results are based on 1000 simulations with

n = 500, mi = 3. Biases are multiplied by 100, var and v̂ar are multiplied by 1000.

Semiparametric Estimator Normal-based MLE

bias var v̂ar CI bias var v̂ar CI

Ri ∼ t(3) and centered Zi ∼ Bernoulli(0.5)

β̂1 2.16 4.84 4.33 95.2% 35.62 0.44 0.48 0.0%

β̂2 4.30 5.79 4.94 94.4% 33.46 0.54 0.57 0.2%

β̂3 −4.51 4.98 4.47 93.7% 42.23 0.38 0.41 0.0%

Ri ∼ t(3) and centered Zi ∼ Poisson(0.5)

β̂1 3.00 4.73 4.21 94.8% 34.37 0.43 0.47 0.0%

β̂2 4.61 5.92 4.93 95.1% 32.16 0.53 0.55 0.3%

β̂3 −3.28 4.56 4.34 95.3% 41.67 0.40 0.40 0.0%

Ri ∼ t(3) and centered Zi ∼ Geometric(0.7)

β̂1 1.86 3.78 3.43 94.5% 33.05 0.41 0.45 0.0%

β̂2 3.73 4.29 3.98 93.3% 30.87 0.49 0.53 0.4%

β̂3 −2.89 4.02 3.52 93.9% 40.16 0.36 0.39 0.0%

TABLE 8: Simulation results when random effect and covariates are dependent: Xij ∼ Normal(0.5Ri, 1).
Bias, sample variance (var), averaged estimated variance (v̂ar), and the empirical coverage percentage of

the 95% confidence interval (CI) for the semiparametric estimator and the normal-based MLE are
reported. The true parameter β = (0.35, 0.6,−0.4)T. Results are based on 1000 simulations with

n = 500, mi = 3. Biases are multiplied by 100, var and v̂ar are multiplied by 1000.

Semiparametric Estimator Normal-based MLE

bias var v̂ar CI bias var v̂ar CI

Ri ∼ N(0, 1) Zi ∼ Bernoulli(0.5)

β̂1 3.05 4.11 3.70 95.4% 30.25 0.47 0.46 0.2%

β̂2 5.42 4.98 4.21 94.3% 28.77 0.56 0.53 1.3%

β̂3 −2.52 3.74 3.71 95.6% 35.39 0.40 0.41 0.1%

Ri ∼ N(0, 1) Zi ∼ Poisson(0.5)

β̂1 2.04 4.20 3.66 92.7% 29.55 0.47 0.45 0.2%

β̂2 4.81 4.72 4.22 94.2% 28.04 0.50 0.52 1.2%

β̂3 −2.16 3.72 3.64 97.0% 34.73 0.39 0.41 0.1%

Ri ∼ N(0, 1) Zi ∼ Geometric(0.7)

β̂1 1.61 3.20 2.92 94.7% 28.30 0.46 0.44 0.8%

β̂2 3.85 3.44 3.39 94.8% 26.55 0.51 0.51 2.8%

β̂3 −1.12 3.20 2.99 93.8% 33.22 0.460 0.40 0.2%
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TABLE 9: Execution time of 50 simulations using our estimator when random effect is generated from
Normal(0,1), Zij is from the Geometric distribution with success probability 0.7, Independent case means
Xij ∼ N(0.5, 1) and dependent case means Xij ∼ N(0.5Ri, 1). The unit of time is second, and m stands

for the cluster size and p denotes the number of parameters to be estimated.

Independent Dependent

m=2,p=3 79.39 78.59

m=3,p=3 208.3 201.28

m=4,p=3 321.74 310.9

m=3,p=1 41.16 39.54

m=3,p=2 112.47 113.76

m=3,p=3 205.56 202.47

TABLE 10: Results from Huntington disease (HD) data analysis based on semiparametric estimator and
normal-based maximum likelihood estimator (MLE). est: Parameter estimate, SE: standard error, 95% CI:

95% Wald-Type confidence interval, β̂tms: Coefficient for total motor score, β̂sdmt: Coefficient for
symbol Digit Modalities Test, β̂scolor: Coefficient for stroop color score, β̂sword: Coefficient for stroop

word score , β̂sinter: Coefficient for stroop interference score. SE are multiplied by 10.

Semiparametric Estimator Normal-based MLE

Est SE 95% CI Est SE 95% CI

β̂tms 0.133 0.012 (0.065, 0.201) 0.266 0.004 (0.229, 0.303)

β̂sdmt 0.028 0.012 (−0.040, 0.097) −0.029 0.004 (−0.066, 0.009)

β̂scolor 0.008 0.014 (−0.066, 0.081) −0.029 0.003 (−0.063, 0.006)

β̂sword 0.009 0.004 (−0.032, 0.048) −0.014 0.002 (−0.039, 0.012)

β̂sinter 0.074 0.002 (0.043, 0.104) −0.014 0.004 (−0.053, 0.024)
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