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Summary

When the observed data are contaminated with errors, the standard two-sample testing approaches
that ignore measurement errors may produce misleading results, including a higher Type-I error rate
than the nominal level. To tackle this inconsistency, a nonparametric test is proposed for testing
equality of two distributions when the observed contaminated data follow the classical additive mea-
surement error model. The proposed test takes into account the presence of errors in the observed
data, and the test statistic is defined in terms of the (deconvoluted) characteristic functions of the
latent variables. Proposed method is applicable to a wide range of scenarios as no parametric restric-
tions are imposed either on the distribution of the underlying latent variables or on the distribution
of the measurement errors. Asymptotic null distribution of the test statistic is derived which is given
by an integral of a squared Gaussian process with a complicated covariance structure. For data based
calibration of the test, a new nonparametric Bootstrap method is developed under the two-sample
measurement error framework and its validity is established. Finite sample performance of the pro-
posed test is investigated through simulation studies, and the results show superior performance of the
proposed method than the standard tests that exhibit inconsistent behavior. Finally, the proposed
method was applied to real datasets from the National Health and Nutrition Examination Survey.
An R package MEtest is available on CRAN (https://CRAN.R-project.org/package=MEtest).

Key Words: Bootstrap; Characteristic function; Chi-square; Gaussian process; Power; Two sample
test.

Running title: Homogeneity test under measurement error

https://CRAN.R-project.org/package=MEtest


1 Introduction

A common public health question is how the behavioral factors are associated with a biomarker, a

health outcome, or a surrogate of a health outcome (Hogan et al., 2007; Puddy and Beilin, 2006;

Primatesta et al., 2001). Suppose that we are interested in checking if alcohol consumption and the

systolic blood pressure are associated. However, systolic blood pressure cannot be measured accu-

rately, rather measured values are the underlying true blood pressure plus measurement errors. In an

attempt to answer this question one may use the National Health and Nutrition Examination Survey

(NHANES) data that contain multiple measurements on these variables that are subject to measure-

ment uncertainty, and apply an existing two-sample test to the average of multiple measurements

from the two behavioral groups, alcoholic and non-alcoholic.

There could be two cases, 1) where the interest is in comparing the means of the two groups

and 2) where the interest is in comparing the two distributions corresponding to the two behavioral

groups. Comparison of means makes sense when the two distributions have the similar shape. When

observations are subject to classical measurement error (Carroll et al., 2006, Chap 1), existing two-

sample tests of means are consistent. On the other hand, exiting two sample nonparametric tests,

Kolmogorov-Smirnov test (Hodges, 1958) or Anderson-Darling test (Pettitt, 1976), for comparing

two distributions are not consistent when observations are subject to classical measurement error.

This lead us to develop a new two-sample testing method for checking equality of two distributions

when the available data are measured with errors.

There are plenty of examples in epidemiology and medical sciences, where two distributions are

compared, not just the means. In epidemiology, Jones (1997), Basu et al. (2015), just to name a few,

compared groups via tests of equality of two distributions rather than the two mean parameters. In

medical sciences, Hariharan et al. (2019) used Kolmogorov-Smirnov (K-S) test to compare images

from low and high radiation dose, Liu et al. (2019) applied this test to compare two groups of electric

signals for each genomic position, and Stephens et al. (2009) used the Mann-Whitney U-test and
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K-sample Anderson-Darling (A-D) test in somatic rearrangement data from breast cancer genome,

and these are a few among countless examples. Our formulation of the two sample testing problem

will encompass the data structure like that of the NHANES data where repeated measurements are

available on uncertain variables that include dietary intakes and other biomarkers.

Although errors in measured variables have received considerable attention from density esti-

mation perspective (Delaigle and Hall, 2015; Carroll and Hall, 1988) and in the regression context

(Carroll et al., 2006; Gustafson, 2003), to the best of our knowledge, no one has ever considered

testing of homogeneity of two distributions when the observed data are subject to measurement

errors.

Like errors-in-covariates in regression models, this problem can be tackled in several ways. First,

one may model the distributions of true signals and measurement errors parametrically, and then test

the homogeneity of distributions by checking equality of a set of parameters. However, any parametric

approach may face misscpecification bias. Therefore, we do not wish to use any parametric model

assumption. In the nonparametric context, one may estimate the two underlying densities from

the two contaminated samples using any density deconvolution approach available in the literature

(Delaigle et al., 2015; Delaigle et al., 2008). Then carry out a test based on the deconvoluted densities.

Numerical instability is a well known phenomenon of deconvoluted density estimation, and that is

due to the inverse transformation of the characteristic function (CF). To circumvent this problem,

we design a test that is directly based on the CFs, and the test statistic itself does not depend on

the deconvoluted density.

Briefly, our approach and organization of the rest of paper are given as follows. Section 2 contains

the formulation of the test statistic based on the estimated CFs of the underlying true signals, and

its asymptotic properties under the null hypothesis. The limit distribution has a complex form and

it involves different unknown population parameters, making it less appealing to use for calibrating

the test statistic. Due to this difficulty, in Section 3, we propose a novel Bootstrap approach under

2



the measurement error framework that gives a theoretically valid data generation procedure under

the null hypothesis, and that also constitutes an important contribution of this paper. Besides

theoretical investigation of the large sample properties, finite sample properties of the test are judged

via simulation studies (Section 4). The results of the simulation study show that the proposed

testing method has competitive performance in terms of maintaining the size of the test, and superior

power properties compared to its competitors, even when the two population distributions are not

drastically different. An application of the methodology to an NHANES 2009-2010 survey data is

given in Section 5, followed by some concluding remarks in Section 6. Proofs of the main results are

given in the Appendix.

2 Testing methodology

2.1 Background and notation

Suppose that the cumulative distribution functions (CDFs) of X and Y are Fx and Fy, respectively.

Our goal is to test the hypothesis H0 : Fx = Fy when the observed data are Dw = {W 1, . . . ,W nx}

and Dv = {V 1, . . . ,V ny}, where W T
j = (Wj1, . . . ,Wjmx) and V T

k = (Vk1, . . . , Vkmy) for j = 1, . . . , nx

and k = 1, . . . , ny. Assume that mx ≥ 2 and my ≥ 2, and the observed W ’s and V ’s are related with

the unobserved X’s and Y ’s through the classical additive measurement error model (Carroll et al.,

2006, Chap 1), that means,

Wjl = Xj + Ux,jl and Vkl′ = Yk + Uy,kl′ ,

for j = 1, . . . , nx, l = 1, . . . ,mx, k = 1, . . . , ny, l
′

= 1, . . . ,my. The measurement error Ux,jl’s are

assumed to be iid, independent of Xj, and follows the distribution Fux that is symmetric around

0. Similarly, we assume that the measurement error Uy,kl are iid, independent of Yk, and follows

the distribution Fuy that is symmetric around 0. Further, X, Y , Ux and Uy are assumed to be

independent. It is important to note that {X1, . . . , Xnx} and {Y1, . . . , Yny} are never observed. Also,
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the CDFs Fx, Fy, Fux and Fuy are assumed to be absolutely continuous but otherwise left unknown.

Let φx, φy, φux and φuy be the CFs of X, Y , Ux and Uy, respectively. Let ax(t) and bx(t) be the

real and imaginary parts of φx(t), respectively. Similarly, define ay(t) and by(t) from φy(t). For future

reference, denote estimators of Fx, Fy, Fux , and Fuy , by F̂x, F̂y, F̂ux , and F̂uy respectively. Suppose

that F = Fx = Fy denotes the common distribution under H0, and write F̂ to denote its estimator.

Further, define W j =
∑mx

l=1Wjl/mx, V k =
∑my

l=1 Vkl/my, Mx = mx(mx − 1)/2, My = my(my − 1)/2,

Nx = nxMx, Ny = nyMy. Note that the CF of W j is given by φ1(t) = φx(t){φux(t/mx)}mx , and that

of V k is φ2(t) = φy(t){φuy(t/my)}my .

In the naive approach that ignores measurement errors in the observed data, one may first compute

{W 1, . . . ,W nx} and {V 1, . . . , V ny} and then apply any nonparametric testing procedure directly on

these transformed data. Indeed, this naive method is usually inconsistent, that means, it fails to

maintain the nominal type-I error level. If mx = my = m, and Fux = Fuy = Fu, then the CF

of W j and V k are φ1(t) = φx(t){φu(t/m)}m and φ2(t) = φy(t){φu(t/m)}m. Consequently the null

hypothesis H0 : φx(t) = φy(t) implies φ1(t) = φ2(t). That means, testing H0 becomes equivalent to

testing H0 : F1 = F2, where F1 and F2 are the distribution functions of W j and V k. Thus, when

mx = my and Fux = Fuy , the naive testing procedure is consistent for testing H0 : Fx = Fy. However,

if either mx 6= my or Fux 6= Fuy , the naive test may not be consistent.

2.2 Development of the test statistic

We shall work under the standard condition (Delaigle et al., 2008) that φux(t) and φuy(t) are real-

valued function and do not vanish on R, but do not impose any such conditions on the CFs φx

and φy of the latent variables. The real valued CF condition results from the assumption that

the error distribution is symmetric around zero. Further, as is well known (Stefanski and Carroll,

1990; Delaigle et al., 2008), the non vanishing assumption is also due to overcome the identifiability

problem. Under these conditions, the CF for the measurement error can be recovered using the
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difference between two observations W1 −W2, where W1 = X + Ux,1 and W2 = X + Ux,2. Then,

φW1−W2(t) = E[exp{it(W1 − W2)}] = E[exp{it(Ux,1 − Ux,2)}] = E[exp{itUx,1}]E[exp{−itUx,2}] =

{φux(t)}2, where i2 = −1. Hence φux is estimable from the data by using all possible pairwise

differences of the Wjk variables. On the other hand, φ1(t) is directly estimable from the data,

using the means of the replicated measurements. Consequently, φx(t) is estimable exploiting the

relationship φ1(t) = φx(t){φux(t/mx)}mx . Specifically, estimators for φ1(t) and φux(t) are given by

φ̂1(t) = n−1x
∑nx

j=1 exp(itW j),

φ̂ux(t) =

√
|φ̂W1−W2(t)| =

√√√√√
∣∣∣∣∣∣ 1

nx

nx∑
j=1

2

mx(mx − 1)

∑
(l1,l2)∈Sx

cos{t(Wjl1 −Wjl2)}

∣∣∣∣∣∣, (1)

respectively, where Sx = {(l1, l2) : 1 ≤ l1 < l2 ≤ mx}. Note that the non-vanishing and continuity

assumption on φux(t), and φux(0) = 1 imply that φux(t) is a positive real valued function. Thus, the

above estimator of φux(t) is positive on compact subsets with high probability, for nx large. Now, we

propose to estimate φx(t) by

φ̂x(t) =
φ̂1(t)

{φ̂ux(t/mx)}mx

=
n−1x

∑nx

j=1 cos(tW j) + in−1x
∑nx

j=1 sin(tW j)

|n−1x
∑nx

j=1M
−1
x

∑
(l1,l2)∈Sx cos{(t/mx)(Wjl1 −Wjl2)}|mx/2

= âx(t) + îbx(t),

where âx(t) and b̂x(t) are the real and imaginary part of φ̂x(t), respectively, and we write

âx(t) =
n−1x

∑nx

j=1 cjw(t)

â2x(t)
, b̂x(t) =

n−1x
∑nx

j=1 djw(t)

â2x(t)
,

with cjw(t) = cos(tW j), djw(t) = sin(tW j), and

â2x(t) = |n−1x
nx∑
j=1

M−1
x

∑
(l1,l2)∈Sx

cos{(t/mx)(Wjl1 −Wjl2)}|mx/2.

Similarly, φy(t) can be estimated by φ̂y(t) = ây(t) + îby(t), where ây(t) = n−1y
∑ny

j=1 cjv(t)/â2y(t) and

b̂y(t) = n−1y
∑ny

j=1 djv(t)/â2y(t), with cjv(t) = cos(tV j), djv(t) = sin(tV j), and

â2y(t) = |n−1y
ny∑
j=1

M−1
y

∑
(l1,l2)∈Sy

cos{(t/my)(Vjl1 − Vjl2)}|my/2.
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Under the null hypothesis Fx = Fy, (âx(t), b̂x(t)) is expected to be close to (ây(t), b̂y(t)). When the

null hypothesis does not hold, the difference between them is expected to be large, and this fact

motivates us to form the following test statistic to test the hypothesis H0 : Fx = Fy:

Tnx =

∫ ∞
−∞

nx[{âx(t)− ây(t)}2 + {b̂x(t)− b̂y(t)}2]ω(t)dt, (2)

for a properly chosen non-negative weight function ω(t). The test function is

Φ =

{
1 if Tnx > tnx,α

0 otherwise,

where the critical value tnx,α satisfies pr(Tnx > tnx,α) = α under H0, for a given α ∈ (0, 1).

In (2), the weight function ω(t) is used for ensuring the finiteness of the integral on the right

side, and it is typically taken as a compactly supported function. As expected, the power of the test

depends on the weight function ω(t). In a related work, Epps and Pulley (1983) proposed a test for

normality based on the empirical CF of the observed data without measurement errors and described

some desirable properties of ω(t). Here we follow Epps and Pulley (1983)’s guidance and take ω(t)

to be a piece-wise continuous positive valued function with a compact support [t1, t2] that includes

0, and ω(t) = 0 for t > t2 or t < t1. For more details on some practical choices for t1 and t2, see the

simulation and data analysis section.

2.3 Large Sample properties of the test statistic

The first result gives the null distribution of the test statistic.

Theorem 1. Under the null hypothesis, as nx, ny →∞ and
√
nx/ny → ρ ∈ (0,∞), the test statistic

Tnx converges to a random variable, given by∫
[ξ1(t)

2 + ξ2(t)
2]ω(t)dt

where ξ1(·) and ξ2(·) are independent zero mean Gaussian processes with continuous sample paths,

with probability one. The covariance functions of ξj(·), j = 1, 2 are rational functions of the (real

and imaginary parts of the) CFs of W 1, V 1, Ux,1 and Uy,1, and are given in the Appendix.
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It follows from the statement of Theorem 1 that the limit distribution of the test statistic can also

be expressed as an infinite sum of weighted, independent Chi-squared random variables with degrees

of freedom 1. However, the weights in the infinite series representation or the covariance function of

the Gaussian processes ξj(·), j = 1, 2 in the integral representation above are complicated functions

of unknown population parameters that are difficult to estimate under the measurement error model.

As a result, we shall develop a Bootstrap method to devise alternative approximations to the null

distribution of the test statistic that can be used for calibrating the test.

The next result shows that under mild conditions, the power of the test statistic under alternative

hypothesis tends to one. To state it, define Da(t) = ax(t)− ay(t) and Db(t) = bx(t)− by(t).

Theorem 2. Suppose that
√
nx/ny → ρ ∈ (0,∞) and that the alternative hypothesis

∫
{D2

a(t) +

D2
b (t)}ω(t)dt 6= 0 holds. Then, for any α ∈ (0, 1), the power of the size α test, pr(Tnx > tnx,α) tends

to 1 as nx, ny →∞.

Remark 1. In some cases the distribution of X and Y change with respect to other covariates.

In these cases, the research question could be checking homogeneity of the two distributions after

adjusting the effect of the covariates. This test after adjustments helps to identify any differences

between the distributions of X and Y that are not generally accounted by the covariates. Suppose

that Z denote a vector of covariates that is observed for every subject in the data. Also, we use

a different notation (Aj1, . . . , Ajmx)T to denote the replicated erroneous measurements, for the jth

subject in group 1, for j = 1, . . . , nx. Similarly, define (Bk1, . . . , Bkmy)T to denote the replicated

erroneous measurements, for the kth subject in group 2, k = 1, . . . , ny.

We assume that observed data Ajl = Aj+measurement error, for l = 1, . . . ,mx, Bkl =

Bk+measurement error, for l = 1, . . . ,my. Next we assume that 1) Aj = β0 + ZT
j β1 + εx,j, 2)

E(εx,j|Zj) = 0, 3) E(εx,jεx,j′|Zj,Zj′) = 0, 4) E(ε2x,j|Zj) = τ 2x , 5) Bk = β0 + ZT
kβ1 + εy,k, 6)

E(εy,k|Zk) = 0, 7) E(εy,kεy,k′|Zk,Zk′) = 0, 8) E(ε2y,k|Zk) = τ 2y , 9) E(εx,jεy,k|Zj,Zk) = 0. Note that
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Aj’s and Bk’s are not observed, so we regress (A1, . . . , Anx , B1, . . . , Bny)T on the covariates, and esti-

mate β = (β0,β
T
1 )T using weighted least square method. Let β̂ be the weighted least square estimator of

β. Then, we define the residuals as Wjl = Ajl− β̂0−ZT
j β̂1 ≡ Xj +Ux,jl, l = 1, . . . ,mx, j = 1, . . . , nx,

and Vkl = Bkl− β̂0−ZT
k β̂1 ≡ Yj+Uy,kl, l = 1, . . . ,my, k = 1, . . . , ny. Next, we apply the proposed test

and the two naive tests on these residuals. This adjustment would work fine as long as the standard

linear model assumptions given in (1)-(9) are valid.

3 The proposed Bootstrap method

3.1 Outline of the Bootstrap procedure

In this section, we describe a novel Bootstrap method for approximating the null distribution of the

test statistic given in Theorem 1. Note that due to the presence of the measurement error, simple

resampling from the original data will not capture the distributions of the latent variables and the

error variables precisely. In addition, resampling the observations directly will also fail to ensure that

the data are generated under the null hypothesis. Therefore, we propose to generate observations from

a suitable estimated common distribution F̂ of the two populations for the latent variables, enforcing

the null distribution. We also independently, generate observations from estimated distribution

functions F̂ux and F̂uy of the two sets of error variables and combine them to define the Bootstrap

analogues of W and V . Constructions of F̂ and F̂ux (and F̂uy) require special care due to the

complexities of the measurement error structure and are described in Sections 3.2 and 3.3 below; See

also Remark 2 in Section 3.4 for some subtle issues and intricacies associated with formulation of the

Bootstrap method.

Once the estimators F̂ , F̂ux and F̂uy are specified, a Bootstrap sample will consist of D∗w =

{W ∗
1, . . . ,W

∗
nx
} and D∗v = {V ∗1, . . . ,V ∗ny

}, where W ∗
j = (W ∗

j1, . . . ,W
∗
jmx

)T , j = 1, . . . , nx and

V ∗k = (V ∗j1, . . . , V
∗
kmy

)T , k = 1, . . . , ny, with W ∗
jl = X∗j + U∗x,jl and V ∗kl = Y ∗k + U∗y,kl. Here,
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X∗1 , . . . , X
∗
nx
, Y ∗1 , . . . , Y

∗
ny

are iid draws from the estimated common distribution F̂ , and U∗x,jl are

iid draws from F̂ux and U∗y,kl are iid draws from F̂uy . For each Bootstrap sample, we would compute

the test statistic. Suppose that T ∗b,nx
denotes the test statistic corresponding to the bth Bootstrap

sample. Then the estimated p-value is
∑B

b=1 I(T ∗b,nx
> Tnx)/B based on B Bootstrap samples. We

reject H0 at the 100α% level of significance if the p-value is less than a given α. Now we describe how

we estimate F , Fux , and Fuy nonparametrically. Validity of the Bootstrap approximation is proved

in Section 3.4.

3.2 Estimation of the common distribution F

Let g be a density function of W , the mean of mx repeated observations. Then for a symmetric kernel

K and given bandwidth hw, ĝ(w) = (nxhw)−1
∑nx

j=1K{(w −W j)/hw} is a kernel density estimator

for g, and consequently the estimated characteristic function (CF) of W is

φ̂W (t) =

∫
exp(itw)ĝ(w)dw =

1

nx

nx∑
j=1

exp(itW j)

∫
exp(ithwz)K(z)dz = φ̂1(t)φK(hwt),

where φ̂1(t) is the empirical CF of W and φK(t) is the CF of the kernel K. Therefore, the esti-

mated CF φ̂x(t) = φ̂W (t)/{φ̂ux(t/mx)}mx = φ̂1(t)φK(hwt)/{φ̂ux(t/mx)}mx . Note that φ̂x(t) given

in Section 2.2 does not satisfy the integrability condition needed for inverse Fourier transforma-

tion. Therefore, here we are using a different estimator for φx(t). Similarly, we estimate φy(t)

by φ̂y(t) = φ̂2(t)φK(hvt)/{φ̂uy(t/my)}my . Although an estimator of the CF of the common dis-

tribution F can be defined in many ways, for simplicity we have decided to consider the esti-

mator to be φ̂(t) = {φ̂x(t) + φ̂y(t)}/2. Next using the inversion formula along with the condi-

tions supt |φK(t)/φux(t/hw)| < ∞,
∫
|φK(t)/φux(t/hw)|dt < ∞, supt |φK(t)/φuy(t/hv)| < ∞ and∫

|φK(t)/φuy(t/hv)|dt < ∞ for fixed hw, hv > 0 (Stefanski and Carroll, 1990), we have a deconvolu-

tion density estimator, given by:

f̂(r) =
1

2π

∫ ∞
−∞

exp(−itr)φ̂(t)dt
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=
1

4π

∫ ∞
−∞

exp(−itr)
[∑nx

j=1 exp(itW j)φK(hwt)/nx

{φ̂ux(t/mx)}mx

+

∑ny

j=1 exp(itV j)φK(hvt)/ny

{φ̂uy(t/my)}my

]
dt

=
nx∑
j=1

∫ ∞
−∞

exp{−it(r −W j)}φK(hwt)

4πnx{φ̂ux(t/mx)}mx

dt+

ny∑
j=1

∫ ∞
−∞

exp{−it(r − V j)}φK(hvt)

4πny{φ̂uy(t/my)}my

dt

=
1

2nxhw

nx∑
j=1

Lx

(
r −W j

hw

)
+

1

2nyhv

ny∑
j=1

Ly

(
r − V j

hv

)
,

where Lx(u) = (1/2π)
∫∞
−∞ exp(−itu)φK(t)/{φ̂ux(t/hwmx)}mxdt and Ly(u) = (1/2π)

∫∞
−∞ exp(−itu)

φK(t)/{φ̂uy(t/hvmy)}mydt. Although the common population CDF F may not have a density, this

density estimator is well defined. We are using this formula only to motivate the definition of the CDF

estimator given next. Indeed, replacing φux by its estimator given in (1) and φuy by the corresponding

estimator, and replacing φK(t) by (1− t2)31[−1,1](t), and using the integration formula (A.1) of Hall

and Lahiri (2008), we obtain the estimator of the common distribution

F̂ (r) =
1

nx

nx∑
j=1

[
1

2
+

∫ ∞
−∞

sin{t(r −W j)}(1− h2wt2)31[−1,1](hwt)

2πt|N−1x
∑nx

j=1

∑
(l1,l2)∈Sx cos{(t/mx)(Wjl1 −Wjl2)}|mx/2

dt

]

+
1

ny

ny∑
j=1

[
1

2
+

∫ ∞
−∞

sin{t(r − V j)}(1− h2vt2)31[−1,1](hvt)

2πt|N−1y
∑ny

j=1

∑
(l1,l2)∈Sy cos{(t/my)(Vjl1 − Vjl2)}|my/2

dt

]

=
1

2
+

1

nxπ

∫ 1/hw

0

(1− h2wt2)3
∑nx

j=1 sin{t(r −W j)}
t|N−1x

∑nx

j=1

∑
(l1,l2)∈Sx cos{(t/mx)(Wjl1 −Wjl2)}|mx/2

dt

+
1

nyπ

∫ 1/hv

0

(1− h2vt2)3
∑ny

j=1 sin{t(r − V j)}
t|N−1y

∑ny

j=1

∑
(l1,l2)∈Sy cos{(t/my)(Vjl1 − Vjl2)}|my/2

dt.

It is important to point out that the density estimator f̂ can take negative values and hence, this

distribution function estimator F̂ need not be monotone. As a result, F̂ can not be directly used

for generating the Bootstrap observations. To overcome this limitation of the estimator F̂ , we shall

use a monotonized version of F̂ , given by F̃ (r) = sup{F̂ (r∗) : r∗ ≤ r}, r ∈ R, and use the inverse

integral transform F̃−1(p) = sup{r : F̃ (r) ≤ p}, p ∈ (0, 1), with iid Uniform (0,1) random variables

to generate the Bootstrap versions of the X and Y variables under H0.

Next we comment on the choice of hw. We shall use Hall and Lahiri (2008)’s method that
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is relatively straight forward to apply. According to Theorem 4.1 of that paper, we choose the

optimal hw that minimizes n−1x I(h) + Bxh
4, where 2πI(h) =

∫
t−2[1 − φK(ht)/{φ̂ux(t/mx)}mx ]2dt,

Bx = κ22/(16
√
πσ̂3

x) with κ2 =
∫
x2K(x)dx. For our choice of kernel, κ2 = 6. Also, var(W ) = var(X)+

var(Ux)/mx, so we estimate σ2
x by σ̂2

x = σ̂2
W
− σ̂2

ux/mx, where σ̂2
W

= (nx − 1)−1
∑nx

j=1(W j −W ..)
2,

σ̂2
ux = (nx)

−1∑nx

j=1(mx − 1)−1
∑mx

l=1(Wjl −W j)
2, and W .. = (nxmx)

−1∑nx

j=1

∑mx

l=1Wjl. We use the

numerical integration technique to evaluate I(hw). Similarly, we shall determine the optimal hv.

Besides the cross-validation approach one may consider a plug-in or bootstrap based choice for

(hw, hv) (Delaigle and Gijbels, 2004). However, based on our numerical experiences (the last para-

graph of Section 4), the power or Type-I error probability of the proposed test are fairly insensitive

towards different methods of bandwidth choices, specially when the sample size is large.

3.3 Estimation of Fux
and Fuy

We shall describe the estimation of Fux only. The estimation of Fuy follows similar steps, and so it

will be omitted. Observe that Wjl1 −Wjl2 = Ux,jl1 − Ux,jl2 , where Ux,jl1 and Ux,jl2 are iid copies of

the random variable Ux and (l1, l2) ∈ Sx. Hence the density of the difference of the iid copies can be

estimated by the kernel method

f̂Ux,1−Ux,2(u
∗) =

1

hnx

nx∑
j=1

2

mx(mx − 1)

∑
(l1,l2)∈Sx

K
{u∗ − (Wjl1 −Wjl2)

h

}
,

where we take h = 1.06σ̂d,uxn
−1/5
x (Sheather, 2004), where σ̂2

d,ux
= (nx − 1)−1

∑nx

j=1 2{mx(mx −

1)}−1
∑

(l1,l2)∈Sx [(Wjl1 − Wjl2) − n−1x
∑nx

j′=1
2{mx(mx − 1)}−1

∑
(l1,l2)∈Sx(Wj′ l1

− Wj′ l2
)]2. Next we

estimate the CF of Ux,1 − Ux,2 by

φ̂Ux,1−Ux,2(t) =

∫
exp(itu∗)f̂Ux,1−Ux,2(u

∗)du∗

=
1

nxh

nx∑
j=1

2

mx(mx − 1)

∑
(l1,l2)∈Sx

∫
exp(itu∗)K

{u∗ − (Wjl1 −Wjl2)

h

}
du∗

11



=
1

nx

nx∑
j=1

2

mx(mx − 1)

∑
(l1,l2)∈Sx

∫
exp[it{(Wjl1 −Wjl2) + hz}]K(z)dz

=
1

nx

nx∑
j=1

2

mx(mx − 1)

∑
(l1,l2)∈Sx

exp{it(Wjl1 −Wjl2)}φK(ht).

Since E[exp{it(Ux,1 − Ux,2)}] = {φux(t)}2 due to the symmetry of Ux, and using φK(t) = (1 −

t2)31[−1,1](t), we estimate φux(t) by

φ̂ux(t) =

√
φ̂Ux,1−Ux,2(t) =

√√√√∣∣∣∣ nx∑
j=1

∑
(l1,l2)∈Sx

2 cos{t(Wjl1 −Wjl2)}
nxmx(mx − 1)

(1− h2t2)31[−1,1](ht)

∣∣∣∣. (3)

Due to the presence of the indicator function,
∫
|φ̂ux(t)|dt <∞, and this integrability is a sufficient

condition for the following inversion. Hence, using φ̂ux(t) = φ̂ux(−t), we estimate Fux(u) by

F̂ux(u) =
1

2
+

1

2π

∫ ∞
0

exp(itu)φ̂ux(−t)− exp(−itu)φ̂ux(t)

it
dt

=
1

2
+

1

2π

∫ ∞
0

φ̂ux(t){exp(itu)− exp(−itu)}
it

dt

=
1

2
+

1

π

∫ ∞
0

sin(tu)

t

√√√√∣∣∣∣ nx∑
j=1

∑
(l1,l2)∈Sx

2 cos{t(Wjl1 −Wjl2)}
nxmx(mx − 1)

(1− h2t2)31[−1,1](ht)

∣∣∣∣dt
=

1

2
+

1

π

∫ 1/h

0

sin(tu)

t

√√√√∣∣∣∣ nx∑
j=1

∑
(l1,l2)∈Sx

2 cos{t(Wjl1 −Wjl2)}
nxmx(mx − 1)

∣∣∣∣(1− h2t2)3/2dt.
We evaluate this integration by the Gauss-Legendre quadrature formula. As before, for simulating

random numbers from this distribution we define the pth (0 < p < 1) quantile as q = sup{r : F̃ux(r) ≤

p}, where F̃ux(r) ≡ sup{F̂ux(r∗) : r∗ ≤ r}.

We want to point out that although deconvoluted kernel density estimate is numerically unstable,

the deconvoluted distribution function estimator after monotonization is quite stable numerically.

The results of Section 4 of Hall and Lahiri (2008) demonstrate that the MSE of the quantile estimator

based on the deconvoluted distribution function is quite stable for under (smaller values of bandwidth)

or over-smoothing (larger values of bandwidth).
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3.4 Validity of the Bootstrap

We now show that under some regularity conditions, the proposed Bootstrap method produces valid

approximation to the distribution of the test statistic under the null. We shall denote the Bootstrap

probability by P∗.

Theorem 3. Suppose that H0 : Fx = Fy holds and as nx, ny → ∞,
√
nx/ny → ρ ∈ (0,∞). Also

suppose that the bandwidths hw > 0 and hv > 0 are such that [{hw+(nxhw)−1}+{hv+(nxhv)
−1}]→ 0.

Then,

lim
nx→∞

sup
t≥0

∣∣∣P (Tnx ≤ t)− P∗(T ∗nx
≤ t)

∣∣∣ = 0, almost surely.

Next, for α ∈ (0, 1), let t̂nx,α denote the (1 − α)- quantile the Bootstrapped statistic T ∗nx
. Then,

an immediate consequence of this result is that for any α ∈ (0, 1), t̂nx,α− tnx,α → 0 almost surely. As

a consequence, under the conditions of Theorem 3, pr(Tnx > t̂α)→ α. Thus, the Bootstrap method

provides a valid method for calibrating the test statistic without having to estimate the covariance

structure of the limit distribution of Tnx . Finite sample properties of the Bootstrap approximation

are presented in the next section.

Remark 2. It may be noted that the formula for F̂ in Section 3.2 implicitly assumes that the median

of F (·) is zero, i.e., the median of Fx and Fy are zero. However, this does not pose any problem for

Bootstrapping the null distribution of the test statistic Tnx. To appreciate why, note that H0 : Fx = Fy

is equivalent to H ′0 : Fx,a = Fy,a for any a ∈ R, where Fx,a(t) = Fx(t + a) and Fy,a(t) = Fy(t + a),

t ∈ R. Thus, if necessary, by subtracting a common constant a ∈ R, we can, without loss of generality,

assume that under the null hypothesis, the medians of Fx and Fy are zero. Indeed, noting that the test

statistic Tnx can be written as Tnx =
∫
|φ̂x(t) − φ̂y(t)|2ω(t)dt, it follows that Tnx is invariant under

a common location change. As a result, one gets a valid approximation to the null distribution of

Tnx by using the estimator F̂ in Section 3.2 even when the median of the common distribution F is

different from zero. This observation also highlights the challenges and complexities associated with
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formulation of a valid Bootstrap method in the two sample testing problem in presence of measurement

error.

4 Simulation studies

Simulation designs: In this section, we present the numerical performance of the proposed test

via Monte-Carlo simulations. We simulated datasets that consisted of two samples, {W 1, . . . ,W nx}

and {V 1, . . . ,V ny}, where W j = (Wj1, . . . ,Wjmx)T and V k = (Vk1, . . . , Vkmy)T . We considered

nx = ny = 50, 200 and 500 while we had two different scenarios corresponding to the number of

repetitions: 1) mx = my = 2 and 2) mx = 2,my = 3. Type I error rate was examined in the following

four designs (D1, D2, D3, D4), while power of the test was examined in designs D5, D6, D7, and D8.

In addition, D9 and D10 were designed to explore robustness of the proposed method towards the

symmetric measurement error assumption.

D1 X, Y ∼ Normal(0, 1) and Ux, Uy ∼ DE(0, 0.35)

D2 X, Y ∼ Normal(0, 1) and Ux, Uy ∼ N(0, 0.52)

D3 X, Y ∼ Normal(0, 1) and Ux ∼ DE(0, 0.35), Uy ∼ N(0, 0.52)

D4 X, Y ∼ (χ2
1 − 1)/

√
2 and Ux ∼ DE(0, 0.35), Uy ∼ DE(0, 0.2)

D5 X ∼ Normal(0, 1), Y ∼ Normal(0.2, 1) and Ux, Uy ∼ DE(0, 0.35)

D6 X ∼ Normal(0, 1), Y ∼ DE(0, 0.7) and Ux, Uy ∼ DE(0, 0.35)

D7 X ∼ Normal(0, 1), Y ∼ DE(0, 0.7) and Ux ∼ DE(0, 0.35), Uy ∼ N(0, 0.52)

D8 X ∼ 0.5Normal(−0.9, 0.452)+0.5Normal(0.9, 0.452), Y ∼ Normal(0, 1) and Ux, Uy ∼ DE(0, 0.35)

D9 X, Y ∼ Normal(0, 1) and Ux, Uy ∼ EXP (0.5)− 0.5

D10 X ∼ Normal(0, 1), Y ∼ DE(0, 0.7) and Ux, Uy ∼ EXP (0.5)− 0.5
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Here DE(a, b) stands for the double exponential distribution with mean a and variance 2b2 and

EXP (a) denotes the exponential distribution with mean a. In the first three designs, both measure-

ment error variances associated with X and Y are 25% of the variability of X (or Y ). In D4, both

X and Y follow the modified chi-square distribution with degrees of freedom 1, mean 0 and variance

1. The choice of the true signals (the distribution of X or Y ) and the measurement error variance

were somewhat similar to that of Delaigle et al. (2008). In D4, measurement error variances corre-

sponding to X and Y are different, and consequently the variances of the convoluted observations are

different, i.e., var(Wjl) 6= var(Vkl∗). The designs are also different in terms of the smoothness of their

measurement error distributions, we considered the ordinary smooth class (D1, D4, D6, D8), the

supersmooth class (D2), the mixed case (D3, D5, D7). For the alternative hypotheses, we included

cases where there are differences in the location (D5) and in the shape (D6, D7, D8). In D9 and

D10, we considered centered exponential distribution for the measurement error with variability 25%

of that of the true signal.

Method of analysis: For each dataset, we carried out hypothesis test at the 5% level of sig-

nificance. For the proposed method we rejected the null hypothesis H0 : Fx(r) = Fy(r) against

Ha : Fx(r) 6= Fy(r) if the p-value calculated using B = 1, 000 Bootstrap samples was less than

α = 0.05. We also analyzed each data set using the naive testing methods that included the two-

sample K-S and A-D tests based on the averages {W j, j = 1, . . . , nx} and {V k, k = 1, . . . , ny}. In

the naive tests, {W j, j = 1, . . . , nx} and {V k, k = 1, . . . , ny} are considered as random samples from

Fx and Fy, respectively.

Regarding the choice of ω(t), we highlight the desirable properties of ω(t) advocated by Epps

and Pulley (1983). First, ω(t) should have more weight where the underlying difference between the

two CFs is large, and that difference is usually large in an interval near zero. Second, the weight

ω(t) should be large where the estimators âx(t) − ây(t) and b̂x(t) − b̂y(t) are highly precise. In

fact, the precision decreases as t moves away from zero. Furthermore, for the ordinary smooth and
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supersmooth class of measurement error distributions (Fan, 1991), the characteristics functions are

polynomially and exponentially decreasing, respectively. Consequently, for a small ε > 0, |φ̂ux(t)| ≤ ε

whenever |t| ≥ t∗ for some t∗ > 0, that in turn results in highly variable estimators âx(t), ây(t),

b̂x(t), b̂y(t) when |t| > t∗. Based on these considerations, for the proposed approach, we used

different weights, the normal weight ω(t) = exp(−t2/2)I(t1 < t < t2) and the uniform weight

ω(t) = I(t1 < t < t2). For each weight, we considered two sets of (t1, t2). In the first set we took

t1 = min{F−1x (0.005), F−1y (0.005)} and t2 = max{F−1x (0.995), F−1y (0.995)}, and the corresponding

weights are referred to as norm0.99 and unif0.99 for the normal and uniform weight, respectively. In

the second set we took t1 = min{F−1x (0.1), F−1y (0.1)} and t2 = max{F−1x (0.9), F−1y (0.9)}, and the

corresponding weights are referred to as norm0.8 and unif0.8. Results for these four different weights

show how the performance of the test depends on the weight function.

Results: For each scenario we simulated 5,000 datasets, and for each scenario we computed

the power, the proportion of times H0 is rejected at the 5% level out of 5, 000 replications. Tables

1 and 2 contain the simulation results for 1) mx = my and 2) mx 6= my cases, respectively. The

results indicate that the proposed test maintains the nominal level for all designs (D1 - D4) and

for different weights. For D4, the naive tests fail to maintain the nominal level, and their power

seems to be increasing with the sample size for both cases, 1) mx = my and 2) mx 6= my. The

intuitive reason is that although the means are the same E(W ) = E(V ), the variances are different,

var(W ) = 1+0.25/mx and var(V ) = 1+0.02/my. Therefore, K-S or A-D test based on the empirical

distributions of (W 1, . . . ,W nx) and (V 1, . . . , V ny) are likely to reject H0. For the scenarios D1-D3

when mx = 2 and my = 3, although the type-I error rate of the K-S and A-D seems to be under the

nominal level, a further simulation with nx = ny = 2000 revealed that the type-I error rate is exceeds

the nominal level as powers for K-S (A-D) test are 0.0544 (0.0572), 0.0542 (0.061), and 0.054 (0.061)

for designs D1, D2, and D3, respectively.

For the cases, where the alternative hypothesis holds, the power of the proposed test is increasing
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with the sample size. For D5, where the distribution of X and Y differ only by a location parameter,

the power of the proposed test is somewhat lower than that of the naive approaches. Here is an

intuitive explanation. Since the difference in the location parameters for the X and Y distributions

is well reflected in the difference between the CDFs of W and V when the distribution of Fux and

Fuy are the same, the naive methods are capable of differentiating the two underlying distributions.

Although the proposed method detects the difference between Fx and Fy in terms of the location

parameter, the actual difference is somewhat masked out by the variability of the estimator of the

CFs of the true signal and the measurement error. For scenarios D6, D7, and D8, the power of the

proposed approach is significantly better than the other methods, even for sample size n = 50. In

D6, D7, and D8, the mean and variance of the convoluted observations from the two samples are

almost the same, E(Wjl) = E(Vkl∗) = 0 and var(Wjl) ≈ var(Vkl∗), and also the first two moments of

W j are the same as that of V k, i.e., E(W j) = E(V k) = 0 and var(W j) ≈ var(V k) for mx = my case.

Additionally, the shapes of the distribution of W j and V k are not dramatically different, especially

for mx = my case. Therefore, the power of the K-S or A-D is lower than that of the proposed method.

Naturally the power of the naive approaches improve from mx = my = 2 to mx = 2,my = 3 scenario

as the variance of W and V become different due to different replications. For the asymmetric

measurement error model (D9 and D10), the proposed test maintains the level and gives better

power (unif0.99 and norm0.99) than the K-S or A-D tests. These results indicate that the proposed

test is quite robust towards the violation of the symmetric error assumption.

In summary, the simulation results indicate that the proposed test is consistent, while the naive

tests could be inconsistent. In the absence of any specific knowledge about the CF of the underlying

distributions, in our opinion, the unif0.99 weight is preferable as it covers a wide range of t-values and

gives equal importance to the difference between the two CFs at any t.

Based on our numerical experiences, estimation of quantiles needed for the Bootstrap part is quite

straight forward. Once the distribution functions Fx and Fy are estimated over a set of grid points
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ranging from min(W .. − 4.5σ̂x, V .. − 4.5σ̂y) to max(W .. + 4.5σ̂x, V .. + 4.5σ̂y), then the pth percentile

point for X is calculated as max{g : F̂x(g) ≤ p}, where g denotes a set of grid points. Here W .. and

V .. denote the overall mean of W and V , and σ̂2
x and σ̂2

y are given in the second last paragraph of

Section 3.2. Similarly, we obtain the percentile points for Y . Finding these maxima over the set of

grid points is easy in R (a single line R script). Also, the quantile estimators are numerically stable

with respect to bandwidth (Hall and Lahiri, 2008).

Prompted by a reviewer’s comment we conducted another simulation study to assess the sensitivity

of our approach towards the tuning parameters (hw, hv) used in the deconvolution part. They also

regulate t1 and t2 defined as the quantiles of the estimated distribution function. We generated data

according to simulation scenarios D1 (H0 holds) and D6 (H0 does not hold). Besides the optimal

choice of hw as hw = arg minh{n−1x I(h) + Bxh
4, h = 0.01, 0.02, . . . }, we took a bad choice defined

as hw = arg 90th percentile of {n−1x I(h) + Bxh
4, h = 0.01, 0.02, . . . }. In these two choices of the

bandwidth, h was varied over a grid of points. Under each choice of hw, we calculated F̂x. Similarly,

under the bad and optimal choices of hv we calculated F̂y. Next, we calculated (t1, t2), test statistic,

and p-value for every simulated dataset under both choices. Table 3 contains the power of the test

for the optimal and bad choices of (hw, hv). The results for design D1 show that the empirical level

(Type-I error rate) of the test is reasonably close to the nominal level for both choices of (hw, hv).

Even bad choices of bandwidth can maintain type-I error rate. For nx = ny = n = 50, power changes

between the two choices, and the change could be at most 20% on the relative scale. However, for

larger sample sizes, the change of power is modest (at most 9% on the relative scale). Thus, we

conclude that the power of the proposed method is fairly robust to the choices of the bandwidth

(hw, hv), specially for a large sample size. Plots of (hw, hv), (t1, t2) and the test statistic under the

two choices, bad and optimal, are given in the supplementary materials. The plots show that the

bad choice of the bandwidth leads to a slightly wider difference between t1 and t2 compared to that

of the optimal choice but test statistic’s distributions remain unchanged under these two choices.
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5 Numerical study using the NHANES data

We apply the proposed method to analyze the NHANES data that are publicly available at https:

//www.cdc.gov/nchs/nhanes/nhanes_questionnaires.htm.

Blood pressure example: First we consider the NHANES 2009-2010 survey data, and focus

only on non-Hispanic white males whose ages are between 35 and 55 years (middle-aged adults) so

that we have a homogeneous demographic group. Our goal is to test equality of the distribution

of systolic blood pressure between the two groups, non-alcoholic and alcoholic after adjusting the

effect for two important covariates BMI and income that are readily available in the NHANES

data. Alcohol consumption data are collected through two 24-hour recall interviews. We define

a subject as non-alcoholic if both measurements are less than 14 grams, otherwise the subject is

considered to be alcoholic. Since fourteen grams is considered to be the amount of alcohol in a

standard drink, we use this value to define the two behavioral groups. This classification results in

nx = 207 (non-alcoholic) and ny = 126 (alcoholic). Since an accurate measurement of blood pressure

is difficult to obtain, at least three measurements were taken in the mobile examination center. For

our analysis we consider the first three measurements for each subjects, i.e., mx = my = 3. We define

Ajk = log(systolic blood pressurejk) denote the logarithm of the kth blood pressure measurement of

the jth individual, k = 1, 2, 3, and j = 1, . . . , nx, and similarly Bjk is defined, for k = 1, 2, 3 and

j = 1, . . . , ny.

To adjust for the effect of body mass index (BMI), a continuous variable, and income, an ordinal

categorical variable, we calculate the residuals as described in Remark 1. Then we apply the proposed

test and the two naive tests on those residuals. As we discussed in the simulation study, we consider

the unif0.99 weight function. To calculate t1 and t2 we use the deconvoluted distribution functions F̂x

and F̂y instead of Fx and Fy as the later two are unknown in the real data.

The resulting p-values are given in the first row of Table 4. At the 5% level, the proposed method
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strongly rejects H0 while the naive approaches contradict each other so that it is difficult to make a

decision. For this and the next application, we use 10, 000 Bootstrap samples and the unif0.99 weight

function to calculate the p-value for our proposed method. The conclusion based on the proposed test

affirms the medical science that usually alcohol consumption and high blood pressure are associated.

Moreover, repeated binge drinking for a long time may cause elevated blood pressure (http://www.

mayoclinic.org/diseases-conditions/high-blood-pressure/expert-answers/blood-pressure/

faq-20058254).

Albumin-to-creatinine ratio (ACR) example: Here we check if the distribution of albumin-

to-creatinine ratio (ACR) differs by smoking status. Albumin is a protein and creatinine is a chemical

waste, and their ratio ACR is used to assess renal functionality. Usually higher level of ACR is

associated with a higher risk of renal events. Our interest is in testing equality of the distribution of

ACR among non-smoking and smoking group after adjusting the effect of the confounding variables

BMI and income.

In the NHANES study (2009-2010 survey data), urinary albumin and creatinine were measured

twice for each participants, the first sample was collected in the mobile examination center (MEC) and

the second sample was collected during the interview at home. We consider these two measurements

(samples) as the two noisy measurements of the same underlying truth, and hence mx = my = m = 2.

For this test we consider only non-Hispanic white males who are older than 60 years as the

renal issue is more prevalent in the older group. We define a person as a non-smoker if he

smoked less than 100 cigarettes in his lifetime, otherwise the person is called a smoker, and based

on this classification we obtain nx = 161 (non-smoking) and ny = 290 (smoking). We define

Ajk = log(albuminjk/creatininejk) for k = 1, 2, and j = 1, . . . , nx for the non-smoking group and

Bjk = log(albuminjk/creatininejk) for k = 1, 2, and j = 1, . . . , ny for the smoking group. First, we

obtain residuals as described in Remark 1 to remove the effect of BMI and income. Then we apply

the proposed test and the two naive tests on the residuals. As in the previous application, we con-

20

http://www.mayoclinic.org/diseases-conditions/high-blood-pressure/expert-answers/blood-pressure/faq-20058254
http://www.mayoclinic.org/diseases-conditions/high-blood-pressure/expert-answers/blood-pressure/faq-20058254
http://www.mayoclinic.org/diseases-conditions/high-blood-pressure/expert-answers/blood-pressure/faq-20058254


sider the unif0.99 weight function, where t1 and t2 are calculated from the deconvoluted distribution

functions F̂x and F̂y.

The resulting p-values are given in the second row of Table 4. For the proposed test, we get p-

value 0.009 so that we conclude that smoking status and ACR are related. At the 5% level, the A-D

fails to reject H0 while the p-value for the K-S test is barely below the nominal level. Therefore, as a

whole the naive test could be misleading. The test result based on the proposed method is consistent

with the finding of Hogan et al. (2007) who considered a similar issue with different smoking groups

and have used the data from the NHANES III survey (1988-1994).

Simulation study that mimics the NHANES data: To show the effectiveness of the ad-

justment method, when it is necessary, mimicking the real dataset on the systolic blood pressure

example, we conducted a simulation study. We generated two covariates T1 and T2 by mimicking

the distributions of BMI and income. Specifically, T1 was generated from the Gamma distribution

with shape 26.7 and rate 0.9, T2 from the multinomial distribution with the cell probability same

as the observed relative frequency from the data. Next, we defined BX
j = β̂0 + β̂1T1j + β̂2T2j + Xj,

BY
k = β̂0 + β̂1T1k + β̂2T2k + Yk, Ajl = BX

j + Ux,jl and Bkl = BY
k + Uy,kl, for l = 1, 2, 3, mx = my = 3,

(nx, ny) = (200, 120), (400, 240), where Xj, Yk, Ux,jl and Uy,kl were specified by some designs given in

Section 4. Here β̂ denotes the estimated β in the first data example.

For checking the type-I error rate, we considered designs D3 and D4, and a new design, D11:

Xj, Yk ∼ F̂ , Ux,jl ∼ F̂ux , Uy,kl ∼ F̂uy , where F̂ is the estimator of the common distribution of X and

Y in the first data example, and F̂ux and F̂uy are the corresponding estimator of the measurement

error distributions. For checking power, we considered designs D6, D8, and a new design, D12:

Xj ∼ F̂x, Yk ∼ F̂y, Ux,jl ∼ F̂ux , Uy,kl ∼ F̂uy , where F̂x and F̂y are the deconvolution estimator of

X and Y , respectively, for the first data example. Each dataset was analyzed using the adjustment

approach (Remark 1). Table 5 contains this simulation results. We find the patterns are similar to

those in Tables 1 and 2. One remarkable result in this simulation is that naive approaches cannot
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control the nominal level even when X, Y ∼ F̂ as in the case D4. Overall the proposed method shows

consistent behavior, and much superior performance than the other approaches.

6 Concluding remarks

This article considers the test of homogeneity of two distributions when observed data are contami-

nated with the classical measurement error. To extract the true signals from the error contaminated

data, we have applied a non-parametric method that does not make any assumption regarding the

true signal. Also, other than symmetry and non-vanishing characteristic function (CF) over the en-

tire real line, no other assumption was used for the measurement errors. We have proposed a valid

Bootstrap approach to calibrate the test statistic and calculate the (estimated) p-value of the test.

The benefit of the proposed approach is shown through simulation studies. The simulation studies

also show that the test maintains the nominal size and has good power properties in moderately

large samples over a wide range of measurement error distributions. Further, weight functions with

a shorter effective support (e.g., unif0.8 vs. unif0.99) may lead to less accurate results. We have

applied the proposed method to analyze two real datasets obtained from the NHANES 2009-2010

study. Since this data was collected from the nationally representative sample, the results of the data

analysis is applicable to a broader section of the population.

The proposed method can be extended to the scenarios, 1) where the number of replications (mx or

my) is varying by subjects, and 2) where instead of the replicated measurements, a validation dataset

is available. Alternatively the test statistic could be defined as the supremum of the squared distances

between the two estimated characteristic functions over a compact set which does not involve with

the weight function ω. A similar bootstrap method can be used to assess its null distribution.

The method is based on two critical assumptions, 1) the measurement error is independent of

the true signals, and 2) the measurement error distribution is symmetric and has a non-vanishing

CF over the entire real line. In observational studies, often replicated measurements are collected
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via self-reporting. Variability in self-reporting likely to change by subjects resulting in a dependence

between the true signal and the measurement error. This, known as heteroscedastic measurement

error, is a difficult problem (see Rudolph and Stuart (2018) for regression and Staudenmayer et al.

(2008) for density estimation) that lacks a complete nonparametric solution to date. The second

critical assumption excludes any skewed distribution or an uniform distribution over a compact set

to be the measurement error distribution. In future we will develop methods where these assumptions

will be relaxed to some extent.
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Table 1: The entries of the table show the proportion of the rejection of H0 at the 5% level for the
simulation study with sample sizes nx = ny = n and mx = my = 2 based on 5, 000 replications.
Here K-S, A-D, and C-F refer to the Kolmogorov-Smirnov, Anderson-Darling, and the proposed
characteristic function based test, respectively. The entries corresponding to designs D1-D4 show the
Type-I error rate, and the other entries are power.

n K-S A-D
C-F

unif0.99 unif0.8 norm0.99 norm0.8

D1
50 0.038 0.044 0.033 0.036 0.038 0.037
200 0.039 0.050 0.038 0.043 0.044 0.044
500 0.052 0.052 0.047 0.050 0.048 0.048

D2
50 0.039 0.050 0.029 0.036 0.036 0.037
200 0.038 0.052 0.039 0.043 0.041 0.044
500 0.049 0.051 0.037 0.043 0.041 0.044

D3
50 0.038 0.049 0.033 0.042 0.037 0.042
200 0.039 0.053 0.039 0.047 0.043 0.047
500 0.055 0.051 0.045 0.046 0.045 0.045

D4
50 0.041 0.056 0.010 0.038 0.035 0.037
200 0.052 0.083 0.033 0.036 0.037 0.036
500 0.120 0.198 0.040 0.036 0.039 0.035

D5
50 0.099 0.137 0.053 0.108 0.092 0.115
200 0.327 0.443 0.156 0.369 0.322 0.393
500 0.728 0.820 0.401 0.749 0.695 0.775

D6
50 0.063 0.069 0.095 0.053 0.085 0.051
200 0.147 0.154 0.439 0.110 0.315 0.095
500 0.423 0.470 0.863 0.275 0.745 0.222

D7
50 0.060 0.069 0.082 0.054 0.085 0.051
200 0.133 0.149 0.403 0.107 0.300 0.089
500 0.391 0.425 0.845 0.262 0.738 0.207

D8
50 0.097 0.084 0.218 0.054 0.101 0.053
200 0.326 0.251 0.812 0.066 0.392 0.061
500 0.828 0.832 0.997 0.132 0.896 0.104

D9
50 0.042 0.047 0.038 0.044 0.039 0.042
200 0.037 0.050 0.042 0.045 0.047 0.045
500 0.046 0.046 0.047 0.045 0.047 0.045

D10
50 0.062 0.069 0.109 0.052 0.092 0.046
200 0.150 0.159 0.450 0.121 0.319 0.099
500 0.443 0.472 0.875 0.280 0.752 0.217
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Table 2: The entries of the table show the proportion of the rejection of H0 at the 5% level for the
simulation study with sample sizes nx = ny = n and mx = 2,my = 3 based on 5, 000 replications.
Here K-S, A-D, and C-F refer to the Kolmogorov-Smirnov, Anderson-Darling, and the proposed
characteristic function based test, respectively. The entries corresponding to designs D1-D4 show the
Type-I error rate, and the other entries are power.

n K-S A-D
C-F

unif0.99 unif0.8 norm0.99 norm0.8

D1
50 0.038 0.043 0.037 0.038 0.038 0.038
200 0.039 0.048 0.041 0.047 0.047 0.045
500 0.055 0.056 0.046 0.051 0.051 0.052

D2
50 0.039 0.050 0.032 0.038 0.037 0.038
200 0.046 0.052 0.039 0.043 0.042 0.044
500 0.050 0.053 0.038 0.046 0.041 0.047

D3
50 0.036 0.049 0.036 0.038 0.039 0.039
200 0.038 0.054 0.042 0.046 0.046 0.048
500 0.049 0.053 0.044 0.048 0.047 0.048

D4
50 0.049 0.066 0.009 0.039 0.038 0.040
200 0.082 0.162 0.026 0.034 0.035 0.035
500 0.287 0.551 0.036 0.034 0.034 0.034

D5
50 0.105 0.141 0.059 0.112 0.100 0.120
200 0.342 0.457 0.179 0.384 0.339 0.409
500 0.746 0.828 0.434 0.764 0.718 0.786

D6
50 0.071 0.075 0.116 0.055 0.095 0.051
200 0.194 0.210 0.483 0.113 0.328 0.099
500 0.583 0.647 0.900 0.285 0.778 0.230

D7
50 0.070 0.075 0.112 0.059 0.089 0.056
200 0.190 0.210 0.475 0.113 0.318 0.094
500 0.558 0.621 0.890 0.282 0.769 0.219

D8
50 0.104 0.088 0.243 0.057 0.104 0.056
200 0.364 0.312 0.837 0.073 0.420 0.064
500 0.869 0.873 0.998 0.131 0.904 0.099

D9
50 0.042 0.046 0.041 0.041 0.039 0.042
200 0.038 0.050 0.046 0.047 0.047 0.046
500 0.046 0.050 0.051 0.046 0.045 0.045

D10
50 0.067 0.076 0.130 0.052 0.094 0.048
200 0.195 0.215 0.497 0.123 0.343 0.101
500 0.575 0.636 0.906 0.288 0.774 0.226
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Table 3: The entries of the table show the proportion of the rejection of H0 at the 5% level for the
simulation study with sample sizes nx = ny = n and mx = my = 2 based on 5, 000 replications.
Here K-S, A-D, and C-F refer to the Kolmogorov-Smirnov, Anderson-Darling, and the proposed
characteristic function based test, respectively. The entries corresponding to design D1 show the
Type-I error rate, and the other entries are power.

Design n unif0.99 norm0.99

Bad Optimal Bad Optimal

D1
50 0.029 0.033 0.033 0.034
200 0.035 0.037 0.039 0.045
500 0.048 0.048 0.040 0.049

D6
50 0.078 0.097 0.070 0.085
200 0.399 0.448 0.281 0.315
500 0.835 0.879 0.706 0.741

Table 4: The table shows the p-values for testing of hypothesis using the real data. Here K-S, A-
D, and C-F refer to the Kolmogorov-Smirnov, Anderson-Darling, and the proposed characteristic
function based test, respectively. Also, ACR≡ Albumin-to-creatinine ratio, and BP≡ Systolic blood
pressure. For the proposed method, the number of Bootstrap samples was 10, 000.

Variable K-S A-D C-F

BP 0.058 0.001 0.001
ACR 0.043 0.139 0.009

Table 5: The entries of the table show the proportion of the rejection of H0 at the 5% level for the
simulation study where simulated datasets mimicked the blood pressure dataset (mx = my = 3)
given in Section 5. Here K-S, A-D, and C-F refer to the Kolmogorov-Smirnov, Anderson-Darling,
and the proposed characteristic function based test, respectively.

nx = 200, ny = 120 nx = 400, ny = 240
K-S A-D C-F K-S A-D C-F

Type-I error rate
D3 0.039 0.049 0.046 0.043 0.051 0.048
D4 0.050 0.060 0.039 0.064 0.083 0.043
D11 0.053 0.060 0.038 0.065 0.073 0.046

Power
D6 0.125 0.121 0.398 0.261 0.273 0.716
D8 0.282 0.220 0.716 0.609 0.587 0.969
D12 0.575 0.814 0.821 0.882 0.986 0.984
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