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Summary. In case–control studies of gene-environment association with disease, when genetic and envi-
ronmental exposures can be assumed to be independent in the underlying population, one may exploit the
independence in order to derive more efficient estimation techniques than the traditional logistic regres-
sion analysis (Chatterjee and Carroll, 2005, Biometrika 92, 399–418). However, covariates that stratify the
population, such as age, ethnicity and alike, could potentially lead to nonindependence. In this article, we
provide a novel semiparametric Bayesian approach to model stratification effects under the assumption of
gene-environment independence in the control population. We illustrate the methods by applying them to
data from a population-based case–control study on ovarian cancer conducted in Israel. A simulation study
is conducted to compare our method with other popular choices. The results reflect that the semiparametric
Bayesian model allows incorporation of key scientific evidence in the form of a prior and offers a flexible,
robust alternative when standard parametric model assumptions do not hold.
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1. Introduction
Except for some rare diseases, such as Huntington or Tay
Sachs disease that may be the result of a deficiency of a
single gene product, most common human diseases have a
multifactorial etiology involving complex interplay of many
genetic and environmental factors. By identifying and charac-
terizing such complicated gene-environment interactions, one
has more opportunities to study etiology, diagnosis, prognosis,
and treatment of complex diseases.

The case–control study design, where sampling is condi-
tional on the presence or absence of disease, is a powerful
epidemiologic tool for studying potential risk factors of rare
diseases. It has been established that prospective logistic re-
gression analysis of case–control data is “efficient” in the
modern semiparametric sense with respect to a completely
unrestricted covariate density model (Breslow, Robins, and
Wellner, 2000). A special aspect of the gene-environment as-
sociation problem is that it may often be reasonable to as-
sume that a subject’s genetic susceptibility (G) is independent
of the environmental exposure (E). Consequently, one may
be able to obtain more efficient estimation techniques than
the traditional logistic regression, by exploiting the additional
G–E independence restriction.

However, methods that use G–E independence pro-
duce severely biased estimates if the assumption is vi-
olated (Schmidt and Schaid, 1999; Albert et al., 2001).

Nonindependence is less likely to occur when the environmen-
tal exposure is external (pollution, pesticide, or radioactive
substance) or a randomized treatment in a clinical trial. One
has to be much more cautious with the independence assump-
tion when considering behavioral risk factors and metabolic
polymorphisms that could alter an individual’s behavior.
Gatto et al. (2004) discuss several such potential sources of
nonindependence. In fact, genetic susceptibility factors and
environmental exposures, though unlikely to be causally re-
lated at an individual level may be correlated at a population
level due to their dependence on other variables that strat-
ify the population, such as age, ethnicity, family history, and
alike. For example, a woman with a strong family history of
breast cancer is more likely to carry BRCA1/2 (two major
genes identified for breast and ovarian cancer) mutation and
knowing her family history, less likely to use postmenopausal
hormones. This may result in a negative association between
BRCA1/2 mutation and hormone use. In such instances, G–E
independence does not hold marginally, but may hold when
conditioned on the stratification variables (for instance, family
history). Modeling stratification effects can thus be viewed as
a possible remedy to guard against resultant bias due to vio-
lation of the G–E independence assumption. One of the major
goals of this article is to develop techniques to model stratifi-
cation effects in a flexible, data-adaptive way in an estimation
framework that exploits conditional G–E independence.
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Piegorsch, Weinberg, and Taylor (1994) first observed that
one can estimate the multiplicative G–E interaction param-
eter with data from cases alone, provided that G and E are
independent in the population and the disease is rare. They
also noted that the estimate of the G–E interaction param-
eter from case-only data is more efficient than its counter-
part obtained from case–control data. Umbach and Weinberg
(1997) showed that using data on both cases and controls,
one can estimate the main effects and interaction by fitting a
suitably constrained log-linear model under a rare disease as-
sumption. In a population-based case–control study of ovar-
ian cancer in Jewish women in Israel, Modan et al. (2001)
argued that under G–E independence and rare disease assump-
tion, the disease odds ratio associated with E among subjects
with genotype G = g can be estimated by a logistic regres-
sion analysis that compares P (E |D = 0) with P (E |D = 1,
G = g). However, the method proposed in Modan et al. (2001)
also does not allow for the estimation of all main effects of
interest. The extension of these methods in the presence of
stratification factors is not immediate as well.

Chatterjee and Carroll (2005) hereafter referred as CC pro-
pose a semiparametric maximum likelihood method of estima-
tion of all the logistic regression parameters. They exploit the
G–E independence assumption and use data from both cases
and controls. Their method addresses many of the limitations
of the existing methods as discussed above. CC derive a ro-
bust profile-likelihood-based estimation technique that does
not require the rare disease assumption. They also consider
the issue of stratification effects and propose a method when
the G–E independence assumption only holds conditional on
the set of stratification variables (S). CC consider a logistic
disease probability model for P(D |G, E, S). They proceed to
work with the joint retrospective likelihood of the form P(G,
E, S |D), factorized as,

P (G,E, S |D) =
P (D |G,E, S)P (G |E,S)P (E,S)∑

G,E, and S P (D |G,E, S)P (G |E,S)P (E,S)
.

Due to the G–E independence assumption conditional on S,
P(G |E, S) reduces to P(G | S), and thus it remains to model
P(E, S) and P(G | S). CC leave the joint distribution of E and
S, P(E, S), to be fully nonparametric, but model P(G | S) by
assuming a logistic regression with S as covariate. As we will
note, the parametric logistic model for the P(G | S) is often
inadequate, especially for a genetic mutation that is rarely
detected in healthy controls but commonly prevalent in the
case population. To overcome this problem, we use a factor-
ization of the partially retrospective likelihood P(G, E |D, S)
that allows us to model the genotype frequencies separately
in the case and the control population. Moreover, a flexible
Bayesian model can use information obtained from genetic
models (Parmigiani, Berry, and Aguilar, 1998) as well as em-
pirical data (Couch et al., 1997), which predict population
frequencies for BRCA1/2 mutation after adjusting for covari-
ates. This information could be used in the form of an infor-
mative prior distribution assigned to P(G | S) and lead to more
accurate estimation. To elicit this advantage of the Bayesian
paradigm while estimating all the parameters in the G–E lo-
gistic regression model, and not just G–E interaction, remains
another goal of this article.

The data set we use is a replica of the one that CC use,
based on a case–control study on ovarian cancer patients in
Israel (Modan et al., 2001). We consider the presence of muta-
tion of BRCA1/2 as the genetic risk factor and the number of
years of oral contraceptive (OC) use and parity as the environ-
mental exposures. The stratification variables we consider are
age group, ethnicity, personal history of breast cancer (PHB),
and family history of breast and ovarian cancer (FHBO). We
model the control distribution of the continuous environmen-
tal exposures conditional on S as a Dirichlet process mixture
of normals (DPM), which provides a natural measure of the
degree of stratification and leads to model-robust inference.
An extensive simulation study providing an in-depth com-
parison of the proposed Bayesian methods with the powerful
estimation techniques provided by CC, the case-only method
and ordinary logistic regression is a very important feature
of this article. Our simulation explores several scenarios, with
changing distributions for G and E as well as under violation
of the G–E independence assumption even when conditioned
on observable confounders.

It appears that under G–E independence, the proposed
semiparametric Bayesian method has a real advantage over
the competing methods under any of the following situations
(i) the individual genotype frequencies in each stratum do
not follow the logistic multiplicative odds model in terms of
stratification variables, and (ii) the genetic mutation is rare
in the control population and is commonly prevalent in the
case population. The gain is significant when the number of
strata defined by S is relatively large. If the G–E indepen-
dence assumption even when conditional on S fails, all the
methods that use this assumption perform poorly, least so for
the Bayesian semiparametric method, which is more robust
to model misspecification.

The rest of the article is organized as follows. In Section 2,
we present the model, likelihood, priors, and posteriors.
Section 3 contains analysis of the Israeli ovarian cancer
data. Section 4 presents our simulation study and the results.
Section 5 contains concluding discussion, while proofs and
computational details are relegated to the Appendix available
online.

2. Model, Likelihood, Priors, and Posteriors
Consider a case–control study with n subjects, of which n1

are cases and n0 are controls. Let D be the binary disease
variable, i.e., Dj = 1 if the jth subject is a case, and Dj = 0 if
the subject is a control. The genetic risk factor G is essentially
the genotype at a single locus within a candidate gene. We
will consider G as a categorical variable with M + 1 levels,
namely g0, . . . , gM . In addition, the data are assumed to be
stratified based on some other covariates, say S. We consider
the following logistic regression function to model the disease
probability in terms of G, E, and S,

P (D = 1 |G,E,S)

= H

{
β0(S) +

M∑
m=0

I(G = gm)β1m + β2E

+E

M∑
m=0

β3mI(G = gm)

}
, (1)
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where H(u) = {1 + exp (− u)}−1. The intercept β0(S) cap-
tures stratification effects due to the covariates S on the risk of
disease. Let β1 = (β10, . . . ,β1M ), β2, and β3 = (β30, . . . ,β3M )
represent the main effect of the genetic factor, the main ef-
fect of the environmental factor, and their interaction effect,
respectively. For parameter identifiability, we set β10 = 0 and
β30 = 0. For simplicity, we present our model with only one
continuous environmental exposure. Extension to multiple
continuous exposures E is straightforward (see Remark 3).
One could adapt this method when E is a mixed set of contin-
uous and categorical exposures by using other nonparametric
methods like the Bayesian bootstrap.

As we continue to compare and contrast our methods with
CC and traditional logistic regression, we would first like to
point out that each method is based on a different likelihood;
the CC method uses a fully retrospective likelihood, P(G, E,
S |D), the traditional logistic model uses a fully prospective
likelihood, P(D |G, E, S), whereas our method uses the fol-
lowing partially retrospective likelihood P(G, E |D, S) factor-
ized as

LR =

n∏
j=1

P (Gj , Ej |Sj ,Dj)

=

n∏
j=1

{P (Gj |Ej ,Sj ,Dj)P (Ej |Sj ,Dj)}. (2)

As illustrated in Prentice and Pyke (1979) and discussed
in Roeder, Carroll, and Lindsay (1996), the form of the
retrospective likelihood considered here is compatible with
the logistic form of the prospective likelihood. Evaluation of
the likelihood function (2) requires the conditional distribu-
tions of [G |E, S, D] and [E |S, D]. We make the following
assumption:

Assumption 1: Conditional on S, G and E are indepen-
dent in the control population, i.e., P (G |D = 0, E, S) =
P (G |D = 0, S).

When the disease is rare in each stratum, the control popu-
lation mimics the entire population, thus the usual G–E inde-
pendence assumption in source population, i.e., P (G |E, S) =
P (G |S) is approximately equivalent to Assumption 1. The
two assumptions of G–E independence in source population
and rare disease are made by Piergorsch et al. (1994), Umbach
and Weinberg (1997), and Modan et al. (2001), while CC do
not need the rare disease assumption. Our analysis is exact
under Assumption 1. As pointed out in Schmidt and Schaid
(1999), the rare disease assumption is quite subtle and may
not hold, for example, in situations where the disease risk
is much higher for the carriers of a particular gene muta-
tion or for certain strata of the population. In the dataset
we consider, the risk of ovarian cancer is known to be higher
for BRCA1/2 carriers and for subjects with family history
of breast or ovarian cancer. Fortunately, the bias due to the
rare disease assumption has less impact when the overall dis-
ease prevalence P(D = 1) is small, even with highly penetrant
genes (Schmidt and Schaid, 1999).

We do recognize that directly verifying Assumption 1 em-
pirically could be quite difficult based on the given study

at hand, as tests of independence will have little power.
Many researchers have considered this issue of verifying G–E
independence in the control population in the context of using
this as a screening tool to validate the use of case-only analysis
(Albert et al., 2001). The G–E association pattern in controls
reflect G–E association in source population if baseline disease
risk is less than 0.1% (Gatto et al., 2004). To address this is-
sue, in our simulations, we do consider performance of all the
methods under various departures from Assumption 1. We
advocate that when substantial uncertainty remains on the
validity of the independence assumption, statistically signifi-
cant results based on the proposed methods should be treated
as precursors for high-priority investigations for future epi-
demiologic studies.

Assuming that the first n0 observations are controls and
the next n − n0 observations are cases, under Assumption 1,
the retrospective likelihood in (2) reduces to

LR =

n0∏
j=1

{P (Gj |Sj ,Dj = 0)P (Ej |Sj ,Dj = 0)}

×
n∏

j=n0+1

{P (Gj |Ej ,Sj ,Dj = 1)P (Ej |Sj ,Dj = 1)}.

Consequently, to evaluate the likelihood contributed from
control data we will need to specify probability models for
P(G |S, D = 0) and P(E |S, D = 0). Following the tech-
nique first suggested by Satten and Kupper (1993), we present
the following Lemmas which will then furnish expressions for
P (G |S, E, D = 1) and P(E |S, D = 1), once we have the
control distributions and the prospective model as in (1)

Lemma 1:

P (G = gm |E,S,D = 1)

P (G = gm |E,S,D = 0)

=
P (D = 1 |G = gm, E,S)/P (D = 0 |G = gm, E,S)

P (D = 1 |E,S)/P (D = 0 |E,S)
.

Lemma 2:

P (D = 1 |E,S)

P (D = 0 |E,S)

=

M∑
m=0

P (D = 1 |G = gm, E,S)

P (D = 0 |G = gm, E,S)
P (G = gm |D = 0, E,S).

Lemma 3:

P (E |S,D = 1)

P (E |S,D = 0)
=

P (D = 1 |E,S)/P (D = 0 |E,S)∫
P (D = 1 |E,S)

P (D = 0 |E,S)
P (E |S,D = 0) dE

.

The proofs of the Lemmas are collected in Web Appendix A.

Remark 1. With our likelihood conditional on S, we do not
intend to estimate the relative risks due to S and focus only
on our parameter of interest β = (β1, β2, β3). As we proceed,
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we note that under our formulation, we would tacitly avoid
direct estimation of β0(S).

Before describing the estimation theory, we first would like
to address the identifiability of the parameters in the prospec-
tive model (1) and the retrospective likelihood LR. As stated
in Prentice and Pyke (1979), if there are no assumptions
made on the covariate distribution H(g, e | s) = P (G = g,E =
e |S = s), neither H(·, · | s), nor β0(S) is identifiable. But β is
always identifiable under any choice of H. Following lemma
1 of Roeder et al. (1996) it can be easily shown that under
Assumption 1 on the covariate density, β remains identifiable
in our likelihood LR.

We consider S as a vector of q ≥ 1 categorical covariates,
with the kth variable having rk categories or levels. Therefore,
the level combinations of S define I =

∏q
k=1 rk possible strata.

For instance, in the Israeli ovarian cancer data we consider q =
4 stratification variables: (Age group, ethnicity, PHB, FHBO),
the first three each having two categories and FHBO having
three categories. Therefore, S defines I = 2 × 2 × 2 × 3 =
24 possible strata. Define a categorical variable Z which can
assume I possible values, with each value corresponding to a
distinct level combination of the set of stratification variables.
We can now rewrite LR after replacing Sj by the stratum
membership indicator of subject j, namely Zj .

LR =

n0∏
j=1

{P (Gj |Zj ,Dj = 0)P (Ej |Zj ,Dj = 0)}

×
n∏

j=n0+1

{P (Gj |Ej , Zj ,Dj = 1)P (Ej |Zj ,Dj = 1)}.

(3)

We consider the following model for the control distribution
of the genetic factor in stratum i,

log
P (G = gm |Z = i,D = 0)

P (G = g0 |Z = i,D = 0)
= γim, m = 1, . . . ,M. (4)

Note that γi0 = 0. The above model does not assume any
stringent parametric form for P (G |D = 0, S) in terms of
S but simply treats the probabilities in each stratum to
be the model parameters, allowing complete distributional
flexibility.

Result 1. Using (1), (4), and Lemma 1, we obtain the case
distribution of G as:

P (G = gm |E,Z = i,D = 1)

=
exp(β1m + β3mE + γim)

1 +

M∑
k=1

exp(β1k + β3kE + γik )

, m = 1, . . . ,M. (5)

Proof of Result 1 is presented in Web Appendix A. Note that
although in the control population by virtue of the indepen-
dence assumption, P (G |E, D = 0, Z = i) = P (G |D = 0,
Z = i), in the case population, P (G |E, D = 1, Z = i) does
depend on E.

Due to the high-dimensional nature of the stratification
variables S, it is often hard to model the effect of S on the
distribution of E explicitly. We consider a flexible semipara-
metric Bayesian approach to model the distribution [E |D =

0, Z = i], which allows for possible stratification effects on
the distribution of E and does so in a data-adaptive way. We
consider the case when E is continuous, as in our data exam-
ple. Our DPM with a normal kernel can be expressed in the
following hierarchical structure

[E |D = 0, Z = i] ∼ N
(
µi, σ

2
i

)
with

θi =
(
µi, σ

2
i

) ∣∣P ∼ P and P ∼ DP(αP0), (6)

where P, serving as a prior on the θi, i = 1, . . . , I, is itself a
random probability measure. We assume that P is realization
of a Dirichlet process (DP) with a scalar precision parame-
ter α ≥ 0 and base measure (or base prior) E[P] = P0 which
is a bivariate cumulative distribution function on R×R+.
A property of the DP prior is that the random probability
measure P is almost surely discrete, leading to the following
properties which reinterpret the DPM model structure (see
Antoniak, 1974): (i) Any realization of θ1, . . . , θI generated
from P lies in a set of K(≤I) distinct values, denoted by
ω = {ω1, . . . , ωK}; (ii) ωl, (l = 1, . . . ,K) are a random
sample from the base prior P0; (iii) K(≤I) is drawn from
an implicitly determined prior distribution depending on the
precision parameter α and I; and (iv) Given K ≤ I, the I
values are selected from the set ω according to a uniform
multinomial distribution.

The above discussion is conditional on α and the hyperpa-
rameters which determine P0.

With this hierarchical mixture prior structure for the con-
trol distribution of E and the prospective logistic model (1), it
now remains to investigate the nature of the case distribution
of E. The following result provides an answer.

Result 2. Assume that the θi take values ωl from the set
ω as described in (i). Then

[E |Z = i, D = 1,θi = ωl] =

M∑
m=0

pilmφ
(
E;ω∗

lm

)
, (7)

where φ(·; θ) denotes the normal density with a parameter
vector θ, ωl = (µl, σ2

l ), say, and ω∗
lm = (µl + β2σ

2
l + β3m

σ2
l , σ

2
l ) and pilm = exp{β1m + (µl + β2σ

2
l + Zβ3mσ2

l )
2/(2σ2

l )

+ γim}/
∑M

k=0 exp{β1k + (µl + β2σ
2
l + β3kσ

2
l )

2/(2σ2
l ) + γik}.

Hence, the distribution of E in the case population, condi-
tional on all other parameters is again a DPM but not with a
normal kernel but with a mixture kernel given by equation (7).

The exact expression of the likelihood (3) and proof of Re-
sult 2 are deferred to Web Appendices B and A, respectively.
We will refer to this model as EDPM for future references.

Prior structure: The likelihood in equation (3) involves
the association parameters β1, β2, β3, and γi1, . . . , γiM , and
θi = (µi, σ2

i), i = 1, . . . , I. We use independent normal
priors for all the association parameters and also on γim ’s,
m = 1, . . . ,M. We will note in our real data example (with
only two possible values of G, so that m = 0, 1) that if we a
priori know that the mutation is rare in the control popula-
tion, and have an established prediction model for mutation
frequencies P(G |S), we should select an informative prior on
γi1, so that the effective range of the carrier probabilities in
the control/case population for each stratum reflects the sci-
entific guesses for these values.
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It now remains to describe the hierarchical prior structure
involved in the DPM model. Note that the mean of the ran-
dom probability measure P is P0 is a bivariate distribution,
and we consider the following standard normal-inverse gamma
(IG) structure, namely, under P0, µi |σ2

i ∼ N(m0, τσ
2
i ), (σ

2
i ) ∼

IG(s/2, S/2). We add an extra layer of uncertainty in P0 by us-
ing Normal(µm0 , σ

2
m0

) and IG (aτ/2, bτ/2) prior on m0 and τ ,
respectively. Lastly, following Escobar and West (1995), we as-
sume a Gamma (aα, bα) prior on α, and the hyperparameters
aα and bα are so chosen that a priori mean of K is reasonably
large (compared to I) and the variance is modest. Choos-
ing such a “further” prior is suggested in West, Müller, and
Escobar (1994).

None of the full conditional distributions follows a standard
distributional form and posterior inference is made by using
the Markov chain Monte Carlo (MCMC) numerical integra-
tion technique. Conditional on θi , drawing random numbers
from the respective conditional distributions are straightfor-
ward applications of the Metropolis–Hastings algorithm. To
update the θi we use the no gaps algorithm prescribed by
MacEachern and Müller (1998). We describe the computa-
tional details of our algorithm in Web Appendix C.

Remark 2. An interesting feature of the EDPM model is
that it selects K, the number of distinct values in I realiza-
tions from P or the cardinality of the set ω in a data-adaptive
way depending on the extent of stratification effects on the
control distribution of E. In the presence of strong stratifica-
tion effects, all of the ωj could be distinct, i.e., K = I; in the
complete absence of stratification effects, K = 1. Typically K
will lie somewhere in between. The posterior mode of K thus
serves as an indicator of the degree of stratification effects on
the control distribution of E.

In the above discussion we have assumed S to be a set
of categorical stratification variables which is most often the
case. If any of the stratification variables is continuous, we
recommend categorizing them for implementing the EDPM
model.

Remark 3. The proposed method can be applied to a mul-
tivariate continuous environmental exposure variable by con-
sidering multivariate normal kernel in the DP structure, which
has been illustrated in our additional real data analysis avail-
able online.

Remark 4. Note that, as indicated in Remark 1, via the
above formulation, the nuisance parameters β0(S) do not
present themselves in the case distributions of G and E as
presented through Lemmas 1 and 3, respectively. Because the
analysis is conditional on S, β0(S) appears as a common term
in both the numerator and denominator of equations (5) and
(7) and thus gets canceled in the ratio. Hence, the retrospec-
tive likelihood does not involve β0(S).

Remark 5. One could naturally think of modeling the dis-
tribution of G as log {P (Gj = gm |Dj = 0, Sj)/P (Gj =
g0 |Dj = 0, Sj)} = ν0 + νT

mSj , m = 1, . . . ,M , where νm

is a vector of regression parameters capturing the effect of
stratification variables on the incidence of the genetic suscep-
tibility factor in the control population. Because BRCA1/2
is very rare in the control population, it is hard to predict

BRCA1/2 carrier probabilities using this logistic structure.
Thus we only consider model (4).

3. The Israeli Ovarian Cancer Data
In this section, we apply the proposed methodology to the
data from a population-based case–control study on all ovar-
ian cancer patients identified in Israel between March 1, 1994
and June 30, 1999 (Modan et al., 2001). Blood samples were
collected from the cases and the controls in order to test
for the presence of mutation in the two major breast and
ovarian cancer susceptibility genes BRCA1 and BRCA2. In
addition, the subjects were interviewed to collect data on re-
productive/gynecological history such as parity, number of
years of OC use, and gynecological surgery. The main goal of
the study was to examine the interplay of the BRCA1/2 genes
and known reproductive/gynecological risk factors of ovarian
cancer. Because the actual data had confidentiality issues, a
replica was generated by replacing only the original genetic
susceptibility factor by a simulated binary genetic risk fac-
tor, retaining all the features as in the original dataset. The
dataset we used contained 832 cases and 747 controls.

This is a real example where OC use and BRCA1/2 muta-
tion may appear to be correlated simply because both could
be related to the stratification variables S like age, ethnicity,
and family history, and it is more realistic to assume indepen-
dence between these two genetic and gynecological risk factors
conditional on S. However, it is hard to verify Assumption 1
based on this single dataset as only 7 out of the 747 con-
trols were BRCA1/2 carriers. We ran a logistic regression of
G on the exposures of interest E in the controls in each stra-
tum, and though the tests of association were insignificant,
the sparsity of the data makes the results of these tests for
association unstable and less reliable. However, Modan et al.
(2001, p. 236) and CC both indicate that it is reasonable to
assume that carrier status is independent of the exposures un-
der consideration, namely parity and number of years of OC
use, and we also employ this assumption in our analysis.

It is known that the risk of ovarian cancer is higher for cer-
tain strata (e.g., for the subgroup with family history of both
breast and ovarian cancer) as well as for BRCA1/2 carriers. So
the rare disease assumption may not hold for all levels of the
genetic factor or for certain subgroups. However, Modan et al.
(2001) reported only 1326 cases of epithelial ovarian cancer
during the 5-year study period with a baseline population of
approximately 1.5 million, suggesting an empirical estimate
of P (D = 1) = 8.7 × 10−4. Thus the odds-ratio estimates
obtained through our analysis under Assumption 1 will pro-
vide adequate approximations to the ones obtained via exact
analysis using G–E independence in source population.

All analyses are carried out conditional on four stratifica-
tion variables S = [age group (=0 if age <50 years and = 1
if age ≥ 50 years), ethnicity (=1 for Ashkenazi Jews and 0
otherwise), PHB (=1 if present and 0 if absent), FHBO (=
0 if no history, 1 if one breast cancer case in family and 2
if ovarian cancer or two or more breast cancer cases in the
family)]. So the total number of strata defined by the level
combinations of S is I = 24.

We analyze the data using the EDPM method as described
in the previous section. For modeling the distribution of the
genetic factor, we use equation (4). The genetic factor G is
binary with G = 0 for absence of any BRCA1/2 mutation
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and G = 1 for carrying at least one BRCA1/2 mutation. Due
to rare BRCA1/2 mutation among the controls, traditional
logistic regression analysis would yield imprecise estimates of
the parameters of interest (Modan et al., 2001). Compounding
to the sparsity is the fact that we do have a relatively large
number of strata defined by S and as a result, estimation of
genotype frequencies individually in each stratum would be
imprecise in a classical setup. CC adopt a parametric logistic
model for P(G |S) to circumvent this problem which is also
not satisfactory. In a Bayesian paradigm, we effectively use
the prior knowledge on BRCA1/2 carrier probabilities with
varying levels of family history, age, and ethnicity based on
genetic algorithms (BRCAPRO: Parmigiani et al., 1998) and
empirical data (Couch et al., 1997). We allow uncertainty in
these predictions by allowing the informative prior on γi1 to
vary around the scientific guesses and in this process relax
the stringent logistic assumption of CC. The effective range
of prior probabilities for P (G = 1 |S, D = 0) typically varied
from 10−1 to 10−4 across different strata.

We consider OC use as the only environmental exposure
(E) as a direct illustration of the methods formulated in Sec-
tion 2. With a binary G, the disease-risk model (1) becomes
logitP (D = 1 |G, E, S) = β0(S) + βBRCAI[BRCA1/2 =
1] + βOCOC + βBRCA∗OCI[BRCA1/2 = 1] ∗OC. For each of
βBRCA, βOC, βBRCA∗OC we use N(0, 16) prior. Because scientific
theory suggests high positive value of βBRCA, and a protec-
tive effect of OC for the noncarriers, one could also select a
sharper prior for βBRCA and βOC, resulting in slightly more
precise parameter estimates (web Table 1). For the EDPM
model as described in equation (6), under the base-measure
P0, we assume that the variance component σ2 ∼ IG(2, 1) and
µ |σ2 ∼N(m0, τσ

2). The exposure variable, number of years of
OC use typically ranges from 0 to 20 years. We chose the N(3,
9) prior for m0, and the IG(3,1) prior on τ . Choosing priors for
α is a challenging task as α has the dual role of capturing the
degree of faith in the base measure, as well as determining

Table 1
Analysis of Israeli ovarian cancer data by all five methods, with presence/absence of BRCA1/2 mutation as the genetic factor

and OC use as the environmental exposure. Estimates of the log odds ratios corresponding to the main effects and the
interaction parameter are presented with 95% HPD and confidence intervals. The analysis is adjusted for age, ethnicity, family

history of breast or ovarian cancer, and PHB cancer.

Model βBRCA βOC βBRCA∗OC α K

EZIMa Estimate 3.78 −0.05 0.09
post. st.dev. 0.13 0.02 0.03

HPD (3.46, 3.98) (−0.13, −0.01) (0.03, 0.15)
EDPMb Estimate 3.75 −0.07 0.11 14.75 5.76

post. st.dev. 0.13 0.03 0.04 5.84 1.88
HPD (3.44, 3.93) (−0.14, −0.02) (0.04, 0.18) (5.89, 28.57) (2, 10)

CCc Estimate 3.63 −0.06 0.11
std. error 0.40 0.03 0.03

CI (2.85, 4.42) (−0.11, −0.01) (0.04, 0.18)
Ordinary Estimate 3.77 −0.06 0.05
Logistic std. error 0.44 0.03 0.10

CI (2.91, 4.63) (−0.12, −0.01) (−0.15, 0.24)
Case only Estimate 0.09

std. error 0.03
CI (0.03, 0.16)

aThe parametric Bayesian approach with an EZIM for the control distribution of OC use.
bThe semiparametric Bayesian approach with a DPM model for the control distribution of OC use.
cThe profile likelihood method proposed by Chatterjee and Carroll (2005).

the number of distinct values of θ. As prescribed by Esco-
bar and West (1995), we choose a Gamma prior on α which
allows for prior probabilities for larger values of K ≤ I =
24. We experimented with various choices of the shape and
scale parameters of the Gamma prior, and the results are pre-
sented for Gamma (4, 1).

For comparison purposes, we also analyzed these data with
a parametric model, largely targeted towards this dataset. As
81% of the cases and 86% of the controls in the data did not
use OCs at all, we used a zero-inflated model (EZIM) for the
control distribution of OC use. For individual j, we consider
pj as the probability of nonexposure (Ej = 0), and with prob-
ability (1 − pj ), the exposure values follow N(µj , σ

2), where
µj = δ0 + δT

1 Sj . The mixing probabilities are also modeled
through the four observed stratification factors, logit(pj ) =
η0 + ηT

1 Sj . The case distributions can be obtained as mix-
ture distributions via Lemmas 1–3. For the EZIM model, we
consider mutually independent N(0, 16) prior for the regres-
sion parameters, βBRCA, βOC, and βBRCA∗OC, as well as on δ0,
η0’s and each component of δ1 and η1. For the scale parame-
ter σ2 we use IG(2,1) prior. Posterior inference is again based
on MCMC samples from the full conditional distribution of
the parameters.

We analyzed these data through the method proposed by
CC and the case-only method after adjusting for the co-
variates S. The case-only method only furnishes estimate of
the BRCA*OC interaction parameter. The results are pre-
sented in Table 1. There is little in the way of differences for
estimation of βOC and βBRCA∗OC by all the four methods that
use G–E independence. But for estimating the main effect of
BRCA 1/2 carrier status as measured by βBRCA, the Bayesian
methods have much smaller posterior standard deviations and
narrower HPD intervals compared to the standard error and
the CI for the estimate of βBRCA in the CC method. The re-
sults indicate that standard logistic assumption is less likely to
hold for P(G |S) in this dataset, and the more flexible model
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for G as given in equation (4), boosted with the scientifically
validated priors, adapts itself more naturally to the features
of the data. Interestingly, the semiparametric EDPM model
performs quite comparably to the parametric EZIM that is
designed specifically to capture the distribution of OC use.

We also analyzed the data by ordinary logistic regres-
sion analysis that does not exploit G–E independence in any
manner. The wider confidence intervals, especially for the in-
teraction parameter indicates that any method using G–E in-
dependence is able to estimate the interaction parameter more
precisely. Whereas all the other four methods declare G–E
interaction to be statistically significant, the ordinary logistic
model cannot detect significance.

In summarizing the results, we first observe that for women
who never used OC (E = 0), there is an almost astronomic
increase in risk of ovarian cancer for a BRCA1/2 mutation
carrier. The estimated odds ratio by the EDPM method is
exp (3.75) = 42.52. On the other hand, among noncarriers,
longer use of OC is related to decrease in disease risk with
associated odds ratio exp (−0.0748) = 0.92. However, the es-
timate of the interaction parameter βBRCA∗OC suggests that
among BRCA1/2 carriers, the risk of ovarian cancer increases
slightly with OC use, with an odds ratio exp (−0.0748) ×
exp (0.1091) = 1.03, but this effect is not statistically signif-
icant (95% credible interval=[0.97, 1.11]). The precision es-
timates and the credible intervals all indicate that the main
effect of BRCA1/2 and the BRCA–OC interaction are statis-
tically significant whereas the main effect of OC use is only
marginally significant.

Figure 1 presents plots of posterior distributions for the
log odds-ratio parameters. To explore the degree of strat-
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Figure 1. Israeli ovarian cancer data analyzed by the
EDPMa model with presence/absence of BRCA1/2 mutation
as the genetic factor and OC use as an environmental expo-
sure: Histogram of last 5000 MCMC values for the main ef-
fects and the interaction parameter with overlayed smoothed
kernel density estimate.
aThe proposed semiparametric Bayesian approach using a
DPM model for the control distribution of OC use.
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Figure 2. Secondary parameters related to the EDPMa

model for analyzing the Israeli ovarian cancer data: His-
tograms corresponding to the approximate posterior distri-
butions of α and K in the DPM model. Also presented are
boxplots of variances of the µi ’s and σi ’s i = 1, . . . , 24. Each
plot is based on the last 5000 MCMC runs.
aThe proposed semiparametric Bayesian approach using a
DPM model for the control distribution of OC use.

ification, we also present a plot of posterior distribution
of α, K, a boxplot of var(µi ) and var(σi ) in the EDPM
model (i = 1, . . . , 24) in Figure 2. We notice that the µi

and σi values do reflect variation, the variability in σi be-
ing greater. The posterior mode of K is at 5, suggest-
ing that though there are 24 possible strata, not all of
them have distinct effects on the distribution of number of
years of OC use. The analysis with OC and parity both
considered as environmental exposures is collected in web
Table 2.

In the following section, we conduct an extensive simula-
tion study to assess the performances of the methods un-
der different scenarios and provide recommendations for the
practitioner.

4. Simulation
In order to simulate a dataset for comparing the Bayesian
methods with the method proposed by CC, case-only analysis
and ordinary logistic regression, we used the ovarian cancer
data as a prototype. We set the true values close to the results
we obtained in our analysis of real data by EDPM method in
Table 1, β1 = 3, β2 = −0.07, and β3 = 0.12. We generated
1500 observations following the scheme as below:

(1) We first generated the stratification factors S = (Age
group, Ethnicity, PHB, FHBO) from a multinomial dis-
tribution, the stratum probabilities being consistent with
the real study.

(2) Given S, we generated a binary variable D represent-
ing the disease status, with probabilities P (D = 1 |S) in
agreement with the ovarian cancer study, the marginal
disease probability in the generated population being
around 0.1%. Results for a more common disease are
included in the online supplementary material.
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Table 2
Simulation scenarios: distribution of E is zero inflated; G: rare or common; G−E

independence assumption holds (γE = 0) or does not hold (γE = 0.25). Mean denotes the
mean estimate based on 100 replications, whereas MSE is the estimated mean squared error

based on 100 replications.

β1 β2 β3
G γE Model True 3.00 −0.07 0.12

Rare 0 EZIMa Mean 2.98 −0.06 0.11
MSE 0.020 0.001 0.002

EDPMb Mean 2.93 −0.06 0.11
MSE 0.024 0.001 0.002

CCc Mean 2.90 −0.06 0.12
MSE 0.263 0.001 0.002

Ordinary Mean 2.91 −0.06 0.19
Logistic MSE 0.374 0.001 0.062

Case-Only Mean 0.12
MSE 0.002

Rare 0.25 EZIMa Mean 2.87 −0.19 0.31
MSE 0.045 0.018 0.043

EDPMb Mean 2.85 −0.13 0.25
MSE 0.056 0.003 0.027

CCc Mean 2.38 −0.20 0.33
MSE 0.453 0.248 0.041

Ordinary Mean 3.16 −0.19 0.06
Logistic MSE 0.163 0.271 0.012

Case-Only Mean 0.37
MSE 0.069

Common 0 EZIMa Mean 2.98 −0.08 0.13
MSE 0.010 0.002 0.001

EDPMb Mean 2.97 −0.08 0.13
MSE 0.011 0.002 0.002

CCc Mean 2.77 −0.08 0.12
MSE 0.081 0.002 0.001

Ordinary Mean 2.82 −0.08 0.12
Logistic MSE 0.066 0.002 0.003

Case-Only Mean 0.13
MSE 0.001

Common 0.25 EZIMa Mean 2.86 −0.28 0.34
MSE 0.031 0.049 0.054

EDPMb Mean 2.90 −0.15 0.21
MSE 0.022 0.006 0.009

CCc Mean 2.42 −0.31 0.37
MSE 0.358 0.065 0.070

Ordinary Mean 2.80 −0.26 0.18
Logistic MSE 0.064 0.043 0.011

Case only Mean 0.40
MSE 0.082

aThe parametric Bayesian approach with an EZIM for the control distribution of E.
bThe semiparametric Bayesian approach with a DPM model for the control distribution of E.
cThe profile likelihood method proposed by Chatterjee and Carroll (2005).

(3) We generated E from two distributions: (i) An EZIM
model, exactly mimicking the distribution of OC use as
in the real dataset. The true values of all associated pa-
rameters were chosen as the estimates obtained from our
real data when analyzed by the EZIM model. (ii) Mix-
ture of two normal distributions: To deviate from the
exact pattern of real data and to put our semiparamet-
ric and parametric methods to test, we considered the
case when [E |D = 0, Z = i] comes from the following
mixture: 0.5 × N(2, 1) + 0.5 × N(5, 1).

(4) Finally, we generated a binary variable G standing
for BRCA1/2 mutation status using the probability
structure P(G |D, E, Z) as given in equations (4)
and (5). We select the true values for γi1 in such a
way that Pr(G = 1 |D = 0) ≈ 3.3% and Pr(G = 1 |D =
0) ≈ 46.9% to represent the two situations with a
moderately rare and a common genetic mutation, re-
spectively. Simulation results are also presented when
G was generated from a logistic model in terms
of S.
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Table 3
Simulation scenarios: distribution of E: Mixture of two normals; G: with parametric logistic
in terms of S (as in Remark 5) or commonly prevalent as in (4); G−E independence holds

(γE = 0) or does not hold (γE = 0.25). Mean denotes the mean estimate based on 100
replications, whereas MSE is the estimated mean squared error based on 100 replications.

β1 β2 β3
G model γE Model True 3.00 −0.07 0.12

Logistic 0 EZIMa Mean 3.00 −0.04 0.13
in terms of S MSE 0.069 0.080 0.009

EDPMb Mean 2.99 −0.07 0.13
MSE 0.059 0.002 0.002

Ordinary Mean 3.02 −0.08 0.13
Logistic MSE 0.128 0.002 0.008

Case-Only Mean 0.13
MSE 0.002

Generated 0 EZIMa Mean 2.82 −0.12 0.14
by (4) MSE 0.036 0.089 0.008

EDPMb Mean 2.99 −0.07 0.12
MSE 0.030 0.002 0.002

CCc Mean 2.75 −0.07 0.12
MSE 0.110 0.002 0.002

Ordinary Mean 2.77 −0.07 0.13
Logistic MSE 0.186 0.002 0.009

Case-Only Mean 0.13
MSE 0.002

Generated 0.25 EZIMa Mean 2.86 −0.31 0.38
by (4) MSE 0.157 0.213 0.189

EDPMb Mean 2.89 −0.27 0.35
MSE 0.045 0.044 0.055

CCc Mean 1.93 −0.30 0.37
MSE 0.890 0.056 0.065

Ordinary Mean 2.77 −0.25 0.15
Logistic MSE 0.137 0.037 0.008

Case only Mean 0.32
MSE 0.089

aThe parametric Bayesian approach with an EZIM for the control distribution of E.
bThe semiparametric Bayesian approach with a DPM model for the control distribution of E.
cThe profile likelihood method proposed by Chatterjee and Carroll (2005).

In order to study robustness under violation of G–E inde-
pendence assumption, we simulate G using the model

log

{
Pr(G = 1 |Z = i, E,D = 0)

Pr(G = 0|Z = i, E,D = 0)

}
= γi1 + γEE. (8)

To introduce moderate dependence between G and E, we con-
sider γE = 0.25, that is, the odds of having G = 1 with one
unit increase in E increases by a factor of 1.284 (Tables 2–4).
The strategies followed for choosing priors for the Bayesian
methods in the simulation study are essentially the same
as discussed in the real data analysis. We simulated 100
datasets for each scenario, and the results are presented in
Tables 2–4.

The simulation results are fairly clear. If interest lies in es-
timating the main effect of the genetic factor β1, the Bayesian
EDPM model performs the best for any choice of distributions
of G and E. The fully parametric Bayesian EZIM model suffers
when E is originated from any other model, for example the
mixture of two normal distributions (Tables 3 and 4). When
the parametric logistic assumption for P(G |S) does not hold,

there is a clear dominance of the Bayesian methods over the
CC method for estimating β1. Even when the data are gen-
erated from an exactly logistic model for P(G |S) (Table 3),
the Bayesian methods perform quite comparably with the CC
method. The efficiency gain (for estimating β1) in Bayesian
methods is larger when the genetic mutation rarely occurs in
the control population (Tables 2 and 4), which could be due
to the flexibility of the likelihood in modeling the control dis-
tributions separately in the Bayesian methods, whereas CC
model the marginal distribution of G |S. If interest lies in es-
timating the main effect of E, both the CC method and the
EDPM method are comparable, with CC method having a
slight edge in some cases. One may note that the mean square
error (MSE) corresponding to β2 for the EDPM model is of-
ten larger than the other methods as with the DPM structure
we are adding another level of model uncertainty. Indeed, the
advantage of the DPM is not in terms of gain in efficiency
for estimating β2 across all scenarios, but because of its ro-
bustness. One may note that instead of modeling P(E |S),
CC model P(E, S) nonparametrically. Their profile likelihood
technique works extremely well across many different data
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Table 4
Simulation scenarios: distribution of E: Mixture of two normals; G: rarely prevalent; G−E

independence holds (γE = 0) or does not hold (γE = 0.25). Mean denotes the mean
estimate based on 100 replications, whereas MSE is the estimated mean squared error based

on 100 replications.

β1 β2 β3
G γE E |D = 0, Z True value 3.00 −0.07 0.12

Rare 0 EZIMa Mean 2.92 −0.04 0.16
MSE 0.082 0.031 0.021

EDPMb Mean 2.93 −0.07 0.13
MSE 0.067 0.002 0.004

CCc Mean 2.85 −0.07 0.13
MSE 0.222 0.001 0.005

Ordinary Mean 2.87 −0.07 0.15
Logistic MSE 0.828 0.001 0.061

Case-Only Mean 0.13
MSE 0.005

Rare 0.25 EZIMa Mean 3.07 −0.20 0.31
MSE 0.169 0.193 0.048

EDPMb Mean 3.15 −0.13 0.30
MSE 0.097 0.006 0.034

CCc Mean 2.07 −0.14 0.31
MSE 0.848 0.007 0.040

Ordinary Mean 3.15 −0.14 0.05
Logistic MSE 0.711 0.006 0.043

Case only Mean 0.35
MSE 0.056

aThe parametric Bayesian approach with an EZIM for the control distribution of E.
bThe semiparametric Bayesian approach with a DPM model for the control distribution of E.
cThe profile likelihood method proposed by Chatterjee and Carroll (2005).

generating mechanisms for E. For estimating the G–E interac-
tion β3, one could choose either case-only, EDPM, or the CC
method. When simultaneous estimation of all three parame-
ters is considered, and Assumption 1 is fairly reasonable, the
EDPM model appears to be a superior choice. Under viola-
tion of the independence assumption, performance of all the
methods worsen (Tables 2–4), least so for EDPM model; this
could be attributed to robustness of the DP prior as well as
the informative prior on G. The ordinary logistic regression
model that is less efficient under G–E independence, especially
for the interaction parameter, does not suffer under violation
of G–E independence as it does not use any restrictions on the
G–E distribution.

5. Discussion
The term “interaction” has a diverse meaning to the scientific
community. “No statistical interaction” in our model means
constant multiplicative effect of genotype on the disease odds
across all levels of the environmental exposure. A biologist
might define “interaction” in a broader mechanistic sense that
interaction exists if the genetic factor and environmental ex-
posure work on the same pathway (Clayton and McKeigue,
2001). Assessing the joint effects of genetic and environmental
factors within strata defined by other variables may provide
useful insight into disease etiology and help to determine effec-
tive public health intervention strategies. The article by CC
is thus a major breakthrough, which emphasizes that retro-
spective analysis of case–control studies of gene-environment
“interaction” go well beyond estimating the statistical inter-
action parameter β3. However, as emphasized throughout the

text, scientific and empirical validation of the G–E indepen-
dence assumption is of utmost importance before using the
proposed methods.

To conclude, we would like to highlight some of the new
features of the article. In this article, we proposed a fully
flexible, robust Bayesian semiparametric model for estimat-
ing not only the interaction parameter, but the main ef-
fects under conditional gene-environment independence. The
method outperforms the existing methods in some instances
and performs comparably in others. With genetic mutation
that has unequal frequencies in case and control population,
the ability to model them separately through the proposed
likelihood has a natural justification. When the G–E inde-
pendence assumption does not hold, the method performs
better when compared to other contenders. The article in-
troduces some interesting statistical techniques especially for
handling the high-dimensional stratum effects on the genetic
and environmental exposure distribution in a data-adaptive
way. The use of the DPM model as illustrated in Result
2 in conjunction with transition from control to case dis-
tribution is a nice application of the theory on DP. Using
prior biological information on the frequencies of the ge-
netic mutation reiterates the fundamental advantage of a
Bayesian paradigm. The exhaustive simulation study com-
paring the Bayesian methods with other frequentist methods,
including the one recently proposed by CC remains an addi-
tional asset of this article. The Bayesian framework appears
to be a promising route for relaxing the G–E independence
assumption in a data-adaptive way where further work is
necessary.
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6. Supplementary Materials
Web Appendices and more numerical results are available un-
der the Paper Information Link at the Biometrics website
http://www.tibs.org/biometrics.
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