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Confidence interval estimation of small area  
parameters shrinking both means and variances 

Sarat C. Dass, Tapabrata Maiti, Hao Ren and Samiran Sinha 1 

Abstract 
We propose a new approach to small area estimation based on joint modelling of means and variances. The proposed model 
and methodology not only improve small area estimators but also yield “smoothed” estimators of the true sampling 
variances. Maximum likelihood estimation of model parameters is carried out using EM algorithm due to the non-standard 
form of the likelihood function. Confidence intervals of small area parameters are derived using a more general decision 
theory approach, unlike the traditional way based on minimizing the squared error loss. Numerical properties of the 
proposed method are investigated via simulation studies and compared with other competitive methods in the literature. 
Theoretical justification for the effective performance of the resulting estimators and confidence intervals is also provided. 
 
Key Words: EM algorithm; Empirical Bayes; Hierarchical models; Rejection sampling; Sampling variance; Small area 

estimation. 
 
 

1. Introduction  
Small area estimation and related statistical techniques 

have become a topic of growing importance in recent years. 
The need for reliable small area estimates is felt by many 
agencies, both public and private, for making useful policy 
decisions. An example where small area techniques are used 
in practice is in the monitoring of socio-economic and 
health conditions of different age-sex-race groups where the 
patterns are observed over small geographical areas. 

It is now widely recognized that direct survey estimates 
for small areas are usually unreliable due to their typically 
large standard errors and coefficients of variation. Hence, it 
becomes necessary to obtain improved estimates with 
higher precision. Model-based approaches, either explicit or 
implicit, are elicited to connect the small areas and im-
proved precision is achieved by “borrowing strength” from 
similar areas. The estimation technique is also known as 
shrinkage estimation since the direct survey estimates are 
shrunk towards the overall mean. The survey based direct 
estimates and sample variances are the main ingredients for 
building aggregate level small area models. The typical 
modeling strategy assumes that the sampling variances are 
known while a suitable linear regression model is assumed 
for the means. For details of these developments, we refer to 
reader to Ghosh and Rao (1994), Pfeffermann (2002) and 
Rao (2003). The typical area level models are subject to two 
main criticisms. First, in practice, the sampling variances are 
estimated quantities, and hence, are subject to substantial 
errors. This is because they are often based on equivalent 
sample sizes from which the direct estimates are calculated. 
Second, the assumption of known and fixed sampling 
variances of typical small area models does not take into 

account the uncertainty in the variance estimation into the 
overall inference strategy. 

Previous attempts have been made to model only the 
sampling variances; see, for example, Maples, Bell and 
Huang (2009), Gershunskaya and Lahiri (2005), Huff, Eltinge 
and Gershunskaya (2002), Cho, Eltinge, Gershunskaya 
and Huff (2002),Valliant (1987) and Otto and Bell (1995). 
The articles Wang and Fuller (2003) and Rivest and Vandal 
(2003) extended the asymptotic mean square error (MSE) 
estimation of small area estimators when the sampling 
variances are estimated as opposed to the standard assump-
tion of known variances. Additionally, You and Chapman 
(2006) considered the modelling of the sampling variances 
with inference using full Bayesian estimation techniques. 

The necessity of variance modelling has been felt by 
many practitioners. The latest developments in this area are 
nicely summarized in a recent article by William Bell of the 
United States Census Bureau 2008. He carefully examined 
the consequences of these issues in the context of MSE 
estimation of model based small area estimators. He also 
provided numerical evidence of MSE estimation for Fay-
Herriot models (given in Equation 1) when sampling vari-
ances are assumed to be known. The developments in the 
small area literature so far can be “loosely” viewed as (i) 
smoothing the direct sampling error variances to obtain 
more stable variance estimates with low bias and (ii) (par-
tial) accounting of the uncertainty in sampling variances by 
extending the Fay-Herriot model. 

As evident, lesser or no attention has been given to ac-
count for the sampling variances effectively while modeling 
the mean compared to the volume of research that has been 
done for modeling and inferring the means. There is a lack 
of systematic development in the small area literature that 
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includes “shrinking” both means and variances. In other 
words, we like to exploit the technique of “borrowing 
strength” from other small areas to “improve” variance esti-
mates as we do to “improve” the small area mean estimates. 
We propose a hierarchical model which uses both the direct 
survey and sampling variance estimates to infer all model 
parameters that determine the stochastic system. Our meth-
odological goal is to develop the dual “shrinkage” esti-
mation for both the small area means and variances, ex-
ploiting the structure of the mean-variance joint modelling 
so that the final estimators are more precise. Numerical 
evidence shows the effectiveness of dual shrinkage on small 
area estimates of the mean in terms of the MSE criteria. 

Another major contribution of this article is to obtain 
confidence intervals of small area means. The small area 
literature is dominated by point estimates and their asso-
ciated standard errors; it is well known that the standard 
practice of [point estimate q   standard error], where q  
is the Z  (standard normal) or t  cut-off point, does not 
produce accurate coverage probabilities of the intervals; see 
Hall and Maiti (2006) and Chatterjee, Lahiri and Li (2008) 
for more details. Previous work is based on the bootstrap 
procedure and has limited use due to the repeated estimation 
of model parameters. We produce confidence intervals for 
the means from a decision theory perspective. The construc-
tion of confidence intervals is easy to implement in practice. 

The rest of the article is organized as follows. The pro-
posed hierarchical model for the sample means and vari-
ances is developed in Section 2. The estimation of model 
parameters via the EM algorithm is developed in Section 3. 
Theoretical justification for the proposed confidence interval 
and coverage properties are presented in Section 4. Sections 
5 and 6 present a simulation study and a real data example, 
respectively. Some discussion and concluding remarks are 
presented in Section 7. An alternative model formulation for 
small area as well as mathematical details are provided in 
the Appendix. 

 
2. Proposed model  

Suppose n  small areas are in consideration. For the thi  
small area, let 2( , )i iX S  be the pair of direct survey estimate 
and sampling variance, for = 1, 2, ..., .i n  Let 1= ( , ...,Zi iZ  

)T
ipZ  be the vector of p  covariates available at the esti-

mation stage for the thi  small area. We propose the follow-
ing hierarchical model:  
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independently for = 1, 2, ..., .i n  In the model elicitation, in  
is the sample size for a simple random sample (SRS) from 
the thi  area, 1= ( , ..., )T

p   is the 1p   vector of regres-
sion coefficients, and 2( , , , )Ta b B   is the collection of 
all unknown parameters in the model. Also, Gamma( , )a b  
is the Gamma density function with positive shape and scale 
parameters a  and ,b  respectively, defined as ( ) =f x  

1 / 1{ ( )}a x b ab a e x    for > 0,x  and 0  otherwise. The un-
known 2

i  is the true variance of iX  and is usually esti-
mated by the sample variance 2.iS  Although 2’siS  are as-
sumed to follow a chi-square distribution with ( 1)in   
degrees of freedom (as a result of normality and SRS), we 
note that for complex survey designs, the degree of freedom 
needs to be determined carefully [e.g., Maples et al. 2009). 
More importantly, the role of the sample sizes in shrinkage 
estimation of 2

i  is as follows: For low values of ,in  the 
estimate of 2

i
  is shrunk more towards the overall mean 

( )ab  compared to higher in  values. Thus, for variances, 
sample sizes play the same role as precision in shrinkage 
estimation of the small area mean estimates. We note that 
You and Chapman (2006) also considered the second level 
of the sampling variance modelling. However, the hyper-
parameters related to prior of 2

i  are not data driven, they 
are rather chosen in such a way that the prior will be vague. 
Thus, their model can be viewed as the Bayesian version of 
the models considered in Rivest and Vandal (2003) and 
Wang and Fuller (2003). The second level modelling of 

2
i
  in (2) can be further extended to 2 Gamma( ,i b   

2exp( ) / )Z T
i b  so that 2

2( ) = exp( )T
i iE  Z   for another 

set of p  regression coefficients 2  to accommodate co-
variate information in the variance modeling. 

Although our model is motivated by Hwang, Qiu and 
Zhao (2009), we like to mention that Hwang et al. (2009) 
considered shrinking means and variances in the context of 
microarray data where they prescribed an important solution 
by plugging in a shrinkage estimator of variance into the 
mean estimator. The shrinkage estimator of the variance in 
Hwang et al. (2009) is a function of 2

iS  only, and not of 
both iX  and 2;iS  see Remarks 2 and 3 in Section 2. Thus, 
inference of the mean does not take into account the full 
uncertainty in the variance estimation. Further, their model 
does not include any covariate information. The simulation 
study described subsequently indicate that our method of 
estimation performed better than Hwang et al. (2009). 

In the above model formulation, inference for the small 
area mean parameter i  can be made based on the condi-
tional distribution of i  given all of the data  2{( , , ),Zi i iX S  

= 1, ..., }.i n  Under our model set up, the conditional 
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distribution of i  is a non-standard distribution and does 
not have a closed form, thus requiring numerical methods, 
such as Monte Carlo and the EM algorithm, for inference, 
and the details are provided in the next section.  

3. Inference methodology  
3.1 Estimation of unknown parameters via EM 

algorithm  
In practice, 2( , , , )Ta b B   is unknown and has to be 

estimated from the data 2{( , , ),i i iX S Z = 1, 2, ..., }.i n  Our 
proposal is to estimate B  by the marginal maximum like-
lihood method: Estimate B  by B̂  where B̂  maximizes the 
marginal likelihood =1 ,( ) = ( ),n

iM M iL LB B  where  

2
( / 2 )

, 2

( /2 ) ( )
exp ,

( ) 2

Z 
i

T
n ai i i

M i i ia

n a
L d

a b
          

     (3) 
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          2 2 1
0.5( ) 0.5( 1) .i i i i iX n S

b
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The marginal likelihood ML  involves integrals that cannot 
be evaluated in closed-form, and hence, one has to resort to 
numerical methods for its maximization. One such algo-
rithm is the EM (Expectation-Maximization) iterative proce-
dure which is used when such integrals are present. The EM 
algorithm involves augmenting the observed likelihood 

( )ML B  with missing data; in our case, the variables of the 
integration, ,i = 1, 2, ..., ,i n  constitute this missing infor-
mation. Given 1 2{ , , ..., },n     the complete data log 
likelihood ( )c  can be written as  
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where the expression of i  is given in Equation (4). 
Starting from an initial value of (0),B B  say, the EM 
algorithm iteratively performs a maximization with respect 
to .B  At the tht  step the objective function maximized is  
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The expectation in ( 1)( | )tQ B B  is taken with respect to 
the conditional distribution of each i  given the data, 

2 ( 1)( | , , , ),t
i i i iX S   Z B  which is  

2

( /2 )2 2

( | , , , )

exp{ 0.5( ) / } .i

i i i i

n aT
i i i

X S
 

  

    

Z B
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One challenge here is that the expectations are not avail-
able in closed form. Thus, we resort to a Monte carlo 
method for evaluating the expressions. Suppose that R  iid 
samples of i  are available, say ,1 , 2 ,, , ..., .i i i R    Then, 
each expectation of the form { ( )}iE h   can be approxi-
mated by the Monte Carlo mean  

                            ,
=1

1
{ ( )} ( ).

R

i i k
r

E h h
R

    (6) 

However, drawing random numbers from the conditional 
distribution 2 ( 1)( | , , , )t

i i i iX S   Z B  is also not straight-
forward since this is not a standard density. Samples are 
drawn using the accept-reject procedure (Robert and Casella 
2004): For a sample from the target density ,f  sample x  
from the proposal density ,g  and accept the sample as a 
sample from f  with probability *( ) /{ ( )}f x M g x  where 

* = sup { ( ) / ( )}.xM f x g x  One advantage of the accept-
reject method is that the target density f  only needs to be 
known upto a constant of proportionality which is the case 
for 2 ( 1)( | , , , )t

i i i iX S   Z B  in (5); due to the non-standard 
form of the density, the normalizing constant cannot be 
found in a closed form. For the accept-reject algorithm, we 
used the normal density 2( ) exp{ 0.5( ) /T

i i ig      Z   
2}  as the proposal density. The acceptance probability is 

calculated to be 2[{1/ 0.5( 1) }/{1/ 0.5( 1)i i ib n S b n     
2
iS  / 220.5( ) }] .in a

i iX    One can choose a better pro-
posal distribution to increase acceptance probability or 
different algorithm (such as the adaptive rejection sampling 
or envelope accept-reject algorithms) but our chosen 
proposal worked satisfactorily in the studies we conducted. 

The maximizer of ( 1)( | )tQ B B  at the tht  step can be 
described explicitly. The solutions for   and 2  are 
available in closed form as  

1

( )

=1 =1

= ( )
n n

t T
i i i i

i i

E


   

   
   
 Z Z Z  

and 

2 ( ) 2

=1

1
( ) = ( ) ,

n
t T

i i
i

E
n

   Z   

respectively. Also, ( )ta  and ( )tb  are obtained by solving 
( 1)= ( | ) / =0t

aS Q a B B  and ( 1)= ( | ) / =0t
bS Q b B B  

using the Newton-Raphson method where  
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We set ( ) ( ) ( ) ( ) ( ) 2= ( , , , ( ) )t t t t ta b B   and proceed to the 
( 1) -stt   step. This maximization procedure is repeated 
until the estimate ( )tB  converges. The MLE of ,B ˆ =B  

( ),B   once convergence is established.  
3.2 Point estimate and confidence interval for i   

Following the standard technique, the small area esti-
mator of i  is taken to be  

                      2

ˆ=
ˆ = ( | , , , ) ,i i i i iE X S 

B B
Z B  (7) 

the expectation of i  with respect to the conditional density 
2( | , , , )i i i iX S  Z B  with the maximum likelihood estimate 

B̂  plugged in for .B  The estimate ˆ
i  is calculated nu-

merically using the Monte Carlo procedure (6) described in 
the previous section. Subsequently, all quantities involving 
the unknown B  will be plugged in by B̂  although we still 
keep using the notation B  for simplicity. 

Further, we develop a confidence interval for i  based 
on a decision theory approach. Following Joshi (1969), 
Casella and Hwang (1991), Hwang et al. (2009), consider 
the loss function associated with the confidence interval C  
given by ( / ) ( ) ( )Ck L C I    where k  is a tuning para-
meter independent of the model parameters, ( )L C  is the 
length of C  and ( )CI   is the indicator function taking 
values 1 or 0 depending on whether C   or not. Note that 
this loss function takes into account both the coverage 
probability as well as the length of the interval; the positive 
quantity ( / )k   serves as the relative weight of the length 
compared to the coverage probability of the confidence 
interval. If = 0,k  the length of the interval is not under 
consideration, which leads to the optimal C  to be ( , )   
with coverage probability 1. On the other hand, if = ,k   
then the coverage probability is 0, leading to optimal C  to 
be a point set. The Bayes confidence interval for i  is 
obtained by minimizing the risk function (the expected loss) 

2{[( / ) ( ) ( )] | , , , )}.C i i iE k L C I X S   Z B  The optimal 
choice of C  is given by  

1 2 2

( ) =

{ : ( | , , , ) < ( | , , , )}.

i

i i i i i i i i i

C

k E X S X S   

B

Z B Z B
 
(8)

 

Since ( )iC B  is obtained by minimizing the posterior risk, 
one may like to interpret this as a Bayesian credible set. 
However, following Casella and Berger (1990, page 470), 
we will continue naming ( )iC B  as a confidence interval. 
From an empirical Bayes perspective also, this terminology 
is more appropriate. How the tuning parameter k  deter-
mines the confidence level of ( )iC B  will be shown ex-
plicitly in Section 3.3. 

Assuming k  is known for the moment, we follow the 
steps below to calculate ( ).iC B  The conditional densities of 

2
i  and i  are given by  

2 2
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2 2 2
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and (5), respectively, which as mentioned before, are not 
available in closed form. Thus, similar to the case of ,i  

1 2( | , , , )i i i iE X S Z B  is computed numerically using the 
Monte Carlo method by approximating the expected value 
with the mean =1 ,1/ 1/N

k i kN    where 2
, ,i r = 1, 2, ...,r R  

are R  samples from the conditional density 2( | ,i iX   
2, , ).Z Bi iS  The accept reject procedure is used to draw 

random numbers from 2 2( | , , , )i i i iX S  Z B  with a pro-
posal density given by the inverse Gamma  

2
2
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The next step is to determine the boundary values of ( )iC B  
by finding two i  values that satisfy the equation 

1 2 2( | , , , ) ( | , , , ) = 0.i i i i i i i ik E X S X S   Z B Z B  This re-
quires the normalizing constant in (5)  

( /2 )2 2= exp{ 0.5( ) / }Z  in aT
i i i i iD d


 


       

to be evaluated numerically. This is obtained using the 
Gauss-Hermite integration with 20 nodes.  
3.3 Choice of k    

The choice of the tuning parameter k  in (8) is taken to 
be  
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B  (10) 

where   is the standard normal distribution, / 2t  is 
th(1 / 2)   percentile of t  distribution with ( 1)in   

degrees of freedom, and 2 2
,0 = 1 / .i iu     Since ,0iu  

involves 2
i  which is unknown, an estimated version ,0ˆiu  is 

obtained by plugging in the maximum a posteriori estimate  

    
2

2 2 2 2

ˆ=

ˆˆ ˆ= ( ) = arg max ( | , , , )
i

i i i i i iX S


   
B B

B Z B  (11) 

in place of 2.i  Also, B  is replaced by B̂  in (11). We 
demonstrate that the coverage probability of ˆ( )iC B  with 
this choice of k  is close to 1 .   Theoretical justifications 
are provided in Section 4.  
3.4 Other related methods for comparison  

Our method will be denoted as Method I. Three other 
methods to be compared are briefly described below.  
Method II: Wang and Fuller (2003) considered the Fay-
Herriot small area estimation model given by (1). Their 
primary contribution is the construction of the mean 
squared error estimation formulae for small area esti-
mators with estimated sampling variances. In the process, 
they had constructed two formulae denoted by 1MSE  
and  2MSE .  We use 1MSE  for our comparisons, which 
was derived following the bias correction approach of 
Prasad and Rao (1990). The basic difference with our ap-
proach is that they did not smooth the sampling vari-
ances, only taking the uncertainty into account while 
making inference on the small area parameters. The 
method of parameter estimation, which is moment based 
for all the model parameters, is also different from ours.  
Method  III: Hwang et al. (2009) considered the log-normal 
and inverse Gamma models for 2

i
  in (2) for microarray 

data analysis. Their simulation study showed improved 
performance of confidence intervals for small area esti-
mators under the log-normal model compared to the inverse 
gamma. We thus modified their log-normal model to add 
covariates and for unequal sample sizes in  as follows:  
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independently for = 1, 2, ..., .i n  Note that the model for the 
means in (12) is identical to (1). The quantities 2,  im  and 

2
,ch i  are assumed to be known and are given by =im  

2
1[log( / ( 1))]

in iE n   and 2 2
, 1= Var[log( / ( 1))].

ich i n in    

Thus, the sample size ’sin  determine the shape of the 2  
distribution via its degrees of freedom parameter. More 
importantly, as mentioned earlier, the different sample sizes 
account for different degrees of shrinkage for the corre-
sponding true variance parameter. Similar to their esti-
mation approach, the unknown model parameters v  and 

2
v  are estimated using a moment based approach in an 

empirical Bayes framework giving ˆ v  and 2ˆ ,v  respectively. 
Note that in Hwang et al. (2009), these estimates are ob-
tained based on the hierarchical model for 2

i  of (13) only 
without regard to the modelling (1) of the mean. We refer to 
the Section 5 of their paper for details of the estimation of 
the hyper-parameters. We follow the same procedure using 
only (13) to estimate v  and 2

v  in the case of unequal 
sample sizes. 

The Bayes estimate of 2
i  is derived to be  

2 2 2
,

2 ,

,

ˆ = exp {ln( ) | ln( )}

= exp{ (1 )}
exp( )

i B i i

Mv i
i

v v i
i

E S

S
M

m

   

 
  

 

 

where 2 2 2
, ,= / ( )v i v v ch iM      and with estimates plugged 

in for the unknown quantities. The conditional distribution 
of i  given 2( , ),i iX S  is 

2 2 2 2 2 2

0
( | , ) = ( | , , ) ( | , ) ,i i i i i i i i i i iX S X S X S d


         

is approximated as 2 2 2
,0

ˆ( | , ) ( | , , )i i i i i i i BX S X S


       
2 2 2 2 2

,ˆ( | , ) = ( | , , ).i i i i i i i i BX S d X S       This suggests the 
approximate Bayes estimator of the small area parameters 
given by  

        2
,

ˆ ˆˆ ˆˆ= ( | , ) = (1 ) ,T
i i i i B i i i iE X M X M     Z   (14) 

where 2 2 2
,

ˆ ˆ ˆ ˆ= / ( ).i v v i BM     The confidence interval for i  
is obtained as  

    
2
,

ˆ| | ˆ= : < 2ln{ 2 } ln( ) .
ˆ ˆ

H i i
i i i

i i B

C k M
M

        
  

 (15) 

In Section 3 of Hwang et al. (2009) pages 269-271, the 
interval H

iC  is matched with the 100(1 )%   t -interval 
[| | < ]i i iX tS   to obtain the expression of k  as 

2= exp{ / 2}exp{ / 2} / ( 2 ).i ik k t m     
Method  IV: This method comprises of a special case of the 
Fay-Herriot model in (1) but with the estimation of model 
parameters adopted from Qiu and Hwang (2007). Qiu and 
Hwang (2007) considered the model  

                        

2 2

2

| , Normal( , )

Normal(0, ),

i i i

i

X     


  




 (16) 
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independently for = 1, 2, ..., ,i n  for analyzing microarray 
experimental data. When model parameters are known, they 
proposed the point estimator ˆ ˆ ˆ= , = (1 ((i iMX M n    

2 22) / | | ))X   where a  denotes max(0, )a  for any 
number a  and 2 1/2

=1= ( ) .n
i iX X   The confidence interval 

for i  is 1
ˆ ˆ( ),i v M   where 2 2

1 1
ˆ ˆ ˆ( ) = ( ln( ))v M M q M   

with 1q  denoting the standard normal cut-off point corre-
sponding to desired level of confidence coefficient and 

1(0) 0.v   Here For the purpose of comparisons with our 
method, the first level of the hierarchical model in (16) is 
modified as follows:  

= T
i i i iX v e Z   

where 2Normal(0, )iv   and 2Normal(0, )i ie S  inde-
pendently for = 1, 2, ..., ,i n  and 2

iS  is treated as known. 
Following Qiu and Hwang (2007), 2  is estimated by  

1

2 2 2

=1

1
ˆ= 1

n
T T T

i i i i i i
i i i

u S
n p

                
   Z Z Z Z  

and 2 2ˆ = max( ,1 / )n   where ˆˆ = T
i i iu X  Z   and ˆ =  

1
=1 =1( ) ( ).Z Z ZTn n

i ii i i iX   Next, define 2 2 2
0

ˆ ˆ ˆ= / ( )i iM S    
and 0 1

ˆ ˆ= max( , )i iM M M  where in the latter expression, 

0
ˆ

iM  is truncated by 1 = 1 / ( 2),i iM Q n   and Q  is the 
th  quantile of a chi-squared distribution with in  degrees 

of freedom. This ˆ
iM  is used in the formula of the confi-

dence interval for i  given earlier. When applying this 
method in our simulation study and real data analysis, we 
modified the model to accommodate such unequal sample 
sizes and covariate information mentioned earlier.  
Remark 1. Hwang et al. (2009) choose k  by equating (15) 
to the t  interval based on only iX  for the small area 
parameters .i  Note that iX  is the direct survey estimator. 
Consequently, this choice of k  does not have any direct 
control over the coverage probability of the interval con-
structed under shrinkage estimation. On the other hand, our 
proposed choice of k  has been derived to maintain nominal 
coverage under, specifically, shrinkage estimation.  
Remark 2. Note that without any hierarchical modelling 
assumption, iS  and iX  are independent as 2

iS  and iX  are, 
respectively, ancillary and the complete sufficient statistics 
for .i  However, under models (1) and (2) the conditional 
distribution of 2

i  and i  involve both iX  and 2
iS  which 

is seen from (5) and (9).  
Remark 3. In Hwang et al. (2009), the shrinkage estimator 
for 2

i  is based only on the information on 2,iS  and not of 
both iX  and 2.iS  The Bayes estimator of 2

i  is plugged 
into the expression for the Bayes estimator of small area 
parameters. Thus, Hwang et al.’s small area estimator is 
written as 2

,ˆ( | , )i i i BE X   in (14) where 2
,ˆ i B  is the Bayes 

estimator of 2.i  Due to equation (9), the shrinkage 
estimator of 2

i  depends on 2( )T
i iX  Z   in addition to 

2
iS  in contrast to Hwang et al. (2009). We believe this 

could be the reason for improved performance of our 
method compared to Hwang et al. (2009).  
Remark 4. As mentioned previously, the degree of freedom 
associated with the 2  distribution for the sampling vari-
ance need not to be simply 1,in  in  being the sample size 
for thi  area. There is no sound theoretical result for deter-
mining the degree of freedom when the survey design is 
complex. The article Wang and Fuller (2003) approximated 
the 2  with a normal based on the Wilson-Hilferty ap-
proximation. If one knows the exact sampling design then 
the simulation based guideline of Maples et al. (2009) could 
be useful. For county level estimation using the American 
Community Survey, Maples et al. (2009) suggested the 
estimated degrees of freedom of 0.36 .in  

 
4. Theoretical justification  

Theoretical justification for the choice of k  according to 
equation (10) is presented in this section. As in Hwang et al. 
(2009), the conditional distribution of i  given iX  and 2

iS  
can be approximated as 2 2( | , , ) ( | , , ,B Bi i i i i iX S X S      

2ˆ ),i  where 2ˆ i  as defined in (11). In a similar way, 
approximate 1 2( | , , )Bi i iE X S  by 1 2 1ˆ( | , , ) .Bi i i iE X S     
Based on these approximations, we have ( ) ( )i iC C B B  
where ( )iC B  is the confidence interval for i  given by 

2 2 1ˆ ˆ( ) = { : ( | , , , ) }.i i i i i i iC X S k       B B  From (1), it 
follows that the conditional density 2 2( | , , , )i i i iX S  B  is a 
normal with mean i  and variance ,iv  where i  and iv  are 
given by the expressions  

                 1 12
2

2 2 2
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= = 1 ,

T
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as discussed, the confidence interval ( )iC B  becomes  
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where ˆ i  is the expression for i  in (17) with 2
i  replaced 

by 2ˆ .i  Now consider the behavior of 2 2ˆ ˆ ( )i i   B  as 2  
ranges between 0 and .  When 2 ,   2ˆ i  converges to  

2 2

2 2

( 1) 1 2
( 1)

2ˆ ˆ( ) ( , , , ) = = .
1 2 11

2

i
i i i

i i
i i

n
S n S

b ba b
n n aa


  

    
   

  

Similarly, when 2 0,  2ˆ i  converges to  

2 2

2 2

2
( ) ( 1)

ˆ ˆ(0) ( , , , 0) = .
2 2

T
i i i i

i i
i

X n S
ba b

n a

   
  

 

Z 
  

For all intermediate values of 2,  we have 2ˆmin{ (0),i  
2 2 2 2ˆ ˆ ˆ ˆ( )} max{ (0), ( )}.i i i i         Therefore, it is suffi-

cient to consider the following two cases: (i) 2 2ˆ ˆ ( ),i i     
where it follows that 2 2ˆ ˆ( 2 2) = ( 2 1)i i i in a n a        

2 2 2 2ˆ ˆ( 1) 2 / ( 1) ,i i i i i in S b n S        and (ii) 2 2ˆ ˆ (0),i   
where it follows that 2 2ˆ( 2 2) = ( )T

i i i in a X    Z   
2 2( 1) 2 / ( 1) .i i i in S b n S     So, in both cases (i) and (ii),  

                      2 2ˆ( 2 2) ( 1) .i i i in a n S      (19) 

Since 2 2 2 2(0, / ( ))i i i iN       and 2 2( 1) /i i in S    
2

1,in   the confidence interval  

                      0 / 2

| |
= : i i

i i i
i

D u t
S 

   
  
 

 (20) 

has coverage probability 1 .   Thus, if 0u  and i  are 
replaced by 0û  and ˆ ,i  it is expected that the resulting 
confidence interval ,iD  say, will have coverage probability 
of approximately 1 .   From (19), we have  

                        { ( )} ( ) 1 ,i iP C P D    B  (21) 

establishing an approximate lower bound of 1    for the 
confidence level of ( ).iC B  

In (21), B  was assumed to be fixed and known. When 
B  is unknown, we replace B  by its marginal maximum 
likelihood estimate ˆ.B  Since (21) holds regardless of the 
true value of ,B  substituting B̂  for B  in (21) will involve 
an order (1/ )O N  of error where =1= .n

i iN n  Compared 
to each single ,in  this pooling of ’sin  is expected to reduce 
the error significantly so that ˆ( )iC B  is sufficiently close to 

( )iC B  to satisfy the lower bound of 1    in (21).  
5. A simulation study  

5.1 Simulation setup  
We considered a simulation setting using a subset of 

parameter configurations from Wang and Fuller (2003). 

Each sample in the simulation study was generated from the 
following steps: First, generate observations using the 
model  

= ,ij i ijX u e    

where 2(0, )iu N   and 2(0, ),ij i ie N n   independently 
for 1, ..., ij n  and = 1, ..., .i n  Then, the random effects 
model for the small area mean, ,iX  is  

= , independently for = 1, ..., ,i i iX u e i n    

where 1
=1
in

ji i i ijX X n X
    and 1

=1 .in
ji i i ije e n e

    
Therefore, 2( , )i i iX N    where = ,i iu   ( ,i N   

2 )  and 2(0, ).i ie N   We estimated 2
i  with the unbi-

ased estimator  

2 1 1 2

=1

= ( 1) ( ) ,
in

i i i ij i
j

S n n X X 
   

and it follows that 2 2 2
1( 1) / ,

ii i i nn S     independently 
for = 1, 2, ..., .i n  Note that the simulation layout has 
ignored the second level modeling of sampling variances in 
(2). Thus, our result will indicate robustness with respect to 
the variance model misspecification. 

The above steps produced the data 2( , ), = 1, ..., .i iX S i n  
To simplify the simulation, we do not choose any covariate 
information .iZ  Similar to Wang and Fuller (2003), we set 
all ’sin  equal to m  to ease programming efforts. However, 
the true sampling variances are still chosen to be unequal: 
One-third of the 2

i  are set to 1, another one-third are set to 
4, and the remaining one-third are set to 16. We take 

= 10  and three different choices of 2 = 0.25, 1 and 4. 
These parameter values are chosen from Qiu and Hwang 
(2007). For each of 2,  we generated 200 samples for the 
two combinations ( , ) =m n (9, 36) and (18, 180). 

In the simulation study, we compare the proposed 
method with the methods of Wang and Fuller (2003), 
Hwang et al. (2009) and Qiu and Hwang (2007) which are 
referred to as Methods I, II, III, and IV, respectively, based 
on bias, mean squared error (MSE), coverage probability 
(CP) of the confidence intervals and the length of the confi-
dence intervals (ALCI). Table 1 contains the parameter 
estimates for , ,a b   and 2.  The numerical results indi-
cate good performance of the maximum likelihood esti-
mates for the model parameters; the estimated values of   
and 2  are close to the true values indicating good robust-
ness properties with respect to distributional misspecifi-
cation in the second level of (2). Statistically significant 
estimates for both a  and b  indicate that “shrunk” sampling 
variances are incorporated in the proposed method. Tables 
2, 3 and 4 provide numerical results averaged over areas 
within each group having the same true sampling variances. 
The results in the Tables are based on 200 replications.  
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Table 1 
Simulation results for the model parameters, a  (top left panel), b  (top right panel),   (bottom left panel) and 2  (bottom right 
panel). Here SD represents the standard deviation over 200 replicates. We took = 10  and 2 = 0.25, 1  and 4  
 

   =n 36, =m 9    =n 180, =m 18      =n 36, =m 9    =n 180, =m 18 
2   Mean   SD     Mean   SD     2    Mean   SD     Mean   SD 

  a       b  
0.25  1.0959   0.1540     1.0328   0.0442     0.25   0.3992   0.0983     0.4249   0.0323  

1  1.0937   0.1555     1.0325   0.0445     1   0.4030   0.1012     0.4253   0.0326  
4  1.0996   0.1577     1.0339   0.0450     4   0.3999   0.1017     0.4245   0.0328  
         2  

0.25  10.0071   0.3618     9.9951   0.1853     0.25   0.2558   0.0605     0.2575   0.0097  
1  10.0142   0.3311     9.9970   0.1743     1   0.9418   0.3333     1.0426   0.1264  
4  10.0282   0.4639     10.0048   0.2254     4   3.5592   1.3316     4.0817   0.5551  

 
Table 2 
Simulation results for prediction when 2 = 0.25.  Here MSE, ALCI, CP represent the mean squared error, average confidence 
interval width, and coverage probability, respectively 
  

    = 36,n = 9m     = 180,n = 18m   
    Method    Method 
  2

i    I   II   III   IV     I   II   III   IV  

Relative   1   0.0048   0.0198   0.0272   0.0018   -0.0051   -0.0086   -0.0112   -0.0111  
bias   4  -0.0033   -0.0061   -0.0145   -0.0158   -0.0130   -0.0109   -0.0065   -0.0116 
  16   0.0126   0.0370   0.0369   0.0096   -0.0046   -0.0045   -0.0080  -0.0061  
MSE   1   0.3066   0.3890   0.6861   0.3805    0.2258   0.2680   0.4470   0.2922  
  4   0.3281   0.5430   1.3778   0.7285    0.2595   0.3000   0.5805   0.3748  
  16   0.3715   0.5240   1.6749   1.9316    0.2815   0.2850   0.4856   0.6383  
ALCI   1   2.1393   2.5485   4.4906   3.0528    1.9220   1.6006   3.6466   2.4811  
  4   2.2632   3.9574   6.8887   5.6842    2.0557   2.1524   5.2472   4.2160  
  16   2.3221   4.5619   9.3335   11.1363    2.1046   2.3308   6.5273   7.8492  
CP   1   0.9468   0.9770   0.9771   0.9708    0.9564   0.9710   0.9851   0.9631  
  4   0.9468   0.9710   0.9829   0.9917    0.9555   0.9660   0.9967   0.9967  
  16   0.9365   0.9660   0.9933   0.9975    0.9529   0.9610   0.9998   0.9999  

 
Table 3 
Simulation results for prediction when 2 = 1.  Here MSE, ALCI, CP represent the mean squared error, average confidence 
interval width and coverage probability, respectively 
  

    = 36,n = 9m     = 180,n = 18m   
   Method    Method  
  2

i    I   II   III   IV     I   II   III   IV  

Relative   1  -0.0152   0.0205   0.0255   0.0051   -0.0064   -0.0085   -0.0111   -0.0101  
bias   4  -0.0167   -0.0164   -0.0151   -0.0219   -0.0151   -0.0121   -0.0133   -0.0164 
  16  -0.0323   0.0508   0.0515   0.0216   -0.0028   -0.0017   -0.0073   -0.0039  
MSE   1   0.5645   0.6330   0.7238   0.6260    0.5288   0.5430   0.5673   0.6336  
  4   0.8566   1.1100   1.5396   1.0992    0.8159   0.8770   0.9415   0.8948  
  16   1.0482   1.3100   2.1059   2.3156    0.9786   1.0000   1.1024   1.1878  
ALCI   1   3.4550   3.1822   4.4938   3.2117    3.1088   2.5094   3.6763   2.8676  
  4   4.0321   5.8733   6.8984   5.7909    3.7844   4.2908   5.3323   4.5543  
  16   4.4082   7.4286   9.3555   11.1555    4.1187   5.1590   6.6785   7.8937  
CP   1   0.9704   0.9640   0.9762   0.9275    0.9660   0.9650   0.9786   0.8879  
  4   0.9633   0.9560   0.9812   0.9808    0.9627   0.9680   0.9918   0.9740  
  16   0.9533   0.9490   0.9912   0.9938    0.9613   0.9680   0.9974   0.9979   
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Table 4 
Simulation results for prediction when 2 = 4.  Here MSE, ALCI, CP represent the mean squared error, average confidence 
interval length and the coverage probability, respectively 
  

    = 36,n = 9m     = 180,n = 18m   
    Method    Method  
  2

i    I   II   III   IV     I   II   III   IV  

Relative   1  -0.0024   0.0248   0.0229   0.0180   -0.0084  -0.0098   -0.0122   -0.0106  
bias   4  -0.0343   -0.0310   -0.0210   -0.0340   -0.0110  -0.0092   -0.0174   -0.0132 
  16  -0.0147   0.0702   0.0767   0.0467    0.0016   0.0024   -0.0059   0.0012  
MSE   1   0.8822   0.8590   0.8579   1.0559    0.8359   0.8180   0.8541   0.8605  
  4   2.0577   2.2900   2.1818   2.2422    2.0424   2.1000   2.0935   2.1130  
  16   3.4516   3.7600   3.9267   3.8981    3.3153   3.3500   3.3939   3.3631  
ALCI   1   4.6318   4.1936   4.5369   3.7677    4.0256   3.5346   3.9626   3.7499  
  4   6.2015   10.9093   7.0376   6.4314    5.9000   9.0913   6.2217   6.1540  
  16   7.7221   18.0039   9.6718   11.3341    7.4430   14.6665   8.3908   8.7537  
CP   1   0.9791   0.9670   0.9733   0.9029    0.9674   0.9570   0.9600   0.9468  
  4   0.9556   0.9670   0.9725   0.9496    0.9592   0.9610   0.9633   0.9573  
  16   0.9510   0.9670   0.9796   0.9858    0.9573   0.9650   0.9718   0.9776  

 
 
Bias Comparisons: In most cases, the bias of the four 
methods are comparable. There is no clear evidence of 
significant differences between them in terms of the bias. 
High sampling variance gives more weight to the population 
mean by construction that makes the estimator closer to the 
mean at the second level. On the other hand, Methods I - III 
use shrinkage estimators of the sampling variances which 
would be less than the maximum of all sampling variances. 
Thus, Methods I - III tend to have little more bias. However, 
due to shrinkage in sampling variances, one may expect a 
gain in the variance of the estimators which, in turn, makes 
the MSE smaller. Among Methods I - III, Method I 
performed better compared to Methods II and III, which 
were quite similar to each other. The maximum gain using 
Method I compared to Method II is 99%.  
MSE Comparisons: In terms of the MSE, Method I 
performed consistently better than the other three in all cases 
except when the ratio of 2

i  to 2  is the lowest: 2( =i  
21) / ( = 4) = 0.25. In this case, the variance between 

small areas (model variance) is much higher than the 
variance within the areas (sampling variance). When using 
our method to estimate ,i  the information “borrowed” 
from other areas may misdirect the estimation: The esti-
mated mean of the Gamma distribution for 2

i
  from the 

second level in (2) is ˆâb  which equals 0.44 approximately 
for both the ( , )m n  combinations of (9, 36) and (18, 180) 
(the true value is =ab 0.4). Thus, 2 2 ˆ( | , , )i i iE X S B  is 
significantly smaller than 1 due to shrinkage towards the 
mean for the group which has the true value of 2 = 1.i  
Also, since 2

i  is smaller than 2,  the weight of iX  should 
be much more compared to ,  the overall mean. However, 

due to underestimation of 2
i
  in this case, the resulting 

estimator puts less weight on iX  which leads to higher 
MSE. However, this underestimation will decrease for large 
sample sizes due to the consistency of Bayes estimators. 
This fact is actually observed when the sample size 
increases from =n 36 to =n 180 for the case 2 = 1i  and 

2 = 4.  Compared to Method II, Method I shows gains in 
most of the simulation cases; the maximum gain is 30% 
while the only loss is 9% for the combination 2 =i 1 and 

2 = 4 for =n 36 and =m 9. Similarly, for Method III, the 
maximum gain of Method I is 77% and the only loss of 11% 
is for the same parameter and sample size specifications. 
 
ACP Comparisons: We obtained confidence intervals with 
confidence level 95%. Methods I and III do not indicate any 
under-coverage. This is expected from their optimal confi-
dence interval construction. Method I meets the nominal 
coverage rate more frequently than any other methods. 
Method II has some under coverage and can go as low 
as 82%. 
 
ALCI Comparisons: Method I produced considerably 
shorter confidence intervals in general. Method IV produced 
comparable lengths as the other methods in all cases except 
when 2

i  was high, in which case, the lengths were 
considerably higher. The confidence interval proposed in 
Qiu and Hwang (2007) does not have good finite sample 
properties, particularly for small 2.  To avoid low coverage, 
they proposed to truncate 2 2 2

0 = / ( )iM      with a 
positive number 1 = 1 / ( 2)M Q    for known 2

i  
where Q  is the th -quantile of a chi-squared distribution 
with   degrees of freedom. When the ratio of sampling 



182 Dass, Maiti, Ren and Sinha: Confidence interval estimation of small area parameters shrinking both means 
 

 
Statistics Canada, Catalogue No. 12-001-X 

variance to model variance, 2 2/ ,i   is high, 1M  tends to be 
higher than 0.M  This results in a nominal coverage but 
with larger interval lengths. For example, in case of 

2 2( , ) =i  (16, 0.25), the ALCI is 11.13 for Method IV 
whereas ALCI is only 2.78 and 4.56 for Methods I and II.  
5.2 Robustness study  

In order to study the robustness of the proposed method 
with respect to departures from the normality assumption in 
the errors, we conducted the following simulation study. 
Data was generated as before but with ’sije  drawn from a 
double-exponential (Laplace) and an uniform distribution. 
The estimators from Methods II and III had little effect. This 
is perhaps due to the fact that these methods used moment 
based estimation for model parameter estimation. Method 
IV resulted in larger relative bias, MSE and ALCI, and 
lower coverage probability. The MSE from Method I is 
always lower than that from Method II. For 2 = 0.25 and 
1, ALCI is smaller for Method I compared to Method II for 
( = 36, = 9)n m  but the results are opposite when ( =n  
180, = 18).m  In terms of CP, Method II has some under 
coverage (lowest is 80%). However, Method I did not have 
any under-coverage. In order to save space we only provide 

the results for parameters , ,a b   and 2  under the Laplace 
errors (see Table 5). 

 
6. Real data analysis  

We illustrate our methodology based on a widely studied 
example. The data set is from the U.S. Department of 
Agriculture and was first analyzed by Battese (1988). The 
data set is on corn and soybeans productions in 12 Iowa 
counties. The sample sizes for these areas are small, ranging 
from 1 to 5. We shall consider corn only to save space. For 
the proposed model, the sample sizes > 1in  necessarily. 
Therefore, modified data from You and Chapman (2006) 
with 2in   are used. The mean reported crop hectares for 
corn ( )iX  are the direct survey estimates and are given in 
Table 6. Table 6 also gives the sample variances which are 
calculated based on the original data assuming simple 
random sampling. The sample standard deviation varies 
widely, ranging from 5.704 to 53.999 (the coefficient of 
variation varies from 0.036 to 0.423). Two covariates are 
considered in Table 6: 1,iZ  the mean of pixels of corn, and 

2,iZ  the mean of pixels of soybean, from the LANDSAT 
satelite data. 

 
   

Table 5 
Simulation results for the model parameters, a  (top left panel), b  (top right panel),   (bottom left panel) and 2  (bottom right 
panel) when the errors follow a laplace distribution. Here SD represents the standard deviation over 200 replicates. We took 

= 10  and 2 = 0.25, 1  and 4  
  

   = 36,n = 9m      = 180,n = 18m        = 36,n = 9m      = 180,n = 18m   
 2    Mean   SD     Mean   SD     2    Mean   SD     Mean   SD 

   a       b  
0.25   0.9624   0.1632     0.9471   0.0498     0.25   0.5793   0.1733     0.5279   0.0501  

1   0.9628   0.1657     0.9476   0.0497     1   0.5816   0.1777     0.5275   0.0503  
4   0.9689   0.1694     0.9487   0.0499     4   0.5758   0.1796     0.5263   0.0503  
          2  

0.25   9.9736   0.3775     9.9800   0.1773     0.25   0.2696   0.0882     0.2565   0.0074  
1   9.9753   0.3709     9.9836   0.1662     1   1.0508   0.2501     1.0403   0.0668  
4   9.9736   0.4835     9.9855   0.2161     4   3.9624   1.1719     4.1256   0.4201  

 
Table 6 
Corn data from You and Chapman (2006) 
  

 County  in    iX    1iZ    2iZ    2
iS   

Franklin   3   158.623   318.21   188.06   5.704  
Pocahontas   3   102.523   257.17   247.13   43.406  
Winnebago   3   112.773   291.77   185.37   30.547  
Wright   3   144.297   301.26   221.36   53.999  
Webster   4   117.595   262.17   247.09   21.298  
Hancock   5   109.382   314.28   198.66   15.661  
Kossuth   5   110.252   298.65   204.61   12.112  
Hardin   5   120.054   325.99   177.05   36.807  
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The estimates of B  are as follows: =a 1.707, =b  
0.00135, 2 = 90.58 and = ( 186.0,  0.7505, 0.4100). 
The estimated prior mean of 21 / i  which is the mean of the 
Gamma distribution with parameters a  and b  is =ab  
0.002295 with a square root of 0.048 (note that 1 / 0.048 =  
20.85 consistent with the range of the sample standard 
deviations between 5.704 and 53.999). The small area esti-
mates and their confidence intervals are summarized in 
Table 7 and Figure 1. Point estimates of all 4 methods are 
comparable: the summary measures comprising of the 
mean, median, and range of the small area parameter esti-
mates for Methods I, II, III, and IV are (121.9, 124.1, 
122.2, 122.6), (125.2, 120.4, 115.0, 114.5) and (23.1, 53.0, 
58.4, 56.6), respectively. The distribution of ˆ

i  (plotted 
based on considering all the ’s)i  are summarized in Figure 
2 which shows that there is a significant difference in their 
variability. Method I has the lowest variability and is 
superior in this sense. Further, smoothing sampling vari-
ances has strong implication in measuring uncertainty and 
hence in the interval estimation. The proposed method has 
the shortest confidence interval on an average compared to 
all other methods. Methods II and III provide intervals with 
negative lower limits. This seems unrealistic because the 
direct average of area under corn is positive and large for all 
the 12 counties (the crude confidence intervals ( ix   

0.025 )it S  do not contain zero for any of the areas either). 
Note that Method II does not have any theoretical support 
on its confidence intervals. Methods II and III produce 
wider confidence intervals when the sampling variance is 
high. For example, the sample size for both Franklin county 

and Pocahontas county is three, but sampling standard 
deviations are 5.704 and 43.406. Although the confidence 
interval under Method I is comparable, they are wide apart 
for Methods II and III. This is because although these 
methods consider the uncertainty in sampling variance 
estimates, the smoothing did not use the information from 
direct survey estimates, resulted the underlying sampling 
variance estimates remain highly variable (due to small 
sample size). In effect, the variance of the variance estimator 
(of the point estimates) is bigger compared to that in method 
I. This is further confirmed by the fact that the intuitive 
standard deviations of the “smoothed” small area estimates 
(one fourth of the interval) are smaller and less variable 
under method I compared to the others. Another noticeable 
aspect of our method is that the interval widths are similar 
for counties with same sample size. This could be an indi-
cation of obtaining equ-efficient estimators for equivalent 
sample sizes. 
 
Model selection: For choosing the best fitting model, we 
used the Bayesian Information Criteria (BIC) which takes 
into account both the likelihood as well as the complexity of 
the fitted models. We calculated BICs for the models used 
in Methods I and III (Hwang et al. 2009). These two models 
have the same numbers of parameters with a difference in 
only the way the parameters are estimated. The model BIC 
for Method I is 210.025 and that for Method III is 227.372. 
This indicates superiority of our model. We could not 
compute the BIC for Wang and Fuller (2003) since they did 
not use any explicit likelihood. 

 
Table 7 
Results of the corn data analysis. Here CI and LCI represent the confidence interval and the length of the confidence interval, 
respectively 
  

County   ˆ
i    CI   LCI     ˆ

i    CI   LCI  

   I: Proposed method     II: Wang and Fuller (2003)  

Franklin   131.8106   104.085, 159.372  55.287     155.4338   124.151, 193.094  68.943  
Pocahontas   108.7305   80.900, 136.436  55.536     102.3682   -38.973, 244.019 282.993  
Winnebago   109.0559   81.430, 136.646  55.216     115.9093   -53.768, 279.314 333.083  
Wright   131.6113   103.736, 159.564  55.828     131.0674   8.330, 280.263 271.932  
Webster   113.1484   92.805, 133.348  40.543    109.4795   32.514, 202.675 170.161  
Hancock   129.4279   111.781, 147.193  35.412     124.1028   56.750, 162.013 105.262  
Kossuth   121.0071   103.451, 138.626  35.175     116.7147   68.049, 152.454  84.405  
Hardin   130.2520   112.373, 148.114  35.741     137.7983   51.734, 188.373 136.638  
  III: Hwang et al. (2009)     IV: Qiu and Hwang (2007)  
Franklin   158.4677   128.564, 188.370   59.805     157.7383   146.999, 168.477   21.478  
Pocahontas   100.1276   -44.039, 244.295  288.334     101.1661   19.444, 182.887  163.442  
Winnebago   114.1473   0.065, 228.228  228.163     113.7746   56.263, 171.286  115.022  
Wright   140.3717   -24.119, 304.862  328.982     143.2244   41.559, 244.889  203.330  
Webster   115.7865   50.297, 181.275  130.978     115.2224   75.124, 155.320   80.196  
Hancock   111.3087   66.213, 156.403   90.189     113.1766   83.691, 142.661  58.970  
Kossuth   110.9585   74.366, 147.550   73.184     112.3239   89.520, 135.127  45.607  
Hardin   126.6093   40.040, 213.178  173.137     123.9049   54.607, 193.202  138.594  
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Figure 1 Corn hectares estimation. The horizontal line for each county displays the confidence interval of ˆ ,i  with ˆ
i  marked by 

the circle, for (I) Proposed method, (II) Wang and Fuller (2003), (III) Hwang et al. (2009) and (IV) Qiu and 
Hwang (2007) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2 Boxplot of estimates of corn hectares for each county. 

(I) to (IV) are the 4 methods corresponding to 
Figure 1 

 

7. Conclusion  
In this paper, joint area level modeling of means and 

variances is developed for small area estimation. The re-
sulting small area estimators are shown to be more efficient 
than the traditional estimators obtained using Fay-Herriot 
models which only shrink the means. Although our model is 
same as one considered in Hwang et al. (2009), our method 
of estimation is different in two ways: In the determination 
of the tuning parameter k  and the use of 2 2( | , , )i i i iX S  Z  
(which depends additionally on ),iX  instead of 2 2( | ,i iS   

),Z i  for constructing the conditional distribution of the 
small area parameters .i  We demonstrated robustness 
properties of the model when the assumption that 2

i  arise 
from a inverse Gamma distribution is violated. The bor-
rowing of iX  information when estimating 2

i  as well as 
the robustness with respect to prior elicitation demonstrate 
the superiority of our proposed method. The parameter 
values chosen in the simulation study are different than in 
the real data analysis. The real data analysis given here is 
merely for illustration purposes. Our main aim was to 
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develop the methodology of mean-variance modeling and 
contrast with some closely related methods to show its 
effectiveness. For this reason, we chose parameter settings 
in the simulation to be the same as in the well-known small 
area estimation article Wang and Fuller (2003). 

Obtaining improved sampling variance estimators is a 
byproduct of the proposed approach. We have provided an 
innovative estimation technique which is theoretically justi-
fied and user friendly. Computationally, the method is much 
simpler compared to other competitive methods such as 
Bayesian MCMC procedures or bootstrap resampling meth-
ods. We need sampling from posterior distribution only 
once during the model parameter estimation, and the sam-
pled values can be used subsequently for all other purposes. 
The software is available from the authors upon request. 
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Appendix   

A. Derivation of the conditional distributions  
From Equation (1) and (2), the conditional joint distribu-

tion of 2 2{ , , , },i i i iX S   2 2 2( , , , | , , , ),i i i iX S a b     is  
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Therefore the conditional distribution of 2
i  and i  given 

the data and B  are  
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where i  is defined in Equation (4).  
B. Details of the EM algorithm  

The maximization of ( 1)( | )tQ B B  is done by setting the 
partial derivatives with respect to B  to be zero, that is,  

                                
( 1)( | )

= 0.
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B B
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 (B.1) 

From the expression of ( 1)( | )tQ B B  in the text, we give 
explicit expressions for the partial derivates with respect to 
each component of .B  The partial derivative corresponding 
to   is  
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where the expectation is with respect to the conditional 
distribution of ,i

2( | , , ).i i iX S  B  The expression of the 
partial derivative corresponding to 2  is:  
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Similarly for a  and ,b  we get the solutions by setting 
= 0aS  and = 0bS  where aS  and bS  are, respectively, 

the partial derivatives of ( 1)( | )tQ B B  with respect to a  
and b  with expressions given in the main text. These 
equations are solved using the Newton-Raphson method 
which requires the matrix of second derivatives with respect 
to a  and .b  These are given by the following expressions:  
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(B.2)

 

with = .ba abS S  At the thu  step, the update of a  and b  are 
given by  
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where the superscript ( 1)u   on ,aaS ,abS ,baS ,bbS aS  and 

bS  denote these quantities evaluated at the values of a  and 
b  at the th( 1)u   iteration. Once the Newton Raphson 
procedure converges, the value of a  and b  at the tht  step 
of the EM algorithm is set as ( ) ( )=ta a   and ( ) ( )= .tb b    
C. An alternative small area model formulation  

It is possible to reduce the width of the confidence 
interval ( )C B  based on an alternative hierarchical model 
for small area estimation which has some mathematical 
elegance. The constant term 2 2in a   in (19) becomes 

2in a  in this alternative model formulation. The model is 
given by  

                   2 2| , ( , ),i i i i iX N     (C.1) 

                         2 2| ( , ),i i i iN  Z   (C.2) 
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                               2 Inverse Gamma( , ),i a b   (C.4) 

independently for = 1, 2, ..., .i n  Note that in the above 
formulation, it is assumed that the conditional variance of 

i  is proportional to 2
i  whereas the marginal variance is 

constant (by integrating out 2
i  using (C.4). In (1) and (2), 

the variance of i  is a constant, 2,  independent of 2,i  
and there is no conditional structure for i  depending on 

2.i  The set of all unknown parameters in the current hier-
archical model is = ( , , , ).a b B   The inference procedure 
for this model is given subsequently. The model essentially 
assumes that the true small area effects are not identically 
distributed even after eliminating the known variations.   
C.1 Inference methodology  

By re-parameterizing the variance as in (C.2), some 
analytical simplifications are obtained in the derivation of 
the posteriors of i  and i  given 2,i iX S  and .B  We have  
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where ( , )IG a b  stands for the inverse Gamma distribution 
with shape and scale parameters a  and ,b  respectively. 
Given B  and 2,i  the conditional distribution of i  is 
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Integrating out 2,i  one obtains the conditional distribution 
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where 2 2 2= ( 1) ( ) / (1 ) 2 / .i i i in S X b      Z   We 
can rewrite (C.5) as  
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which can be seen to be a scaled t-distribution with 2in a  
degrees of freedom and scale parameter * / (1 )     
with *2 2= / ( 2 ).in a    Hence,  
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In this context, choosing 
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Using the similar arguments as before and noting that 
*2 2( 2 ) ( 1) ,i i in a n S     we have { ( )} ( ) =Bi iP C P D  

1    where iD  is the confidence interval in (20). When 
B  is unknown, we replace B  by its marginal maximum 
likelihood estimate ˆ.B  It is expected that the pooling 
technique will result in an error small enough so that 

ˆ{ ( )} { ( )} 1 .i iP C P C   B B  
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