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SUMMARY

Matched case—control studies are used for finding the association between a disease and an exposure after
controlling the effect of important confounding variables. It is a known fact that the disease—exposure
association parameter estimators are biased when the exposure is misclassified, and a matched case—
control study is of no exception. Any bias correction method relies on validation data that contain the
true exposure and the misclassified exposure value, and in turn the validation data help to estimate the
misclassification probabilities. The question is what we can do when there are no validation data and
no prior knowledge on the misclassification probabilities, but some instrumental variables are observed.
To answer this unexplored and unanswered question, we propose two methods of reducing the exposure
misclassification bias in the analysis of a matched case—control data when instrumental variables are
measured for each subject of the study. The significance of these approaches is that the proposed methods
are designed to work without any validation data that often are not available when the true exposure is
impossible or too costly to measure. A simulation study explores different types of instrumental variable
scenarios and investigates when the proposed methods work, and how much bias can be reduced. For the
purpose of illustration, we apply the methods to a nested case—control data sampled from the 1989 US
birth registry.

Keywords: Conditional likelihood; Confounding variables; Instrumental variables; Logistic model; Low birthweight
data; Misclassification.

1. INTRODUCTION

Matched case—control designs are utilized to assess the association between an outcome and a treat-
ment/exposure in observational studies. To control the effect of confounding variables, cases are usually
matched with controls based on the potential confounding variables, and this forms a stratum or a matched
set. A matched case—control data set contains many such matched sets. Typically, a logistic model is
assumed for modeling the disease incidence in terms of the exposure and other covariates (prognostic
factors), and the parameters are estimated by maximizing a conditional likelihood function. The estima-
tors of the parameters are biased when the exposure variable is mismeasured or misclassified which may
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2 C. M. MANUEL AND OTHERS

happen due to many reasons including but not limited to recall error and misreporting. To be specific, we
shall not consider the case where a continuous exposure variable is measured with error.

To address this misclassification bias of a binary exposure variable in a matched study, several Bayesian
and frequentist methods have been developed. Briefly, we review some key papers in this paradigm. For
the ease of our following discussion, we shall use Y, X, and ¥ to denote the binary disease indicator, the
binary exposure variable, and the misclasssified version of X, respectively. Typically, in the main study
X is not observed, only Y and W are observed, while in the validation data Y, X, and W are observed.
Usually validation data have a much smaller size than the main study, and the validation data are used
for estimating the misclassification probabilities. To remove the misclassification bias one has to take into
account these misclassification probabilities in the analysis.

Rice (2003) proposed a full likelihood approach when a binary exposure is misclassified in matched
case—control data. Particularly, he wrote the likelihood in a multinomial model format where the cell
probabilities are functions of the common odds ratio and non-differential misclassification probabilities.
In the presence of validation data, he then proposed to estimate the parameters in a Bayesian framework.
Prescott and Garthwaite (2005) proposed a Bayesian method of estimating the parameters when a binary
exposure variable is misclassified in matched case—control data, but correct values of the exposure are
available on a number of matched sets. In one of the three methods that they proposed, the authors first
estimated the parameter from the validation data where the true values of the exposure are available.
Next they proposed to use the first stage analysis result as the prior distribution for the second stage
analysis where the likelihood is based on the matched sets in which only the misclassified exposure
values are available. Chu and others (2010) proposed a Bayesian method where the main parameters
of interest were the exposure prevalence among cases and controls, and specificities and sensitivities
among cases and controls. They then developed a Bayesian inference with flexible priors on each of these
parameters. Liu and others (2009) considered a Bayesian solution to the misclassification bias in a 1:1
matched case—control study. In the case of non-availability of validation data, they proposed to use expert
prior knowledge on the disease—exposure association and misclassification probabilities. Morrissey and
Spiegelman (1999) compared the matrix method, the inverse matrix method, and the maximum likelihood
approach under the differential and non-differential misclassification scenarios. Lyles and others (2007)
considered two robust weighted estimators that used two validation data sets, an internal validation data set
and an external and less precise validation data set, for estimating the odds ratio parameter in the presence
of a misclassified binary exposure in a regular case—control study. In a slightly different approach, Dufty
and others (2003) proposed to replace the terms in the Mantel-Haenszel estimator by the corresponding
conditional expected values given the observed data. These conditional expected values were functions
of the misclassification probabilities that were derived from the validation data. Due to the difficulty in
computing the large sample variance formula, they provided a Bayesian credible interval for the common
odds ratio parameter using non-informative priors.

The important difference between the previously cited articles and our problem is that in our set-
up there are no validation data. That means true values of the binary exposure X are never observed
in any part of the data. Instead, a set of instrumental variables are available for each study subject.
According to the standard definition (Greenland, 2000), the instrumental variables are correlated with X,
but uncorrelated with the response and confounding variables conditional on X. Our goal is to provide
a statistical method of inference in this context. Although instrumental variables are commonly used to
solve the problem of endogeneity, no one has ever used instrumental variables to reduce misclassification
bias in a retrospective case—control or matched case—control study. Particularly, instrumental variables
have been used for consistent estimation of parameters of the linear regression or polynomial regression
model in the presence of covariate measurement error of a numeric variable (Bound and Krueger, 1991;
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Hausman and others, 1991). However, the use of instrumental variables for handling misclassification
bias is limited (Hu, 2008; Schennach, 2007).

Our work is partly motivated by the elegant work of Hu (2008), who showed that the misclassification
probabilities and the latent model for X are nonparametrically identifiable in the presence of a discrete
instrumental variable. Hu (2008) then provided a matrix diagonalization technique to estimate the param-
eters. In contrast to Hu’s work on nonparametric identification, we (i) consider the presence of many
confounding variables and several instrumental variables, (ii) model the distribution of X parametrically,
and (iii) assume that misclassification probabilities do not depend on other variables, and then develop two
methods of estimation in the non-trivial conditional likelihood set-up. A parametric model assumption
on the conditional distribution of X is necessary to make the method numerically work for a reasonable
sample size.

We are proposing two methods of estimation. The first method has two steps. In the first step, the
conditional distribution of the true exposure given the confounding variables and instrumental variables
and the misclassification probabilities are estimated. In the second step, we obtain an induced model
of the response given the observed variables and the estimated parameters from the first step. Next we
form a conditional likelihood and maximize this likelihood to estimate the disease—exposure association
parameters. The second method is the efficient method. A brief outline of the remainder of the article
is as follows. Some background information is given in Section 2, while the details of the methodology
are given in Section 3. Section 4 contains simulation studies. Analysis of a real data set that motivated
our work is given in Section 5. We formed a nested case—control data from the US birth cohort from the
year of 1989, and then analyzed the data for the effect of smoking during pregnancy, the exposure of
interest, on the incidence of low birth weight. Since the average number of cigarettes smoked daily cannot
be measured accurately, we propose to analyze this data set taking into account instrumental variables.
Importantly, for this data set, there are no validation data to access the misclassification probabilities.
Finally, we conclude with a discussion in Section 6.

2. MODELS AND BACKGROUND

Suppose that we have an 1:M matched case—control data set with » strata. That means there are one case
subject and M control subjects within each stratum. We shall use a;; to denote the variable a for the jth
subject in the ith stratum. Typically, a matched data set is denoted by Y;;,X;;,Z;,8:,j = 1,...,(M +
1),i=1,...,n, where Y, X, and Z represent the response, the main binary exposure, and prognostic
factors used for adjustment, and §' represents a set of confounding variables that are used for matching.
Among several definitions we shall stick to the definition that the confounding variables § influence both
X and Y (Greenland and others, 1999). Since the matching is done based on the values of the confounding
variables, all subjects within a matched set would have the same value of §. Accordingly, the value of S does
not vary within a stratum. To present a more general setting we write prognostic factors Z = (Z1,Z7)7
where Z, is the prognostic factor that is causally independent of the exposure and Z, is the prognostic
factor that is a confounding variable. In our context, X is never observed, rather W is observed which is
a misclassified version of X. We assume that ¥ is independent of (S, X*,Z,Y) conditional on the true
exposure X. Define g = pr(W = 11X =0) =pr(W = 11X =0,Y =0) =pr(W = 11X =0,Y = 1)
ando; =pr(W =0 X =0) =pr(W =01 X =1,Y =0) = pr(W = 0|X = 1,Y = 1). It is important
that we adopt the non-differential misclassification assumption. If the misclassification is differential, then
pr(W =wlX =x,Y =0) #pr(W =w|X =x,Y = 1) for some (w, x), and that leads to the violation of
the conditional independence assumption between # and (S, X", Y, Z) given X. Additionally, we assume
that a set of instrumental variables X* for X is observed in the data. According to the definition given
in Greenland (2000) we assume that (i) X* directly influences X, (ii) X* may directly influence Z, (a
non-confounder), (iii) X™* is independent of § and Z, (any confounding variable), and (iv) X* and Y are
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Z,

Fig. 1. Schematic diagram to show how variables are related.

independent conditional on X and Z,. It is important to mention that statistical validity of the proposed
methods does not rely on the dependence of X* and any component of Z. These assumptions are reflected
in Figure 1 where a variable at the end of an arrow is the variable that influences the variable on the head
of an arrow.

In our set-up, the observed data are {Y;;, X} o
the assumed model of Y for the ith stratum is

Wi Zij,Si,j=1,...,(M+1),i=1,...,n}. Ingeneral,

pr(Y,; = 118, X, Z:)) = H{go(S) + Bi1Xi; + B2 Z.,), 2.1

where H(u) = 1/{1 + exp(—u)}. Here go(S;) denotes the effect of the stratification variable on the
success probability of the response variable, while 8, and B, are the regression coefficients (association
parameters) for X and Z, respectively. One can generalize the model by including an interaction term
between X and Z. In the absence of Z, that means when § is the only set of confounding variables and
they are used for matching, the regression parameter 8, of Equation (2.1) will have a causal interpretation
conditional on Z = Z, (Hernan and Robins, 2008). Importantly, irrespective of the presence of Z; and
Z, and the dependence between X* and Z; and the independence of X* and Z,, the proposed estimation
techniques are always valid. When X is observed in the data, the parameter 8 = (B, 82)7 is estimated
by maximizing the conditional likelihood £.(f) which eliminates the nuisance parameter gy(S;) after
conditioning on the number of cases for each stratum. Hence,

n M+1

LBIX.Z)=]]prlY = Y=L+ DISL X Zipj = 1o M+ 1), Yy = 1)

i=1 j=1
_ ﬁ H,Aiirl eriJ(Y = 1|Si,)QJ,ZiJ)PT(1_},iJ)(Y = 0|Sia)(i,j7Zi,j)
L (Y = 1S Xig Zi) T pr(Y = 018, X, Z,,)

r#k

LY Y exp(BLXy + BrZiy)

= I | M+1
i=1

> exp(BiXi; + B Zi))

In the naive approach, X is replaced by W in L. and the estimators are defined as argmaxgL.(B|W,Z).
In principle, the naive estimators are biased, and the degree of bias depends on the severity of the
misclassification.
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3. PROPOSED METHODOLOGY
3.1. Intuitive estimator

Our first approach is an intuitive one. Note that the goal is to estimate the regression parameters f8
in Model (2.1), and for that purpose we need the conditional distribution of ¥ given the observable
random variables S, W,X*,Z. To do this, first we specify a model for X given §,X*,Z among the
controls. This model along with the misclassification probabilities induces a model for X given S, W, X", Z
among the controls denoted by pr(X = 1|§,W,X*,Y = 0,Z). Second, the resulting induced model
pr(X = 1|8, W,X*, Y = 0,Z) along with Model (2.1) yields a model for Y given S, W, X*, Z. Hence the
estimation is carried out in two steps. To proceed, first we assume a parametric model for the probability
of X = 1 given §, X*, Z in the control population, and use a logistic model for this probability:

prlX = 11S,X*, Y =0,2) =H(p+ 7S+ y;X* +yiZ). (3.2)

We shall use H(y,S,X",Z) todenote H(yo +y1S + ¥ X*+yiZ),where y = (v, ¥, y5, 1)". Next
we obtain the induced conditional probability model for the observed 7:

pr(W = 1|S,X*,Y = 0,2)
=pr(W = 1|S,X = 0,X*,Y = 0,Z)pr(X = 0|S,X*,Y = 0,2)
+pr(W = 18,X = 1,X",Y = 0,Z)pr(X = 1|S,X*,Y =0,2)
=pr(W =1|X =0,Y = 0,Z)pr(X = 0S,X*,Y = 0,2Z)
+pr(W =11X = 1,Y = 0,Z)pr(X = 1|S,X*,Y =0,2)
= ap{l — pr(X = 1|8, X*,Y = 0,Z)} + (1 — ay)pr(X = 1|$,X*,Y =0,2)
=+ (1 —ag—a)H(y,S, X", 2), (3.3)

where the second equality holds due to our assumptions on the misclassification probability and «, and
a; were defined in the first paragraph of Section 2.

For identifiability of the model parameters, following Hausman and others (1998), we assume that
0 < ap + ) < 1. A detailed proof of the identifiability is given in Appendix A.1 of the supplementary
material available at Biostatistics online. Particularly, Hausman and others (1998) used this restriction
for parameter identification in the case of misclassified dependent variables. We write oy and «; as
ap = ap(n) = exp(10)/{1 +exp(no) +exp(n)} and oy = a1 () = exp(n1)/{1 + exp(no) + exp(n1)}, for
N9, M1 € R so that the condition 0 < oy + o < 1 is automatically satisfied. Denote pr(W = 1|8, X*,Y =
0,Z)byp,,(n,y,S,X*,Z). Then we propose to estimate y and § = (19, n,)” by maximizing the following
likelihood

n M+l Wij 1=W;;q(1=Y;))
Lir.m=]] Z[{pm,y,s,»,xg,z,,)} {1 —pww,y,s,-,xz;,z,,)} }
i=1 j=1

The estimators p and # for y and g are defined as

,n) = argmax L,(y, 7).
v.m gma 1(y.m
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More specifically, y and # are obtained by solving S, (n,¥) = > i, Ui, (n,y) = 0 and S,(n,y) =
Yoy Uiy(n,y) = 0, where

M+1
Uy (y.m =) (1- Y,-,,a{% —pu(n, y,s,«,X;;,Zw«)}

j=1

1
X
pW(na yasiaX:'i/',Zi,j){l _pw("a Yasia)(i?;‘azi,j)}
1
* * Si
X {1 - 050(71) - al(")}H()’»Sl»XZJ’ZlJ){l _H(}’:Si:Xi’/»Zi,j)} X* >
1y
z

iy
M+1

U (r.m=) (- Y,-p{W,,- - pu(n, y,s,-,X;;,Zw-)}
j=1
1
X
pW("’ y;SUX?:le,]){l _Pw(ﬂa ynslnX;thl,])}

o [ ao(M{1 — ao(m} — ao(M{1 — ao(n) — e MIH (¥, 81, X7, Zi;) ]
—ap(mar () — ar(M{l —ao(m) —ar(MYH (Y, 81, X7, Z1y) |

We then obtain the induced model for X given W = w, X*, S, and Z among the control subjects as follows:

pr(W = 118,X = 1,X*, ¥ = 0,Z)pr(X = 1S, X", ¥ = 0,2)
pr(W = 118, X%, Y = 0,Z)

_ (I —aDH(y,$,X",Z) (3.4)

ag+ (1 —ayg—a)H(y,S,X*Z)’

pr(W = 0|S, X = 1,X*,Y = 0,Z)pr(X = 1|8, X*,Y = 0,2)

pr(W =0|S,X*,Y =0,Z)
o H(y,S8,X",Z)
T 1w —(I—a—a)H©y,8,X".2)

pr(X =1|S,W = 1,X",Y =0,Z) =

pr(X =1|S,W =0,X*,Y =0,Z) =

3.5)

Next, we obtain the induced model for the response Y given S, W, X*, Z that is stated in the following
lemma whose proof is given in Appendix A.2 of the supplementary material available at Biostatistics
online.

LemMmaA 1 Under the assumptions stated previously the induced model for Y given S, W, X*, and Z is
pr(Y = 1|Sa W,X*,Z) = H{g()(s) + ﬂzTZ +gl (ﬂl)sia W,X*,Z, n, }’)}, (36)

where

exp(B)(1 —a)H(y,8, X", Z) + ao{l —H(y,S,X",Z)}

exp{gl(ﬂhSaWz15X*9Z>Y5n)}= a0+(l—a0—a1)H(y SX* Z) s

exp(BoH (y, 8, X" Z) + (1 —a){1 —H(y,8,X",2)}

eXp{gl(lng, W= O,X*,Z, Y, 7])} = 1 —ap — (1 —a —al)H(}’ S X* Z)
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Model (3.6) for the response Y is in terms of observed variables, S, W, X*, and Z, and it involves the
main association parameters f8. To estimate , we form the conditional likelihood function based on this
induced probability model and maximize with respect to B to estimate the parameter. Define the estimator

B = arg max L>(Bli, 9)s

where the conditional likelihood function is

M+1

£2(I3|77>}’) = Hpr{Yl,]x] = 13- ,(M+ 1)|S,, VVt,]yxfl,Zi,jxj = 15' ,(M+ 1)92 Yi,/' = 1}

i=1 j=1

mTTE (Y = 118y, Wiy, X5 Zi)pr T (Y = 01y, Wiy, XE L Z)

_ Y B2 i

=11 S pr(Y = 1S, Wik, X5 Zia) T, pP(Y = OIS, Wi, X, Z1)

i=1
e S Yy explBIZi; + 21 (B S Wi X Zips )
_H S exp{ByZi; + g1 (B S Wip. X 1 Zijs v 1))
el VAR Zy 4 21 (B, S Wiy X Ziym, p)]
_H S exp(BrZiy + g1 (B S Wiy X Zij, ¥)}

Therefore, B is obtained by solving Sp, (B0 7) = Y, Up Boip?) = 0, Sp,(B.0,7) =
> i1 Uig, (B, 11, 9) = 0, where

M+1

Uy (B.1.7) Z[ exp{B3Z; + & (B S Wij. X[ Zijon, )} :|
B s 1l = iji = . ’
1 j=1 / ZM+1 eXp{ﬂzTZi.k +gl(,31,S,', VVI‘J{,X“(’ZU’)]’);)}

S gﬁl(IBI,S VVl/aX?:]a ijs s }’),

exp{ﬂzzl,j +g1(ﬂlas VVI,]aXZa tJ)” )’)} }
Y explBIZiy + &1 (B S, Wi X Zimo )y

M+1

Ui,ﬂz(ﬁa n, }’) = Z[Yh} Z

j=1

with gg, (-) = 0g;(-)/dB,. We now present the following main theorem. Its proofiis given in Appendix A.3
of the supplementary material available at Biostatistics online.

TueoreM 1 Under standard regularity conditions and as n — oo, the asymptotic distribution of \/n (,B -

B) converges to a mean-zero normal distribution, and the asymptotic variance of N/ B - B can be
con51stently estimated by the last (p + 1) rows and the last (p + 1) columns of A 'L ooty n)A T

WhereA - _(l/n)aSQ/aoa S9 - (S)T/‘(ya ”)9S;(Y9 n):Sﬂl (ﬂ) Y, ”)9sﬂ2(ﬂ9 Y, ”))T and U (Ulya lr]’
Uip» Ulg)"

3.2. Efficient estimator

For deriving the efficient estimator, we need the following lemma which is proved in Appendix A.4 of the
supplementary material available at Biostatistics online.
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LEMMA 2 Under the assumed Models (2.1) and (3.2) and the assumptions on the misclassification
probabilities, we obtain

() pr(Y = 18,X*,2) = H{go(S) + B, Z + &(y, B1,S, X", Z)},
(i) priX = 118,X",Z,Y =1) =H(ypo + B + 7S + y: X" +y32),
@@ii) pr(W =18, X", Z,Y =) =ao+ (1 —ag —a)H(yo + i + ¥{S + ¥, X" +y32),

where
g2(y; ﬂhS:X*)Z) = 10g{1 _H(}’7S7X*7Z) + exp(ﬂl)H(},asﬂX*aZ)}

The likelihood of the observed data {#;
S, X Zij=1,...,(M+1)is

l,]’

ij» Yij i =1,..., (M + 1)} from the ith stratum conditional on

M+1 M+1

L _l_[pr( ijs |S1, ,/’ i,/')zl_[pr(VVi,/ISianJs ijs z,])pr( |Su ,/a i,/')~

j=1

Lemma 2 indicates that pr(Y;;|S;, X} J, Z,;) is in the logistic form that still involves with the nuisance
intercept parameter g,(S;), and its dimension increases with the number of matched sets n. However,
the complete sufficient statistic for the stratum specific intercept go(S;) is ZM+1 ;j» the total number of
successes in the ith stratum. Conditioning on the number of successes results in a conditional likelihood
that is free from this stratum specific intercept. Following the arguments of Godambe (1976) and Rathouz
and others (2002), the maximum conditional likelihood estimator of @ = (87, 7,10, 11)” (170, 1 in lieu

of oy and ) is then semiparametric efficient. The conditional likelihood for the ith stratum is

M+1
Ei,c = {npr(VViﬂshX,‘Ja ijs 1,/)}
j=1

M+1

< pr(Yis, o Yor 1185, X5, Zijoj = 1, <M+1>Z ;=1

M+1

Y,-’]-
=H{erfJ<W,-J=1|s,-, Yy = LZpr M, = 018, X, Yy —lz,p}

1-%;;

X {eriJ(WiJ =1|5,X IJ,Y =0 Z,J)pr(1 W;,,)(W =018,X7,7Y;, O,Z,-J)}

l,/’

Y Y explBIZiy + €2 (v, Biu 81 X[ Z1)))
Y explBIZiy + (v, B1. S X1 Zi))

Following Equation (3.3) and Lemma 2, we can replace pr(W = 1|S,X*,Y = 0,Z) by ag + (1 —
a —a)Hy +y{S +yIX +pyiZ)and pr(W = 1|S,X",Y = 1,Z) by ap + (1 — atg — 1) H (o +
B + le S + szX 4y TZ). Hence, the efficient estimator 0eff for @ is obtained by solving Sery =

> dlog(L;.)/30 = 0. The asymptotic standard error of oeﬁ‘ can be estimated by inverting the negative
of the Hessian matrix — Y, 9*log(L;.)/36 307

6102 K 11 uo 1s9nB Aq G5888Y5/Z L 02X/SONSIEISOIG/EE0 L0 L I0P/10EIISAE-0[OILE-0OUBADE/SONISIIEISOIQ/ W00 dNO"0IWSpE.//:Sd}jy WOl) PAPEOjUMOQ



Instrumental variable method for conditional likelihood 9

4. SIMULATION STUDY
4.1. Simulation design

To simulate a matched case—control data set, we first simulated a large population with size N = 80 000
by generating six variables, (S, W,X,X*,Z,Y). From that population we sampled » cases (¥ = 1), and
corresponding to each sampled case we sampled M = 2 controls randomly from the population after
matching the value of the stratification variable S.

The stratification variable S, instrument X*, and prognostic factor Z were generated from
Uniform(—1, 1), Normal(0, 0.5%), and Normal(0, 0.52) distributions, respectively. The exposure X was
simulated from the Bernoulli distribution with the success probability H(yy + 118 + 1.X™), o = —1,
y; = 1, and we took two different values for y,, 1 and 2, corresponding to, respectively, a moderate
and a strong association between the exposure and its instrument. This resulted in approximately 30%
marginal prevalence of X. In the end, the binary response variable ¥ was simulated from the Bernoulli
distribution with the success probability H(—2 — 25 + X + 0.5Z), so 8; = 1 and 8, = 0.5, and this
resulted in 20% marginal prevalence of ¥ = 1 in the population. We set the surrogate (misclassified)
variable W = B x X + (1 — B*) x (1 — X), B ~ Bernoulli(1 — «;) and B* ~Bernoulli(1 — o). We
considered two cases, one where oy = «; and the other where oy # «;. In the first case, we considered
three different misclassification probabilities MC1: ¢y = oy = 0.2, MC2: o9 = oy = 0.1, and MC3:
oy = a; = 0.05. In the second case, we considered MC1: «p = 0.2, ¢; = 0.1; MC2: op = 0.2, ; = 0.05;
MC3: ¢ = 0.1, @y = 0.05.

For a given case, a control was considered to be matched if the absolute difference between the values of
the confounding variable for the case and control subjects was less than 0.01. For a given case, two controls
were randomly chosen from the set of all matched controls identified in the population. We considered
two different sample sizes, n = 200 and 1000. Thus when » = 200, this means there are 200 cases and
400 controls in each matched data set, while for » = 1000 there are 1000 cases and 2000 controls in each
matched data set.

4.2. Method of analysis

Each simulated data set was analyzed by four approaches. First, we estimated 8 = (8, 8,) using the true
X, and call it M1. This method is presented to compare the performance of the other approaches. In a real
data analysis, since X is not observed, M1 cannot be used. In the second method, we replaced X by W in
the conditional likelihood L.(B|X, Z), refer to this naive method as M2. Third, we analyzed the simulated
data sets using the proposed intuitive method (two step estimation), and we refer to it as M3. Finally, we
analyzed the data sets by the efficient method, and call it by M4. We conducted 5000 simulations for each
one of the four scenarios (two values for n, and two different associations between the instrument and the
exposure variable) under different misclassification probabilities. It is important to point out that in the
absence of any validation data set or replications, one cannot use the regression calibration approach that
is commonly used for reducing bias.

The methods were compared in terms of performance of the estimators of 8 = (8, 8,)7. We present
the relative median bias, a robust standard deviation calculated as (O3 — Q1)/1.349 (denoted as SD*
in Tables 1-3), where Q; and Qs are the first and third quartile of the 1000 estimates of the parameter,
standard deviation of the estimator based on the 1000 estimates, an average of the estimated standard
errors, the 95% coverage probability using the Wald confidence interval, and the mean squared error
(MSE). These summary measures were calculated based on the converged data sets. In the computation
when either the absolute value of B; or the standard error of B; is greater than 5, we declare that data set
as non-convergent. When n = 200, approximately 7-8% data sets did not converge for M3, while 1-2%
data sets faced convergence issue in M4. When n = 1000, approximately 4—5% data sets did not converge
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Table 3. Results of the simulation study with n = 1800 in the case of multiple instruments and multiple
confounding variables

MT M1 M2 M3 M4
Bi B2 B B2 Bi B2 B B2

Bias —0.03 0.34 —1398 —0.04 —0.99 0.38 0.80 0.34

SD* 7.88 8.12 9.84 8.13 12.90 8.44 12.48 8.27

SD 7.94 8.13 9.93 8.08 13.24 8.34 12.84 8.22

SE 7.80 7.88 9.67 7.83 13.45 8.09 12.63 7.98

CP 94.25 94.47 82.46 94.55 94.18 94.50 94.60 94.64

MSE 0.63 0.66 1.93 0.65 1.75 0.70 1.66  0.68
MT M1 M2 M3 M4

B B2 Bs B B2 B3 B B2 Bs B B2 Bs
Bias —0.52 —-0.32 1.02 —13.78 0.05 53.11 —1.17 0.06 1.94 0.20 —0.01 0.04

SD* 812 796 10.96 1020 795 0.90 1297 8.14 13.64 1247  8.07 12.66
SD 8.03 8.07 11.13 10.16 8.03 10.93 13.10 822 13.71 12.61 816 12.85

SE 7.83  7.89 11.04 9.77 7.84 10.85 1479 819 15.71 12.51 7.93 12.50
CP 97.00 94.48 94.96 82.56 94.46 83.30 94.66 9494 94.66  94.42 9422 93.96
MSE 065 0.65 1.24 193 064 229 1.72  0.68 1.88 1.59  0.67 1.65

Panel 1, all confounding variables are used in matching; Panel 2, all but one confounding variables are used in matching and the
other confounding variable is used as a covariate for adjustment; MT, method; Bias, relative median bias x 100; SD*, simulation
standard deviation based on quantiles x 100; SD, simulation standard deviation x 100; SE, estimated standard error x 100; CP,
95% coverage probability based on the Wald confidence interval; MSE, mean squared error; M1, conditional logistic analysis
when true X is used; M2, Conditional logistic analysis when X is replaced by #'; M3, proposed two-step method; M4, proposed
efficient estimator.

in M3, while 0-0.5% data sets faced convergence issue in M4. Methods M1 and M2 never showed any
convergence problem.

4.3. Results

Table 1 displays results for the scenario when the misclassification probabilities are the same. Naturally,
the performance of M1 is the best in terms of all measures as the true values of X were used. The estimator
of B, under different methods performs equally. On the other hand, the performance of B, the coefficient
for X that is not observed in the data, varies widely across the methods and scenarios. For all scenarios and
both sample sizes, the bias of B under method M2 is huge, and consequently, the coverage probability
for B, is far away from the nominal level of 0.95. The bias and variance under M3 and M4 decrease with
an increasing association between X and X*. Also, as the association between X and X* gets stronger,
the coverage probability gets closer to the nominal level. The performance of M3 is good for a large
sample size, while for almost all scenarios M4 is the best in terms of reducing bias, and low MSE. Also,
as expected M4 shows less variability of the estimator than M3. When n = 1000, we see that the bias
decreases when we go from a moderate (S1) to strong (S2) association between X and X*. However,
the increased sample size greatly decreases the standard errors of our methods by nearly half in all three
scenarios: MC1, MC2, and MC3. Consequently, the increase in sample size leads to a decrease in MSE,
proving superiority of M3 and M4 over M2.

We now consider Table 2 that contains simulation results for unequal misclassification probabilities. For
both sample sizes, M3 outperforms M2 in terms of bias for scenarios for moderate and strong association
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between X and X*, and usually for a large sample size. Under M3, as before, the bias, variability, and the
distance between the coverage probability and its nominal level for the estimator of 8, are decreasing with
the increasing association between X and X*. As in the equal misclassification probability case, moving
from n = 200 to n» = 1000 and increasing the association between X and X* decreases the standard errors
and MSE of our estimator greatly, giving M3 and M4 an advantage over M2. Overall, M4 beats all other
approaches in terms of bias, MSE and variability.

Finally, we also considered a scenario in which we have multiple instruments and multiple confounding
variables. For this purpose, we simulated data sets closely following the real data set with multiple
confounding and instrumental variables; see Section 5 for more discussion on the data. We considered the
subset of the data where the mother of the newborn was listed as a Black, and after necessary exclusions
we ended up with N = 42933 subjects. To simulate a pseudo population we sampled 42 933 subjects
with replacement from this population. Once a subject is selected in this pseudo population, values
corresponding to confounding variables, covariates, and instrumental variables are automatically assigned.
To generate the true exposure variable X, we use the following logistic model

prX = 1|8, X*) = H(—3.39 4 1.29S| + 0.36S, + 1.66S; + 0.675; + 0.91S5 4 1.09S, + 0.285;
+0.14X7 — 0.32X; — 0.21X; + 0.99X7), (4.7)

where S = 1 if the number of years of education of the mother < 12 and 0 otherwise, S,, S; are the
dummy variables corresponding second or third trimester, respectively, when the prenatal care began in
the second and third trimester, Sy, S5, S6, 57 are the dummy variables corresponding to the mother’s age
in [23, 26], [27, 30], [31, 39], > 40, X}* = cigarette state tax rate for 1989, X;* denotes the logarithm of
the median family income of the county where the child was born divided by 1000 minus the average of
the logarithm of the median family income expressed in thousands, X;* = 1 if the father’s race was Black
and 0 for White, and X;* = 1 if the number of years of education of the father < 12 and 0 otherwise. The
coefficients used in Model (4.7) are close to the estimates of y parameters from the analysis of the data on
Black mothers. Then we created the surrogate variable W as W = B x X, where B ~ Bernoulli(1 — ),
a; = 0.45 that was the estimated «; in the real data analysis using method M3 under ¢y = 0. Next we
simulated the binary response Y using the following model

pr(Y = 1|S,X,2Z) = H(—3.2 4 0.19S; — 0.03S, + 0.37S; + 0.09S; + 0.3255 + 0.57Ss + 0.55S;
+0.69X +0.332),

where the intercept and coefficients corresponding to § were obtained by regressing ¥ on S in the pop-
ulation of the Black mothers, and Z = 1 if the father’s age was greater or equal to 31 and 0 otherwise.
The coefficients corresponding to X and Z are the estimates of 8; and B,, in the real data analysis with
the Black mother using the proposed approach and when oy = 0. This resulted in approximately 4.5%
of the data with ¥ = 1. After creating this pseudo-population, we created a nested case—control data by
sampling » = 1800 cases and 3600 matched controls. This procedure of creating a pseudo-population and
sampling a nested case—control data from it was repeated 5000 times.

Each simulated nested case—control data set was analyzed by the three methods mentioned earlier,
M1, M2, M3, M4. In M3 and M4 we set oy = 0. The results are given in the first panel of Table 3. It is
seen that the bias of estimating 8, is hugely reduced in M3 and M4 compared with M2, and the coverage
probabilities under M3 and M4 are much closer to the nominal level than that of M2. The huge bias
reduction in M3 and M4 is also reflected in the reduced MSE. Specifically, compared with M2, the MSE
for B, is 10% and 14% less in M3 and M4, respectively. Overall M4 is superior.

Within the paradigm of the last simulation design, we have considered another study where S, one
of the confounding variables, was not used to form matched sets. However, this variable S| was used in
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14 C. M. MANUEL AND OTHERS

the incidence model for ¥ and was treated as a prognostic factor (like Z, according to our notation). We
estimated the corresponding regression parameter, denoted by s, along with the regression parameters
for X and the original Z. The results are presented in the second panel of Table 3. Once again, we see that
both M3 and M4 perform very well with M4 being slightly better than M3.

In summary, the simulation studies indicate that the proposed methods work very well in reducing
the bias significantly compared with the naive approach. It appears that the proposed methods work very
well when the association between the true exposure and the instruments is strong and the sample size
is large. When there is any prior information on the misclassification probabilities, incorporation of that
information in the analysis would definitely help to improve the performance of the method.

5. REAL DATA ANALYSIS
5.1. Description of the data and variables

We consider the data from the 1989 US Natality Birth Records (National Center for Health Statistics,
1992), introduced in the Section 1. It contains information on the birth records for infants born to residents
and non-residents within the United States during the year 1989. Characteristics on the mother, the father,
and the child were recorded. For our analysis define Y = 1 if a newborn’s birth weight is less than 2500 g
and 0 otherwise and define X = 1 if a mother smoked more than 2 cigarettes daily during the pregnancy
and 0 otherwise. Since there is no consensus on the definition of various levels of smoking, we took 2
as the cutoff to distinguish between (i) no, intermittent, and very light smokers, and (ii) light, moderate,
and heavy smokers. The binary variable based on the reported average daily number of cigarettes smoked
(> 2 cigarettes as 1 and < 2 as 0) was considered as /. Our intuition is that those who smoked more or
regularly during pregnancy are more likely to have recall bias in reporting the average number than those
who didn’t smoke or smoked very little or infrequently. We consider the following variables as instrument:
cigarette state tax rate for 1989, the logarithm of the median family income of the county where the child
was born divided by 1000 minus the average of the logarithm of the median family income expressed in
thousands, race of the father, and a binary variable for the number of years of education of the father (< 12
and > 12). It has been shown in the literature that cigarette tax, father’s education, and family income may
well serve as instrumental variables for mother’s smoking (Townsend and others, 1994; Evans and Ringel,
1999; Martin and others, 2007). However, family income may have direct influence on the birthweight.
Therefore, we considered median family income of the county where the mother lived as one of the
instruments. Moreover, the family income was not reported in the data set, so we could not even use it as
a confounding variable. We have chosen mother’s age, mother’s education, and when prenatal care began
as confounding variables because they likely to have a direct impact on the response (birthweight) as well
as on the smoking behavior of the mother. The age of the mother was split into five categories, 18-22 as
the reference category, 23-26, 27-30, 31-40, and > 40, a binary variable for mother’s education (0 for
< 12 years and 1 for > 12), and when prenatal care began with three categories, first trimester as the
reference category, second trimester, and third trimester. There were a few subjects (Black: 1.00%, White:
0.30%) without any prenatal care and that category was combined with the prenatal care that began in the
third trimester. For the purpose of this illustrative analysis, we assume that conditional on the true level
of smoking, the reported smoking level, and all other variables are independent. While this assumption is
difficult to validate without a validation dataset, it is plausible in this analysis.

From the cohort data, we excluded the subjects whose mother and father had a race other than Black
and White. About 3% newborns had one of the parents neither Black nor White. This number includes the
case where one of the parents is Black/White and the other parent is neither Black nor White. However,
it does not include the case where both parents are neither Black nor White. We excluded the newborns
whose mother or father was less than 18 years of age. Additionally, we considered only the newborns that
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were the first child to his/her parents. The birth cohort was first divided into two groups: Black and White
mothers, and conducted the analysis of these two groups separately. We excluded the newborns that were
born in Alaska, Delaware, Montana, New Hampshire, and Oregon as these states did not have a state tax
on cigarettes in 1989. In addition, we removed newborns from Colorado, Maryland, New Jersey, Rhode
Island, and Wyoming because their tax rate did not apply to cigarettes. After all these exclusions, we were
left with 42 933 newborns to Black mothers (group 1) and 347 041 newborns to White mothers (group 2).
We conducted separate analyses for Black and White groups.

There were 2021 newborns with ¥ = 1 in group 1. We then randomly selected 2000 subjects out of
2021 subjects as cases, and for each selected subject, we randomly sampled M = 2 controls from 40912
by matching the confounding variables. This resulted in 2000 cases and 4000 controls in our matched data
set. There were 6646 newborns with ¥ = 1 in group 2, and following the above sampling mechanism we
formed an 1:2 matched case—control data from group 2.

5.2. Results

We consider three methods of analysis, M2 (naive), M3 (intuitive two stage method), and M4 (efficient
method). Since the true X is never observed in this real data, method M1 cannot be applied. Results
for groups 1 and 2 are presented in the first and second panels, respectively, of Table 4. We performed
two analyses under M3 and M4. Initially, we discuss the results for group 1. First, using the regular
identifiability condition 0 < oy + 1 < 1, we found that estimated oy and oy were 0.014 (s.e. 0.013) and
0.521 (s.e. 0.148), respectively in M3. In the real data analyses, the estimates of oy and ¢} in M3 and M4
are quite close, so we present these estimates based on M3 only. Based on the above estimates and their
standard errors, we concluded that oy was not significantly different from zero. Therefore, we reanalyzed
the data by setting oy = 0, and estimated all the parameters along with «; € (0, 1). In this scenario «; was
estimated as 0.46 (s.e. 0.112). All three methods M2, M3, M4 indicate that mother’s smoking is positively
associated with low birthweight. Based on the second analysis where «y = 0, the estimated odds ratios
of smoking are 2.15 and 1.99 for M3 and M4, while that odds ratio estimate based on M2 is 1.7. That
means we observe approximately 26% and 17% increase in the odds ratio estimate from M2 to M3 and
M2 to M4. Father’s age shows statistically significant association with the risk of low birthweight for all
scenarios except for M3 when oy = 0. The standard error for 3, is slightly larger in M3 and M4 than in
M2. This increase is natural as in M3 and M4 we take into account the uncertainty of not observing the
true values of the exposure.

For group 2, we found that under the regular identifiability condition 0 < «y + ¢} < 1, estimates for
o and «; were 0.014 (s.e. 0.003) and 0.271 (s.e. 0.096), respectively, for M3. We also conducted the
second analysis by setting oy = 0. In the second analysis, we obtained &; = 0.251 (s.e. 0.089) for M3.
Similar to the black mothers, M2, M3, M4 indicate that white mother’s smoking is positively associated
with low birthweight. However, it appears that both categories of father’s age have statistically significant
association with the low birthweight in all methods and for both cases where oy = 0 and ¢y > 0.

6. DIscussION

In this article, we proposed two consistent methods for reducing the bias when estimating the association
parameters in a matched case—control study. The novelty of the methods is to make use of instruments to
recover the measurement uncertainty in the absence of validation data. The methodology is accompanied
with an uncertainty measure, and contains a theoretical justification of the large sample properties. The
realistic simulation studies shed lights on the performance of the proposed methods. Specifically, the
simulation results indicate that the performance of the proposed methods is satisfactory for a large sample
size, strong association between the instruments and the true exposure, and moderate misclassification
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probabilities. We believe that this is the first work that makes use of instruments to reduce misclassification
bias in the absence of any prior knowledge on the misclassification probability or a validation data set. The
basic idea may be generalized to a multicategory exposure variable with added complexity of estimating
comparatively a large number of misclassification probabilities. The proposed methodology can also be
used when the instrumental variables are observed for a subset of the main data set. Following a referee’s
comment we want to point out that in our illustrative data example the nondifferential misclassification
assumption may be violated due to dichotomization of the numeric exposure variable (Flegal and others,
1991), and developing a proper methodology for dealing with this scenario is a part of our future research.
To handle potential convergence problems in the proposed methods one may consider a penalized estimator
using Firth (1993)’s penalty function.

7. SOFTWARE

The code for computation for the scenario of Tables 1, 2, and 3 is available at https://github.com/
ronsami/Istrumental-variables-for-misclassification.

SUPPLEMENTARY MATERIAL

Supplementary material is available at http://biostatistics.oxfordjournals.org.
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