
Biometrics DOI: 10.1111/j.1541-0420.2010.01453.x

Missing Exposure Data in Stereotype Regression Model: Application
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Summary. With advances in modern medicine and clinical diagnosis, case–control data with characterization of finer subtypes
of cases are often available. In matched case–control studies, missingness in exposure values often leads to deletion of entire
stratum, and thus entails a significant loss in information. When subtypes of cases are treated as categorical outcomes, the data
are further stratified and deletion of observations becomes even more expensive in terms of precision of the category-specific
odds-ratio parameters, especially using the multinomial logit model. The stereotype regression model for categorical responses
lies intermediate between the proportional odds and the multinomial or baseline category logit model. The use of this class
of models has been limited as the structure of the model implies certain inferential challenges with nonidentifiability and
nonlinearity in the parameters. We illustrate how to handle missing data in matched case–control studies with finer disease
subclassification within the cases under a stereotype regression model. We present both Monte Carlo based full Bayesian
approach and expectation/conditional maximization algorithm for the estimation of model parameters in the presence of a
completely general missingness mechanism. We illustrate our methods by using data from an ongoing matched case–control
study of colorectal cancer. Simulation results are presented under various missing data mechanisms and departures from
modeling assumptions.

Key words: Conditional likelihood; Nonignorable missingness; Proportional odds; Stages of cancer; Vector generalized
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1. Introduction
In this article, we propose two methods for handling par-
tially missing covariate data in a stereotype regression model
while the data are collected through a matched case–control
design. The stereotype regression model was proposed by
Anderson (1984) for analyzing categorical outcome data
by using category-specific scores and maintaining the ho-
mogeneous effect of covariates corresponding to each logit.
The model stands intermediate between the baseline category
logit model and the proportional odds model in terms of
model flexibility and parsimony. The model can be adapted
to ordered as well as unordered outcome settings whereas the
proportional odds model is used only for ordered data.
The stereotype model, however, has been less attractive as an
alternative to proportional odds model due to computational
burden caused by multiplicative structure of the model pa-
rameters. Since Anderson’s initial paper, there has been only
handful of follow-up papers on this class of models. Greenland
(1994) proposed a two-step iterative algorithm followed by
bootstrap for estimation of model parameters and their stan-
dard errors, respectively. Holtbrügge and Schumacher (1991)
used an iteratively reweighted least squares algorithm (Green,
1984) to obtain parameter estimates. Recently, Yee and Hastie
(2003) considered the stereotype model as a special case of the
reduced rank vector generalized linear model (RR-VGLM)

and introduced a fitting approach in the R package VGAM

(Yee, 2010). Kuss (2006) presented an in-depth overview on
the estimation of the parameters of a stereotype model by
employing generalized least squares and discussed alternate
implementation procedures in standard statistical software.
Kuss (2003) considered an illustrative example using the ran-
dom effects stereotype regression model. Lunt (2004) consid-
ered prediction of ordinal outcomes using this model. Ahn
et al. (2009) presented Bayesian inference for ordered and
unordered stereotype model. Agresti (2010) contains a full
discussion of this model (p. 103–117).

Greenland (1994) pointed out an attractive feature of this
model in terms of yielding valid inference under retrospec-
tive sampling, like in a case–control study. Alternative ordi-
nal models such as the proportional odds or cumulative logit
model do not preserve valid inference under outcome strat-
ified sampling (Mukherjee, Liu, and Sinha, 2007; Mukherjee
and Liu, 2009). Moreover, for a matched case–control study,
the conditional likelihood principle (Breslow and Day, 1980)
may be invoked to eliminate stratum-specific nuisance pa-
rameters under the stereotype model structure, whereas the
proportional odds model is not amenable to this princi-
ple (Mukherjee et al., 2008). With advances in detection
and diagnosis techniques for cancer, classification information
into finer subtypes of cancers/tumors are often available in
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existing databases. The stereotype model presents an
interesting alternative to model association of risk factors with
such subtypes rather than just case–control status. The out-
come categories or disease subtypes may or may not be or-
dered in terms of effect of covariates. The stereotype model
allows a unique opportunity for testing such ordering restric-
tions. Thus the model appears to be an appealing tool for
analyzing matched case–control data with finer disease sub-
classification.

Missingness in exposure values is frequently a concern
in matched case–control studies. Naive use of the condi-
tional logistic regression (CLR) on complete-case data ren-
ders deletion of the entire stratum containing any missing
case observations in matched case–control studies. There ex-
ists a substantial amount of literature on handling missing
data in matched case–control studies (Paik and Sacco, 2000;
Satten and Carroll, 2000; Rathouz, Satten, and Carroll,
2002; Rathouz, 2003; Sinha et al., 2005). Depending on the
type of missingness mechanism (following the terminology of
Little and Rubin, 2002), inference from a naive complete-case
CLR analysis may suffer in different ways. If the probabil-
ity of missingness does not depend on observed data, that
is, the data are missing completely at random (MCAR), such
analysis will yield consistent but less efficient estimates. If the
missingness depends on completely observed data, disease sta-
tus, or matching variables, that is, if the data are missing at
random (MAR), this analysis yields biased and inefficient esti-
mates. All of the above references consider methods to handle
MAR data in matched case–control studies.

If the missingness mechanism depends on unobserved ex-
posure values, naive complete-case CLR, as well as the above
methods to handle MAR data, can lead to biased and in-
consistent results. Paik (2004) used a parametric approach to
handle such informative missingness (IM) in matched case–
control studies using a pseudo-likelihood. After the first timely
investigation of Paik (2004) for handling IM in matched case–
control studies, Sinha and Maiti (2008) carried out a compre-
hensive comparison of Paik’s approach with an alternative
full-likelihood based approach. Both of these papers use the
expectation/maximization (EM) algorithm to estimate model
parameters and to derive standard error estimates. None of
the above papers, however, consider the problem of modeling
disease subclassification, and do not involve the stereotype
regression model. Sinha, Mukherjee, and Ghosh (2004) did
consider the problem of missing exposure data with multiple
disease states using a polytomous regression model but not
under IM. The parametric structure of the stereotype model
leads to new computational issues and there is no literature
on handling missingness under this class of models. In this
article, we propose an expectation conditional maximization
(ECM) approach and a full Bayesian (FB) approach to han-
dle missing data under the stereotype model. The methods
are applied to analyze the association between use of statins
(a lipid lowering drug), physical activity, and different stages
of colorectal cancer in an ongoing population-based matched
case–control study (Poynter et al., 2005).

The rest of the article is organized as follows. In Section 2.1,
we introduce the stereotype regression model. In Section 2.2,
we describe the conditional likelihood under a matched case–
control setting, without any missingness. In Section 2.3, we
present the likelihood formulation with partially observed

data, with a model for missing data and selection probability
mechanism. In Section 3, we discuss the computational strate-
gies to estimate the model parameters, namely, the ECM and
the full Bayes strategy. We illustrate our methods via ana-
lyzing data from the Molecular Epidemiology of Colorectal
Cancer (MECC) Study in Section 4. Finally, we carry out a
simulation study to compare properties of the different esti-
mation strategies in terms of bias and mean squared error
(MSE) under different missingness mechanisms in Section 5.
Section 6 presents brief concluding remarks.

Before concluding this section, we highlight two novel fea-
tures of this article. To the best of our knowledge, there is
no literature on handling missing data under the stereotype
model. The current article is also the first one to present a
full Bayesian framework to deal with nonignorable missing-
ness in matched case–control studies for binary/categorical
outcomes. We compare the performance of both FB and ECM
in terms of simulation studies under an array of missingness
mechanisms and model misspecification.

2. Models and Assumptions
In this section, we introduce the key ingredients of our like-
lihood, starting with the stereotype model specification, the
complete data likelihood, then followed by models for the se-
lection probability and the distribution of the missing expo-
sure.

2.1 The Stereotype Regression Model
The stereotype model is nested within the family of polyto-
mous logistic regression models (Agresti, 2002). The polyto-
mous logistic regression model for a categorical response vari-
able Y with K + 1 categories and a p-dimensional vector of
explanatory variables X is denoted by

p(Y = k |X) =
exp

(
β0k + β�

k X
)

K∑
l=0

exp
(
β0l + β�

l X
) , (1)

for k = 0, 1, . . . , K with constraints β00 ≡ β0 ≡ 0. The p × 1
parameter vector βk denotes the log odds ratio of category
Y = k relative to baseline category Y = 0. Anderson (1984)
proposed the stereotype model by imposing a structure on βk

such that βk = φk β. The stereotype regression model can thus
be represented as

p(Y = k |X) =
exp(β0k + φk β�X)

K∑
l=0

exp(β0l + φlβ
�X)

, (2)

for k = 0, 1, . . . , K . For identifiability of the parameters,
we assume β00 = φ0 ≡ 0 and φK ≡ 1. The number of pa-
rameters to be estimated in (2) is (2K − 1) + p, compared
to K + (p × K) parameters in the polytomous logit model
(1). The stereotype model (2) is nested within the class
of polytomous logit models (1) and thus the two models
can be compared via a likelihood ratio test. Note that the
stereotype model reduces to the standard logistic regres-
sion model when the outcome is binary, that is, 0 = φ0 <
φ1 = 1. The stereotype model can be extended to accommo-
date ordered outcomes with a monotonicity constraint on the
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category-specific scores, namely, 0 ≡ φ0 ≤ φ1 ≤ · · · ≤ φK ≡ 1.
The ordering constraint can be tested in light of the data
by comparing the ordered and unordered model using a like-
lihood ratio test. In contrast, the other popular choice for
modeling ordered data, namely, the proportional odds model,
is not nested in (1) or (2). The proportional odds model as-
sumes an identical effect of the covariates corresponding to
each cumulative probability, reducing the number of param-
eters to be estimated to K + p. The stereotype model allows
slightly more flexible structure for the covariate effects when
compared to the proportional odds model. One can actually
test the indistinguishability of covariate effects on outcome
categories k and l by testing H0 : φk = φl in (2) and poten-
tially collapse categories with similar category-specific scores.
However, the limitations of the model are nonlinearity in the
parameters due to product terms in φ and β and the lack
of identifiability of the parameters under the global null hy-
potheses of H0 : β = 0, leading to nonstandard asymptotic
theory for likelihood-based inference.

2.2 Stereotype Regression in Matched Case–Control Studies
As Greenland (1994) pointed out, the stereotype model leads
to consistent estimates of the parameters of interest, namely,
φ and β, under outcome-stratified sampling. Since asymptotic
efficiency of a prospective categorical outcome model with
multiplicative intercept structure is established in Scott and
Wild (1997) and the stereotype model belongs to this class,
asymptotic efficiency results follow under the assumption of a
general unconstrained distribution for the exposure vector X .
Anderson (1984) specifically recommended this model for cat-
egorical outcomes that are not generated by segmenting a la-
tent continuous scale, but are summaries of truly discrete mul-
tidimensional outcomes. A natural example for such an out-
come is stages of cancer that are typically assessed based on
multiple diagnostic criteria. For matched case–control studies
with finer disease subclassification, the stereotype model pro-
vides additional flexibility in terms of eliminating the matched
set specific parameters via the conditional likelihood.

We now describe the stereotype regression model for the
specific setting of a matched case–control design. Let Yij de-
note the disease state corresponding to the jth subject in
the ith stratum (or matched set), with Si denoting variables
which contributed explicitly or implicitly to the matching pro-
cess leading to the ith stratum. The disease states are clas-
sified into one of the K distinct categories 1, 2, . . . , K , while
the reference control group is denoted by Yij = 0. In each
of the N strata, we assume there is one case matched with
M controls. For ease of notation, we restrict our attention
to a single covariate Xij with potential missingness, the re-
sults could again be extended to a set of covariates contain-
ing missingness in a straightforward way (Sinha et al., 2007).
Let Z ij denote the vector of p completely observed covariates
Z ij = [Zij 1, . . . , Zij p ]T corresponding to the jth subject in the
ith stratum. The stratified disease risk model is described as

p(Yij = k |Xij , Z ij , Si )

=
exp

{
β0k (Si ) + φk

(
β1Xij + β�

2 Z ij

)}
K∑
l=0

exp
{
β0l (Si ) + φl

(
β1Xij + β�

2 Z ij

)} , k = 0, · · · , K.

(3)

The β0k (Si ) are category-specific intercepts that could vary
with strata. For identifiability, β00(Si ) = φ0 ≡ 0 and φK ≡ 1.
The change in the log odds of an individual being in the
kth disease category versus being a control, for each unit
increase in X is given by φk β1. Without loss of generality,
let us assume that the first subject in each stratum is the
case and remaining are controls. To eliminate the stratum-
specific nuisance parameters β0k (Si ), we use the conditional
likelihood, by conditioning on the event

∑M +1
j=1 Yij = ki , in

the ith stratum, where ki is the observed disease state cor-
responding to the case subject in the ith stratum, ki =
1, . . . , K .

Thus the conditional likelihood when we have complete
data is given by

Lc =
N∏
i=1

P

(
Yi1 = ki , Yi2 = · · · = YiM +1 = 0 | {Xij , Z ij }M +1

j=1 ,

Si ,

M +1∑
j=1

Yij = ki

)

=
N∏
i=1

exp
{
φki

(
β1Xi1 + β�

2 Z i1

)}
M +1∑
j=1

exp
{
φki

(
β1Xij + β�

2 Z ij

)} . (4)

For completely observed data one could proceed with
Bayesian inference using the above conditional likelihood
treating it as a genuine likelihood and impose prior struc-
ture on the parameters φk , β1, and β2 (Ahn et al., 2009). The
justification for using Lc as a basis of Bayesian inference can
be found in Rice (2004).

Remark 1. Our results could be directly extended to the
setting of a more general Ci : Mi case:control matching ra-
tio. Under such a matching scheme, the conditioning statistic
is the vector {Cki , k = 1, . . . , K}, where Cki is the number of
cases of each subtype k in stratum i, with

∑K

k=1 Cki = Ci . Ex-
act expression for the conditional likelihood under this general
case is presented in Web Appendix A.1.

2.3 Likelihood Formulation under Missingness
in Exposure Values

Let Rij denote the indicator variable assuming the value 1
if Xij is observed and 0 otherwise. The complete joint con-
ditional likelihood we consider as a basis of our inference is
given by Lcm =

∏N

i=1 Li
cm , where Li

cm , the contribution of the
ith stratum to this full data likelihood, can be factored as

Li
cm = p

(
{Rij , Xij , Yij }M +1

j=1 | {Z ij }M +1
j=1 , Si ,

M +1∑
j=1

Yij = ki

)

=
M +1∏
j=1

{p(Rij |Xij , Yij , Z ij , Si ) × f (Xij |Yij , Z ij , Si )}

× p

(
Yi1 = ki , Yi2 = · · · = YiM +1 = 0 |Z ij , Si ,

M +1∑
j=1

Yij = ki

)
.
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Here f denotes the probability distribution function governing
the missing data Xij . In order to evaluate this likelihood,
we first assume a selection probability model, governed by
parameter δ, namely,

p(Rij = 1 |Xij , Yij , Z ij , Si ) = H(Xij , Yij , Si , Z ij ; δ),

(5)

where H(x, y, z, s; δ) defines a valid probability mass function
for the missingness indicator R. For example, H(·) might be
logistic in (Xij , Yij , Si , Z ij ), with H(u) = {1 + exp(−u)}−1.
However, the results hold for any binary link function and
functional specification of the predictors.

We now need to specify a model for f (Xij |Yij , Z ij , Si ).
Based on the results of Satten and Kupper (1993) and Satten
and Carroll (2000), by specifying a model for f (Xij |Yij =
0, Z ij , Si ) and the prospective disease risk model (3), one can
obtain the distribution of Xij in all disease subclasses, namely,
f (Xij |Yij = k, Z ij , Si ), k = 1, . . . , K . This well-known result
is presented in Web Appendix A.2. The last term in Li

cm ,
which remains to be expressed as a function of the ingredients
of the assumed model components, can be simplified as

p

(
Yi1 = ki , Yi2 = · · · = YiM +1 = 0 |Z ij , Si ,

M +1∑
j=1

Yij = ki

)

=
p(Yi1 = ki |Z i1, Si )/p(Yi1 = 0 |Z i1, Si )

M +1∑
j=1

p(Yij = ki |Z ij , Si )/p(Yij = 0 |Z ij , Si )

.

The marginal odds (marginalized over X) of the disease p(Y =
k |Z , S)/p(Y = 0, Z , S) can again be represented in terms of
the control distribution for X and the parameters of the dis-
ease risk model. The exact representation is in Web Appendix
A.2. The marginal likelihood of observed data after integrat-
ing with respect to the distribution of the missing exposure
is given by Lobs

cm =
∏N

i=1 Li,obs
cm , where

Li,obs
cm =

M +1∏
j=1

{pR i j (Rij = 1 |Xij , Yij , Z ij , Si )

× fR i j (Xij |Yij , Z ij , Si )}

×

{∫
p(1−R i j )(Rij = 0 |Xij , Yij , Z ij , Si )

×f (1−R i j )(Xij |Yij , Z ij , Si )dXij

}

× p(Yi1 = ki |Z i1, Si )/p(Yi1 = 0 |Z i1, Si )
M +1∑
j=1

p(Yij = ki |Z ij , Si )/p(Yij = 0 |Z ij , Si )

.

(6)

Instead of Monte Carlo, numeric, or analytic evaluation of the
above integrated likelihood followed by maximization proce-
dures, both of our estimation strategies FB and ECM will
be based on the following complete data likelihood, Lcomp

cm =

∏N

i=1 Li,com p
cm , where

Li ,comp
cm =

M +1∏
j=1

{pR i j (Rij = 1 |Xij , Yij , Z ij , Si )

× fR i j (Xij |Yij , Z ij , Si )

× p(1−R i j )(Rij = 0 |Xij , Yij , Z ij , Si )

× f (1−R i j )(Xij |Yij , Z ij , Si )}

× p(Yi1 = ki |Z i1, Si )/p(Yi1 = 0 |Z i1, Si )
M +1∑
j=1

p(Yij = ki |Z ij , Si )/p(Yij = 0 |Z ij , Si )

.

(7)

Remark 2. Note that in our formulation so far, any para-
metric or semiparametric model can be used for the distribu-
tion of X. One could use a class of exponential family mod-
els (as in Paik, 2004) or allow it to be more flexible (as in
Rathouz, 2003). A flexible semiparametric model for the dis-
tribution of X using a Dirichlet process mixture of normals
has also been proposed in Mukherjee et al. (2007). In Web
Appendix A.3, we consider the general class of exponential
family of distributions for X. We present details for two com-
monly occurring distributions, the Normal and the Binomial
distribution, just to provide the reader a sense of how the
expressions can be simplified in those instances.

Remark 3. When the missingness mechanism is
MAR, p(R |X, Y, Z , S) = p(R |Y, Z , S) and assuming that
p(R |Y, Z , S) does not involve any regression parameters of
interest, the contribution of that term to the likelihood can
be ignored and the above likelihood Lcomp

cm reduces to the
likelihood used in Satten and Carroll (2000) and Sinha et al.
(2005), by simply removing the two terms in (7) involving
the selection probability model.

3. Parameter Estimation and Inference
3.1 The ECM Approach
Based on the complete data likelihood Lcomp

cm , we devise an
ECM approach to estimate the model parameters. Let η de-
note the parameters governing the assumed control distribu-
tion f (X |Z, S, D = 0). For example, if we assume that the
exposure distribution in controls belongs to an exponential
family, that is,

f (Xij |Yij = 0,Zij , Si ) = exp[ ξij {θij Xij − b(θij )}
+ c(ξij , Xij )],

where the canonical parameters θij are modeled as a regres-
sion function of the completely observed covariates, namely,
θij = κ0 + κ�

1 Zij + κ2Si , capturing the dependence of the dis-
tribution X on Z and S and ξij are the scale parameters. Let,
η = (κ0, κ1, κ2, ξ). If we denote the entire parameter vector, as
Θ = (β, φ, η, δ), based on Web Appendix A.3, the complete-
data log-likelihood, say l comp

cm (Θ) can be obtained by taking
log of (7),
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∑
(i ,j ):R i j =1

[
ξij

{
θ∗

ij Xij − b
(
θ∗

ij

)}
+ c(ξij , Xij ) + log H

(
δ0 + δ1Xij + δ2Yij + δ3Si + δ�4 Z ij

)]
︸ ︷︷ ︸

L 1(Θ)

+
∑

(i ,j ):R i j =0

[
ξij

{
θ∗

ij Xij − b
(
θ∗

ij

)}
+ c(ξij , Xij ) + log

{
1 − H

(
δ0 + δ1Xij + δ2Yij + δ3Si + δ�4 Z ij

)}]
︸ ︷︷ ︸

L 2(Θ)

+
N∑
i=1

{
φki

β�
2 Z i1 + ξi1

{
b
(
θ∗

i1

)
− b(θi1)

}
+ log

(
M +1∑
j=1

exp
[
φki

β�
2 Z ij + ξij

{
b
(
θ∗

ij

)
− b(θij )

}])}
︸ ︷︷ ︸

L 3(Θ)

,

(8)

where θ∗
ij = θij + I(Yij = ki )ξ−1

ij φk i
β1. Using the notations

L1(Θ), L2(Θ), and L3(Θ) as defined via (8), we can charac-
terize the E-step at the (t + 1)th iteration of a standard EM
algorithm by computing the expectation of lcomp

cm (Θ) as,

E
{
lcomp
cm

(
Θ(t+1)

)}
= L1

(
Θ(t+1)

)
+ E

{
L2

(
Θ(t+1)

)}
+ L3

(
Θ(t+1)

)
,

(9)

where the expectation E is taken with respect to
f (Xij |Yij , Z ij , Si , Rij = 0, Θ(t)) which in turn can be ex-
pressed as

p(Rij = 0 |Xij , Yij , Z ij , Si )f (Xij |Yij , Z ij , Si )
p(Rij = 0 |Yij , Z ij , Si )

=
p(Rij = 0 |Xij , Yij , Z ij , Si )f (Xij |Yij , Z ij , Si )∫

p(Rij = 0 |Xij , Yij , Z ij , Si )f (Xij |Yij , Z ij , Si )dXij

.

(10)

The integral in (10) is replaced by sum for a discrete expo-
sure X. If we have a standard distributional form for (10), for
example, when X is binary, we can obtain an analytical ex-
pression for E{L2(Θ(t+1))}. However, Monte Carlo generation
or use of other numerical integration routines may be neces-
sary at the E-step, depending on the form of the distribution
of f (Xij |Yij , Z ij , Si ). In the M-step, we maximize (9) at the
(t + 1)th iteration with respect to Θ(t+1) conditioning on the
previously obtained values of Θ(t).

The above M-step may lead to computational complexity
with high-dimensional parameter spaces. To handle this
difficulty, a modification was proposed by Meng and Rubin
(1993) to accelerate the EM algorithm by replacing the
M-step with a rather simpler conditional maximization
(CM) step. With the nonlinearity in φ and β, adopting
the ECM is extremely helpful for the stereotype model
where the EM often fails to converge. The ECM is in the
spirit of Greenland’s two-step procedure for stereotype
models (Greenland, 1994), where the maximization problem
is simplified by iteratively maximizing in terms of φ and
β. In the (t + 1)th step of the ECM, we maximize the
likelihood in terms of β(t+1), for given values of the other
parameters obtained at step t, namely, (φ(t), η(t), δ(t)) rather
than maximizing the joint likelihood in terms of all param-
eters (β, φ, η, δ). Then we maximize the likelihood with
respect to φ(t+1) fixing (β(t+1), η(t), δ(t)), and continue itera-
tively. Similar to the EM, we repeat E-step and CM-step until

the convergence condition is met. The conditional maximiza-
tion is performed via the Nelder–Mead optimization routine.

Remark 4. The standard errors corresponding to the esti-
mated parameters can be obtained by inverting the observed
Fisher information as described in Louis (1982):

I (Θ) = −E

[
∂2

∂Θ∂Θ�

{
log Lcomp

cm (Θ)
}]

Θ=Θ̂

. (11)

We compute the above expectation with respect to the condi-
tional distribution f (X |Y, Z , S, R = 0) by Monte Carlo aver-
age of the second derivative of the log likelihood. We evaluated
each hessian matrix via a numerical approximation in R pack-
age hessian:numDeriv. We evaluate the full hessian matrix
at once and do not sequentially condition on remaining pa-
rameters, which is known to suffer from invalid standard error
estimates (Lall et al., 2002).

3.2 Bayesian Approach
Prior specification. The likelihood used for Bayesian infer-

ence is again the complete data likelihood in (7). There are
four subsets of parameters (β, φ, η, δ) under consideration.
Our main interest lies in β(p+1)×1 = (β1, β

p×1
2 ) and φ(K −1)×1 =

(φ1, . . . , φK −1) in the disease risk model (4). The two ancillary
sets of parameters involve the δ(p+4)×1 = (δ0, δ1, δ2, δ3, δ

p×1
4 )

parameters in the selection probability model and the param-
eters η = (κ(p+2)×1, ξ), where κ(p+2)×1 = (κ0, κ

p×1
1 , κ2), used in

modeling the exposure distribution in the control population.
To formulate the full conditionals, we assume series of prior
distributions on these four sets of parameters.

In this article, we generally consider the following set of
mutually independent priors on Θ:

π(β) ∼ N(p+1)(μβ , σ2
β I), π(δ) ∼ N(p+4)(μδ , σ

2
δ I),

π(κ) ∼ N(p+2)(μκ , σ2
κ I), π(φ) ∼ N(K −1)(μφ , σ2

φ I).
(12)

On ξ, the scale parameter of the exponential family, we adopt
a suitable prior given the specific distribution; for example,
we can assume a uniform prior on the logarithmic standard
deviation for the distribution of missing data, say, Xm follow-
ing a Normal distribution. Let us denote by Xo the observed
values of X. Based on the complete data likelihood in (7)
and the priors described above, we can elicit full condition-
als, which are described in detail for specific examples in Web
Appendix A.4. and A.5.
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Bayesian computation. Following the data augmentation
idea of Tanner and Wong (1987) we iterate the following two
steps for iteratively generating observations from the joint full
conditional of (Xm , Θ |Y, Z, S, X o ). At iteration t + 1,

• (a): Sample Xm
(t+1) from density P (Xm |Θ(t), Y, X o ,

Z , S, R),
• (b): Sample Θ(t+1) from density P (Θ |Y, X o , Xm

(t+1),
Z , S, R),

where Θ(t) = (β(t), φ(t), η(t), δ(t)) are obtained at the previ-
ous iteration t. As Tanner and Wong (1987) pointed out, the
first step (a), where we sample Xm from the full conditional
distribution, is analogous to “multiple imputation” of filling
in the missing data values. Also note that in step (a), we in
fact sample Xm from the same full conditional distribution
that we use at the E-step in ECM as given in (9). In step (b),
or the “posterior” step, we generate posterior sample of Θ
conditional on augmented data. However, instead of working
with a finite number of imputed datasets as in multiple im-
putation, we iterate this process in our Monte Carlo sampling
scheme and continue until stochastic convergence.

Given the full conditionals and employing the above data
augmentation step, we use a Gibbs sampler (Geman and
Geman, 1984) to generate samples from the full conditional
distribution of (β, φ, η, δ) given the augmented data. Note
that though the full conditionals do not often have a stan-
dard form, they are log-concave when the distribution of Xm

is assumed to belong to a general exponential family. In this
case, we use the adaptive rejection sampling or ARS (Gilks
and Wild, 1992). For situations when the full conditionals are
not log-concave, we adopt the adaptive rejection Metropolis
sampling (ARMS; Gilks, Best, and Tan, 1995). For each pa-
rameter, we generate 50,000 posterior samples and discard
the first 10,000 iterations as “burn-in.” In order to reduce the
inner-cycle correlation, a thinning of five observations was ap-
plied. We monitor convergence of the chains using the diag-
nostic “potential scale reduction factor” (Gelman and Rubin,
1992) provided in the R package CODA (Plummer et al., 2009).
Finally, the remaining posterior sequences are analyzed for
evaluating the Bayesian estimates and highest posterior den-
sity (HPD) interval.

4. Example: The Molecular Epidemiology
of Colorectal Cancer Study

Colorectal cancer (CRC) is the third most common cancer in
the Western world. The Molecular Epidemiology of Colorec-
tal Cancer (MECC) study is a population-based case–control
study of patients diagnosed with colorectal cancer in northern
Israel between March 31, 1998 and March 31, 2004. Controls
were 1:1 matched according to age, sex, and self-reported eth-
nicity (Jewish vs. non-Jewish). Controls were selected in tem-
poral proximity to the time of diagnosis of the cases. Subjects
were interviewed on an array of dietary and behavioral risk
factors including levels of physical activity, a family history of
colorectal cancer, level of vegetable consumption, and use
of medications. Physical activity is known to reduce the risk of
CRC by 30–40% according to the informational website of the
National Cancer Institute (NCI, 2009). In the MECC dataset,
20% of subjects had missing information on the variable mea-
suring participation in sports or other physical activities. In

a high-profile article from the MECC study, Poynter et al.
(2005) were the first to point out that the use of statins, a
drug used for hypercholesterol, reduces the risk of colorectal
cancer (reported OR 0.57, 95% CI: (0.44, 0.73)) after adjust-
ing for other known risk factors, like physical activity, fam-
ily history of colorectal cancer, the use or nonuse of aspirin
or other nonsteroidal anti-inflammatory drugs (NSAID), and
level of vegetable consumption. However, no analysis strat-
ified in terms of subtypes of CRC were done in the original
study. In the current article, we consider CRC Stage, assigned
according to the TNM (Tumor, Node, Metastasis) criteria rec-
ommended by American Joint Committee on Cancer (AJCC,
2002) as our categorical outcome ranging from 0 to IV that
represents different degree of disease progression. We investi-
gate the effect of physical activity and statin use across CRC
stages after adjusting for three other covariates (as mentioned
above) via fitting the stereotype model.

We analyzed data on 1784 matched pairs with completely
observed data on CRC stage (Y), statin use (Z1), family his-
tory of CRC (Z2), NSAID use (Z3), vegetable consumption
(Z4), and partially missing data on physical activity (X). X
and (Z1, Z2, Z3) are binary and Z4 is a trinary covariate
(0, 1, 2) indicating low, medium, and high level of vegetable
consumption. In our analysis, we consider age, gender, and
ethnicity as matching variables S that can affect our selec-
tion probability model and the model for control distribution
of X. To avoid sparse frequencies, the cancer stage variable
Y, was regrouped into four categories 0 (consisting of 1784
controls), 1 (Stage I), 2 (Stage II), and 3 (Stages III and
IV). The distribution of subjects in the three case categories
were 345 (19.4%), 716 (40.1%), and 723 (40.5%), respectively.
The completely observed covariate Z1 or statin use contained
90% “No” and 10% “Yes.” Family history of CRC (Z2) con-
sists of 90.7% “No” and 9.3% “Yes,” while 20% of subjects
said “Yes” to NSAID use (Z3). We consider vegetable con-
sumption (40% Low(0), 30% Medium(1), 30% High(2)) as a
continuous covariate. Finally, participation in sports or other
physical activity, namely, X contained 29% “No,” 51% “Yes,”
and 20% missing values. Age (S1) (observed range 19–97)
was linearly transformed into a [0, 1] interval. The empiri-
cal distribution of transformed age was well approximated by
a Normal distribution with mean 0.64 and sd 0.14. For gender
(S2), male is coded as 1 and female as 0, whereas for ethnic-
ity (S3), Jewish ethnicity is coded as 1 and non-Jewish as 0,
with 96% of the subjects/matched pairs coming from Jewish
ethnicity.

At the onset, we compared the stereotype model to the
polytomous logistic model using only the completely observed
data by a number of goodness-of-fit statistics (Web Table 1).
The stereotype model indicates better fit in terms of two in-
formation criteria used when fitted by maximum likelihood
(Kuss, 2006): namely, the Akaike information criterion (AIC)
and the Bayes information criterion (BIC). When both mod-
els are fitted under a Bayesian framework (Ahn et al., 2009),
the stereotype model is preferred by the deviance information
criterion (DIC).

We analyzed the MECC data by (a) directly maximizing
the conditional likelihood (4) using only the completely ob-
served data (CMLE), (b) the ECM approach, and (c) the
full Bayesian method (FB). In order to obtain the CMLE
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Table 1
Analysis results for the MECC study data with participation in sports activity X (Yes = 1, No = 0) containing 20%

missingness. The set of completely observed covariates are: statin use Z1 (Yes = 1, No = 0), family history of CRC (Z2, Yes =
1, No = 0), the use or nonuse of NSAID (Z3, Yes = 1, No = 0), and the level of vegetable consumption (Z4, coded as 0, 1, 2
depending on the tertile of consumption, treated as a continuous variable). 1,784 cases are 1:1 matched to controls in terms of
age, gender (male = 1, female = 0), and ethnicity (Jewish = 1 vs. non-Jewish = 0). For the CMLE, the conditional likelihood
(4) is directly maximized with completely observed data. Under the FB methods the “Est.” corresponds to the posterior mean
whereas PSD corresponds to posterior standard deviation. For the disease risk parameters, we present 95% Wald confidence

intervals (CMLE and ECM) whereas for FB we present 95% highest posterior density (HPD) intervals.

Method

CMLE ECM FB
Para-

Model Covariates meter Est. SD (95% CI) Est. SD (95% CI) Est. PSD (95% HPD)

Disease Sports
activity

β1 −0.33 0.10 (−0.52,−0.13) −0.35 0.08 (−0.50,−0.20) −0.35 0.08 (−0.52,−0.20)
Risk
Model Statin use β21 −0.61 0.16 (−0.97,−0.24) −0.63 0.15 (−0.92,−0.35) −0.64 0.15 (−0.93,−0.36)

Family
history of
CRC

β22 0.32 0.13 (0.01, 0.62) 0.41 0.12 (0.16, 0.65) 0.41 0.13 (0.17, 0.66)

NSAID use β23 −0.34 0.19 (−0.59,−0.09) −0.45 0.10 (−0.65,−0.26) −0.46 0.10 (−0.65,−0.26)
Vegetable
intake

β24 −0.27 0.07 (−0.40,−0.13) −0.21 0.05 (−0.31,−0.12) −0.22 0.05 (−0.32,−0.13)

Category Stage (I) φ1 0.78 0.30 (0.19, 1.37) 0.74 0.20 (0.34, 1.14) 0.73 0.22 (0.34, 1.18)
Specific Stage (II) φ2 1.26 0.32 (0.63, 1.89) 1.27 0.22 (0.84, 1.70) 1.25 0.23 (0.84,1.72)
Scorea

Missing Intercept κ0 −1.15 0.21 (−1.55,−0.76) −1.16 0.23 (−1.58,−0.69)
Data Statin use κZ 1 −0.11 0.13 (−0.37, 0.14) −0.12 0.13 (−0.38, 0.13)
Model Family

history of
CRC

κZ 2 −0.18 0.09 (−0.36, 0.01) −0.17 0.10 (−0.36, 0.02)

NSAID use κZ 3 0.34 0.13 (0.09, 0.59) 0.34 0.13 (0.10, 0.62)
Vegetable
intake

κZ 4 0.42 0.04 (0.34, 0.51) 0.43 0.05 (0.32, 0.51)

Age κS 1 −1.32 0.27 (−1.83,−0.80) −1.35 0.28 (−1.91,−0.83)
Gender κS 2 0.31 0.07 (0.17, 0.45) 0.31 0.08 (0.16, 0.46)
Ethnicity κS 3 1.17 0.14 (0.90,1.44) 1.18 0.14 (0.92,1.48)

Selection Intercept δ0 0.99 0.17 (0.65, 1.33) 1.00 0.22 (0.52, 1.42)
Probability Sports

activity
δX −0.02 0.07 (−0.14, 0.11) 0.00 0.13 (−0.26, 0.25)

Model
CRC stages δY 0.04 0.03 (−0.03, 0.10) 0.03 0.03 (−0.03, 0.10)
Statin use δZ 1 0.14 0.15 (−0.15, 0.44) 0.14 0.15 (−0.16, 0.43)
Family
history of
CRC

δZ 2 0.03 0.09 (−0.15, 0.21) 0.03 0.11 (−0.18, 0.25)

NSAID use δZ 3 0.08 0.14 (−0.20, 0.36) 0.13 0.16 (−0.18, 0.43)
Vegetable
intake

δZ 4 0.19 0.05 (0.09, 0.29) 0.19 0.05 (0.09, 0.29)

Age δS 1 0.00 0.32 (−0.64, 0.64) 0.01 0.30 (−0.58, 0.56)
Gender δS 2 0.02 0.09 (−0.17, 0.19) 0.01 0.09 (−0.16, 0.17)
Ethnicity δS 3 0.18 0.12 (−0.06, 0.43) 0.17 0.14 (−0.10, 0.43)

aOther category-specific scores for controls and Stage III, namely, φ0 ≡ 0, φ3 ≡ 1, by the identifiability constraints of a stereotype model.

estimates based on complete data, we used direct maximiza-
tion of (4) via the Nelder–Mead optimization. Note that us-
ing CMLE restricted to completely observed data results in
36% loss of information due to deletion of the entire stra-
tum with any missing covariate. We allowed the missingness
data mechanism to potentially depend on (Y, X, Z , S) under
ECM and FB. For FB, we choose a relatively vague N (0, 104)
prior on each component of Θ as described in (12). For com-
puting standard errors corresponding to CMLE and ECM,

we inverted the observed Fisher information matrix based on
complete data and the Monte Carlo evaluated conditional ex-
pectation of the Fisher information matrix as specified in (11),
respectively. The posterior standard deviations (PSD) for the
FB approach were obtained from the standard deviation of
the generated posterior sequence.

We present the results of this analysis in Table 1. All
three methods produced fairly similar estimates of β1 and β2.
The estimated covariate-specific coefficients imply negative
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association of physical activity, NSAID use, vegetable con-
sumption and use of statins across CRC stages and the ef-
fects are highly significant under all methods. Family history
increases the estimated risk of CRC. Both FB and ECM have
smaller standard errors than the CMLE, due to gain in infor-
mation by properly using partially observed covariate infor-
mation. FB and ECM are comparable in terms of the standard
errors of the parameter estimates.

Note that the estimated stage-specific parameters φ are
also fairly consistent across three methods. It is evident
from the analysis that the association of physical activity
and other completely observed covariates with cancer is not
homogeneous across different stages of cancer, as the val-
ues of φ1 and φ2 differ significantly. A large estimate of
φ2, approximately 1.26 from three methods, indicates that
the association were more pronounced in Stage 2. The es-
timates of φ1 and φ2 also imply that there is departure
from monotone ordering of the categories in terms of covari-
ate effects, thus the ordered Stereotype model (Anderson,
1984) does not appear to be appropriate for the current
analysis. In fact, the posterior probability of the ordering
of the categories, that is p(φ0 ≡ 0 < φ1 < φ2 < φ3 ≡ 1 |Data),
was computed from the posterior samples as 0.118, indi-
cating lack of evidence in favor of the ordered stereotype
model.

We would like to point out that in the above stereotype
model, the log odds-ratio parameters corresponding to each
category k as compared to the controls is obtained by the
parameters φk β1 (for X) and φk β2r (for Zr ), k = 1, 2, 3, r =
1, 2, 3, 4. Bayesian inference has the added advantage of di-
rectly generating the posterior of these log odds-ratio pa-
rameters directly, instead of resorting to delta theorems and
variance approximations that are needed in frequentist in-
ference. Based on the FB analysis, the posterior estimate
(95% HPD) of the odds ratios (relative to controls) for phys-
ical activity corresponding to categories 1, 2, and 3 are 0.78
(0.66,0.90), 0.65 (0.53,0.78), 0.70 (0.60,0.82), respectively. For
use of statins, the corresponding odds ratios are given by
0.63 (0.47,0.83), 0.45 (0.32,0.65), and 0.53 (0.40,0.70), re-
spectively. Figure 1 presents estimated posterior densities
of the log odds ratios of each CRC stage versus controls
corresponding to physical activity and use of statins, re-
spectively. As pointed out earlier, the nonmonotone trend
in the log odds ratios demonstrates that the ordering as-
sumption regarding the category-specific parameters is not
tenable for this study. We also tried fitting a proportional
odds model to the completely observed data, ignoring the
stratification due to matching and the proportional odds as-
sumption was clearly violated with each collapsing of the
stage category leading to significantly different estimates for
the cumulative relative risk parameter corresponding to each
covariate.

Regarding the selection model, the estimated coefficient
δX is not statistically significant under both ECM and FB
(Table 1) but this parameter is only weakly identifiable from
observed data and assumed model, thus the test is not very
meaningful. Despite certain numerical differences, one can
note a general agreement in the point estimates from the
complete case analysis compared to estimates under the two
models that accommodate missing data in Table 1.

Remark 5. In general, the assumptions regarding the se-
lection probability model (5) are not directly “testable” from
the observed data. Thus a sensitivity analysis is required to
assess the influence of the modeling assumption on obtained
inference. One simple approach toward this is to estimate
β1 and β21 under different fixed choices for the coefficients
in the selection probability model. To this end, in (5), we
fixed δX at (−2, 0, 2) and noted the estimates from FB
and ECM. Under FB, β̂1 varied from −0.38 to −0.33 and
β̂21 from −0.67 to −0.64. Under ECM, β̂1 varies in (−0.35,
−0.32) and β̂21 in (−0.66, −0.63). Similarly, we examined the
changes in the parameter estimates of the missing data model,
κ̂Z = (κ̂Z 1 , κ̂Z 2 , κ̂Z 2 , κ̂Z 4 ), with changes in δX . The four com-
ponents of κ̂Z vary within the range (−0.14, −0.11), (−0.20,
−0.16), (0.32, 0.35), and (0.41 0.43), respectively, under FB
and (−0.15, −0.08), (−0.18, −0.16), (0.28, 0.34), and (0.32,
0.43), respectively, under ECM. This indicates the impact of
changing δX on β̂1, β̂21 and κ̂Z is minimal. Both ECM and
FB methods present standard deviations almost identical to
the corresponding standard deviations in Table 1 for chang-
ing values of δX . We carry out more extensive assessment of
the robustness properties of our methods via the simulation
study in the next section.

5. Simulation Study
We evaluate and compare the performances of the three meth-
ods by conducting a small-scale simulation study. The pur-
pose of the simulation study was to assess the methods under
various models for the selection probability and the exposure
distribution in terms of efficiency and robustness under model
misspecification. Mimicking the real data analysis results, we
fixed our true parameter values (β, φ, η, δ) in the range of
the point estimates obtained by the three methods. For sim-
plicity, our simulation is based on single Z covariate. We first
generate a large cohort of 500,000 subjects, containing infor-
mation on (Y, X, Z, S). Akin to the statin use variable, we
generated Z, from a Bernoulli distribution of success p = 0.1.
We then generated a potential matching variable S from a
Normal(0.6, 0.12) distribution, mirroring the age variable in
the MECC study. Conditional on Z and S, we generated a
binary X from several probability mechanisms as described
below in detail. Conditional on X, Z , we generated Y from
an unmatched stereotype model. We set the covariate-specific
parameters β1, β2 = (−0.3,−0.7) and the category-specific
scores as φ = (φ0, φ1, φ2) = (0, 0.8, 1.7, 1). We selected the
three case-category-specific intercepts as (−1.5, −0.5, −0.9)
to make the relative frequency distribution of Y similar to
the real data analysis. With this large population base of
500,000 records on Y , X , Z , and S, we created a matched
case–control dataset in the following way. First, we randomly
sampled 1000 cases (Y �= 0) from this large population. Cor-
responding to each selected case, we chose a matched control
randomly from the set of all controls having the value of the
matching variable S within 0.05 of the S-value for the selected
case. We replicated the aforementioned process 200 times to
create 200 matched case–control datasets from this large pop-
ulation under each simulation setting.

Under each simulation configuration, we considered five dif-
ferent schemes of selection probability models. The first four
models fall under the class of missingness models we consider
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Figure 1. Posterior density plot corresponding to the log odds-ratio parameters in 1:1 matched MECC study data with
numerical summaries and estimates as presented in Table 1. The left plot corresponds to participation in sports (X) and the
right plot corresponds to statin use (Z1). The results are based on 10,000 samples generated from the posterior distribution
of each parameter. This figure appears in color in the electronic version of this article.

in (5), whereas MM5 involves nonlinear terms in X and Y and
violate the modeling assumption of (5).

MM1. Missing completely at random (MCAR): logit{p(Rij =
1 |Yij , Xij , Zij , Si )} = 0.8,

MM2. Missing at random (MAR): logit{p(Rij =
1 |Yij , Xij , Zij , Si )} = Yij + 0.5,

MM3. Informative missingness (IM): logit{p(Rij =
1 |Yij , Xij , Zij , Si )} = Xij ,

MM4. IM: logit{p(Rij = 1 |Yij , Xij , Zij , Si )} = 0.5Xij +
0.5Yij + 0.5,

MM5. IM: logit{p(Rij = 1 |Yij , Xij , Zij , Si )} = Xij Zij +
Yij Xij + 1.

The parameters for the above models are chosen in a way
to yield the marginal probability of missingness to approxi-
mately 20% in each case.

To assess the robustness of our proposed methods un-
der different departures from the assumed model for miss-
ing exposure, we consider three scenarios: (a) The exposure
model is correctly specified (Table 2); (b) The exposure model
is misspecified in terms of a covariate (Table 3); (c) The
exposure model is misspecified in terms of a link function
(Table 4). Note that since matching is done on the basis of
a continuous variable S, the intercept term in the conditional
likelihood does not exactly cancel and thus the likelihood is
possibly not technically correct in any simulation setting in-
cluding (a). However, we matched cases and controls within a
very narrow interval of S and thus, we do not anticipate any
appreciable bias from making this assumption.

Under each simulation setting, we evaluated the perfor-
mance of three methods: CMLE, ECM, and FB. The cor-
responding results are presented in terms of the average bias
and mean squared errors across the 200 datasets (Tables 2–4).
In approximately 3% cases, we failed to obtain estimates from
the CMLE approach due to lack of convergence and those sim-
ulation iterations are deleted for a fair comparison across the
three methods.

Table 2 presents simulation results when the exposure
model is correctly specified. We generated exposure X |Z, S
from H(0.3 + 0.3Z − 1.5S). In the presence of noninforma-
tive/ignorable missingness (MM1, MM2), the CMLE yields
less efficient estimates than the ECM and the FB methods
while all three methods are approximately unbiased. With
informative missingness and a correctly specified selection
model MM4, the ECM and the FB produce less biased es-
timates than the CMLE in terms of β1, the coefficient cor-
responding to X, which is noted to be affected most in the
presence of missingness. When model violation exists in terms
of the selection probability model having nonlinear product
terms XZ and YX (MM5), all three methods produce large
biases. Overall, the FB appears to have slightly better mean
squared error properties than the ECM.

To assess the effect of model misspecification in the expo-
sure distribution, for example, due to missing a correct co-
variate term, we introduce a quadratic term S2, and gen-
erate X |Z, S from H(0.3 + 0.3Z − 1.5S2) everything else
being identical to Table 2 settings. Contrary to our expec-
tation that the full-likelihood based estimates from both FB
and ECM will yield enhanced biases compared to the CMLE,
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Table 2
Simulation results under correct specification of the exposure

model. Here, binary exposure X |Z, S is generated from
f (X = 1 |Z, S) = H(0.3 + 0.3Z − 1.5S). The CMLE, the
ECM, and the FB methods are considered. The results are
based on 200 simulated datasets, each with 1000 cases and
1000 controls. For each parameter of interest in the disease
risk model, we report estimated bias and mean squared error

based on the 200 replications. The true values for the
parameters of interest are: β1 = −0.3, β2 = −0.7, φ1 = 0.8,
and φ2 = 1.7. Approximately 20% observations in X were

missing.

Method

CMLE ECM FB
Para-
meter Bias MSE Bias MSE Bias MSE

Complete data
β1 0.007 0.009 0.007 0.008 0.030 0.008
β2 −0.007 0.029 0.002 0.021 0.039 0.021
φ1 −0.053 0.145 −0.072 0.102 −0.036 0.112
φ2 −0.003 0.285 0.003 0.200 0.108 0.223

MM1. logit{p(Rij = 1 |Yij , Xij , Zij , Si )} = 0.8

β1 −0.023 0.021 −0.015 0.010 0.058 0.011
β2 −0.046 0.068 −0.027 0.033 0.006 0.031
φ1 0.046 0.301 −0.009 0.132 0.069 0.151
φ2 0.071 0.371 −0.002 0.208 0.112 0.236

MM2. logit{p(Rij = 1 |Yij , Xij , Zij , Si )} = Yij + 0.5

β1 −0.035 0.034 0.033 0.011 −0.010 0.025
β2 −0.067 0.100 −0.016 0.046 −0.011 0.041
φ1 −0.082 0.307 0.010 0.279 0.026 0.190
φ2 0.070 0.387 0.090 0.293 0.050 0.277

MM3. logit{p(Rij = 1 |Yij , Xij , Zij , Si )} = Xij + 1

β1 −0.016 0.026 −0.011 0.013 0.006 0.015
β2 −0.050 0.075 −0.020 0.040 −0.001 0.039
φ1 0.170 0.485 0.118 0.158 0.165 0.175
φ2 0.202 0.647 0.092 0.226 0.171 0.283

MM4. logit{p(Rij = 1 |Yij , Xij , Zij , Si )} =
0.5Xij + 0.5Yij + 0.5

β1 −0.115 0.043 −0.036 0.012 −0.051 0.017
β2 −0.057 0.064 −0.033 0.024 −0.048 0.028
φ1 0.051 0.367 0.050 0.126 0.052 0.099
φ2 0.053 0.686 −0.006 0.150 −0.076 0.245

MM5. logit{p(Rij = 1 |Yij , Xij , Zij , Si )} =
Xij Zij + Yij Xij + 1

β1 0.186 0.036 0.170 0.035 0.202 0.046
β2 −0.126 0.102 0.065 0.043 0.081 0.038
φ1 0.104 0.377 0.046 0.358 0.087 0.259
φ2 0.207 0.969 0.329 0.672 0.342 0.531

which does not make any parametric assumption regarding
the exposure distribution, we notice that the results are fairly
similar across Table 3 and Table 2 for MM1-MM4 though
there is marginally larger bias compared to Table 2. This can
be possibly explained by the fact that S2 and S are not abun-
dantly apart to affect the estimation. Model misspecification
in both selection probability and the exposure distribution
(MM5), however, results in substantial increase in bias and
MSE in the ECM and the FB as shown under MM5.

Table 3
Simulation results under exposure model misspecification in
terms of nonlinear predictor in the exposure model. Here, a

binary exposure X |Z, S is generated under f (X = 1 |Z, S) =
H(0.3 + 0.3Z − 1.5S2). The CMLE, the ECM, and the FB

methods are considered. The results are based on 200
simulated datasets, each with 1000 cases and 1000 controls.

For each parameter, we report estimated bias and mean
squared error based on the 200 replications. The true values
for the parameters are: β1 = −0.3, β2 = −0.7, φ1 = 0.8, and

φ2 = 1.7. Approximately 20% observations in X were missing.

Method

CMLE ECM FB
Para-
meter Bias MSE Bias MSE Bias MSE

Complete data
β1 −0.011 0.011 −0.012 0.010 0.013 0.009
β2 −0.052 0.032 −0.049 0.031 −0.011 0.029
φ1 0.038 0.126 0.036 0.119 0.080 0.143
φ2 0.010 0.182 0.017 0.172 0.113 0.206

MM1. logit{p(Rij = 1 |Yij , Xij , Zij , Si )} = 0.8

β1 −0.045 0.023 −0.028 0.017 0.038 0.012
β2 −0.029 0.068 0.006 0.039 0.023 0.035
φ1 0.047 0.464 0.028 0.261 0.077 0.232
φ2 0.096 0.501 0.090 0.291 0.087 0.290

MM2. logit{p(Rij = 1 |Yij , Xij , Zij , Si )} = Yij + 0.5

β1 −0.025 0.021 0.046 0.012 −0.021 0.035
β2 −0.035 0.054 0.044 0.034 0.040 0.043
φ1 0.044 0.499 −0.039 0.201 0.032 0.119
φ2 0.131 0.503 0.123 0.419 0.063 0.343

MM3. logit{p(Rij = 1 |Yij , Xij , Zij , Si )} = Xij + 1

β1 −0.005 0.015 −0.016 0.011 0.071 0.013
β2 −0.008 0.062 −0.018 0.027 0.024 0.026
φ1 0.085 0.262 0.055 0.118 0.120 0.135
φ2 0.194 0.565 0.056 0.172 0.151 0.209

MM4. logit{p(Rij = 1 |Yij , Xij , Zij , Si )} =
0.5Xij + 0.5Yij + 0.5

β1 −0.132 0.046 −0.044 0.016 −0.055 0.020
β2 −0.029 0.060 −0.013 0.037 −0.044 0.028
φ1 −0.052 0.489 0.006 0.124 0.038 0.101
φ2 0.037 0.725 0.070 0.301 −0.052 0.235

MM5. logit{p(Rij = 1 |Yij , Xij , Zij , Si )} =
Xij Zij + Yij Xij + 1

β1 0.176 0.048 0.187 0.041 0.222 0.036
β2 −0.086 0.109 0.047 0.048 0.033 0.041
φ1 0.003 0.570 0.026 0.340 0.102 0.294
φ2 0.243 1.096 0.390 0.867 0.194 0.670

Lastly, we investigate the situation where the link function
corresponding to generating X |Z, S departs from the logistic
link function. Here we generated X |Z, S from a mixture of
the Burr family of distributions (Burr, 1942),

X |Z , S ∼

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Bernoulli with f (X = 1 |Z , S)

= 1 − {1 + exp(0.3 + 0.3Z)}−0.7, S < 0.5

Bernoulli with f (X = 1 |Z , S)

= 1 − {1 + exp(0.3 + 0.3Z)}−1.3, S ≥ 0.5.
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Table 4
Simulation results under misspecification in terms of link

function corresponding to the exposure distribution. Here, a
binary X |Z, S is generated from a mixture of Burr family of

link functions, f (X = 1 |Z, S) = 1 − {1 + exp(0.3 +
0.3Z)}−0.7 when S < 0.5 and f (X = 1 |Z, S) = 1 − {1 +

exp(0.3 + 0.3Z)}−1.3 otherwise. The CMLE, the ECM, and
the FB methods are considered. The results are based on 200
simulated datasets, each with 1000 cases and 1000 controls.

For each parameter we report estimated bias and mean
squared error based on the 200 replications. The true values
for the parameters are: β1 = −0.3, β2 = −0.7, φ1 = 0.8, and

φ2 = 1.7. Approximately 20% observations in X were missing.

Method

CMLE ECM FB
Para-
meter Bias MSE Bias MSE Bias MSE

Complete data
β1 −0.008 0.011 −0.021 0.015 0.017 0.011
β2 −0.036 0.030 0.081 0.019 0.007 0.036
φ1 0.041 0.149 0.098 0.114 0.050 0.142
φ2 0.014 0.273 0.185 0.297 0.131 0.283

MM1. logit{p(Rij = 1 |Yij , Xij , Zij , Si )} = 0.8

β1 −0.033 0.021 −0.064 0.016 0.045 0.015
β2 −0.030 0.069 0.058 0.035 0.013 0.034
φ1 0.008 0.328 0.124 0.241 −0.016 0.194
φ2 0.086 0.539 0.112 0.330 0.101 0.299

MM2. logit{p(Rij = 1 |Yij , Xij , Zij , Si )} = Yij + 0.5

β1 −0.041 0.023 0.082 0.013 0.089 0.014
β2 −0.015 0.052 0.076 0.050 0.023 0.039
φ1 −0.025 0.342 0.161 0.301 0.021 0.214
φ2 0.109 0.601 0.148 0.463 0.110 0.387

MM3. logit{p(Rij = 1 |Yij , Xij , Zij , Si )} = Xij + 1

β1 −0.003 0.021 0.034 0.016 0.042 0.012
β2 −0.015 0.046 0.015 0.030 0.011 0.024
φ1 0.090 0.324 0.088 0.155 0.091 0.164
φ2 0.210 0.718 0.193 0.277 0.219 0.291

MM4. logit{p(Rij = 1 |Yij , Xij , Zij , Si )} =
0.5Xij + 0.5Yij + 0.5

β1 −0.100 0.039 −0.044 0.017 −0.058 0.014
β2 −0.059 0.059 −0.003 0.031 −0.004 0.026
φ1 0.083 0.321 0.092 0.142 0.091 0.143
φ2 0.056 0.535 0.135 0.322 0.123 0.274

MM5. logit{p(Rij = 1 |Yij , Xij , Zij , Si )} =
Xij Zij + Yij Xij + 1

β1 0.201 0.063 0.179 0.072 0.202 0.077
β2 0.087 0.123 0.074 0.053 0.081 0.061
φ1 −0.036 0.481 −0.071 0.362 0.130 0.351
φ2 −0.341 1.112 0.229 0.803 0.366 0.671

The biases corresponding to the FB and the ECM in Table 4
increase when compared to Tables 2 and 3 with some loss in
efficiency. This indicates that this type of link misspecification
is possibly more severely affecting the parametric methods of
the ECM and the FB than covariate misspecification. Thus
the performance of our methods can be dependent upon the
nature of the departure from the correct exposure model, pro-
ducing slightly larger biases than CMLE under MCAR/MAR

data (MM1–MM2). However, with IM, both the ECM and
the FB lead to improved Bias and MSE properties than the
CMLE as the exposure misspecification bias appears to be
less, compared to the bias generated by failure to account for
nonignorable missingness.

Summarizing our findings, our proposed methods present
more efficient estimates than the naive CMLE using com-
pletely observed data in the presence of missingness in covari-
ates. In addition, the proposed methods appear to be fairly
robust under modest misspecification in the missing expo-
sure distribution. Our approaches do suffer under the incor-
rect model for informative missingness mechanism. In other
more extensive simulation studies under more dramatic de-
partures from the exposure model, we noticed that the ECM
approach is less robust than the FB (results are not included).
Among the three methods, the FB method has the small-
est MSE by virtue of introducing shrinkage effect through
prior information. Regarding the secondary model parame-
ters corresponding to the selection probability and the expo-
sure distribution, namely, δ and κ, ECM and the FB provide
roughly unbiased estimates except for severe model misspec-
ification (MM5 or situation (c)). In order to assess the mod-
els in terms of coverage probabilities we compared the cov-
erage of Wald-based confidence intervals of CMLE and ECM
with the HPD intervals obtained via FB method (see Web
Table 2). We noticed the same phenomena that the ECM
and FB have close to nominal coverage probabilities unless
there is acute violation in specifying the selection probabil-
ity model (MM5) while complete-case CMLE suffers when
there is nonignorable missingness depending on both X, Y, Z .
Finally, we would also like to point out that the computing
time needed for the ECM is substantially less than the FB
method.

6. Discussion
This article presents a comprehensive approach to handle non-
ignorable missingness in covariates under the stereotype re-
gression model. Though we focus on matched case–control
studies with finer disease subclassification as our primary ex-
ample, the methods can be adapted to prospective analysis of
categorical response data with ordered or unordered response
categories using the stereotype class of link functions. We de-
velop an expectation/conditional maximization algorithm as
well as a full Bayes procedure with data augmentation and
compare these approaches with naive use of conditional max-
imum likelihood based on complete data. Our real data anal-
ysis as well as simulation study establish the methods lead
to substantial gain in efficiency compared to the CMLE and
are fairly robust under modest departures from the model for
missing exposure. However, the methods could perform poorly
if the selection probability model is grossly misspecified.

Inference under the stereotype model is burdened with
computational and analytical challenges due to embedded
nonlinearity and the lack of identifiability in the paramet-
ric structure. Missingness further compounds the complexity.
The Bayesian paradigm offers flexible alternative modeling
approaches and inferential solutions for this class of models.
For matched case–control data, the model has an added dis-
tinction of accommodating highly stratified data via condi-
tioning and preserving prospective–retrospective conversion
of the parameters of interest. The current article is the first
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attempt to handle a general form of missingness in this class
of models. Future research involves considering a more flexible
semiparametric model for the exposure distribution, for the
missingness mechanism and considering missingness with cor-
related or clustered observations as in a longitudinal cohort
study under the stereotype model. A random effects approach
on the stratum effects, instead of using conditional likelihood,
is also a plausible alternative and will reduce the bias under
data missing at random for complete-case analysis.

7. Supplementary Materials
Web Appendices and Tables referenced in Sections 2–5 are
available under the Paper Information link at the Biometrics
website http://www.biometrics.tibs.org.
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