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Summary

Complex diseases like cancer can often be classified into subtypes using various patho-
logical and molecular traits of the disease. In this article, we develop methods for
analysis of disease incidence in cohort studies incorporating data on multiple disease
traits using a two-stage semiparametric Cox proportional hazards regression model that
allows one to examine the heterogeneity in the effect of the covariates by the levels of
the different disease traits. For inference in the presence of missing disease traits, we
propose a generalization of an estimating-equation approach for handling missing cause
of failure in competing-risk data. We prove asymptotic unbiasedness of the estimating-
equation method under a general missing-at-random assumption and propose a novel
influence-function based sandwich variance estimator. The methods are illustrated using
simulation studies and a real data application involving the Cancer Prevention Study
(CPS-II) nutrition cohort.

Some key words: Competing-risk; Etiologic heterogeneity; Influence function; Missing
cause of failure; Partial likelihood; Proportional hazard regression; Two-stage model.
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1. Introduction

Epidemiological researchers commonly use prospective cohort studies to investigate risk

factors associated with the incidence of chronic diseases such as heart disease, diabetes

and cancer. The proportional hazards model (Cox, 1972) is widely used to analyze

data from cohort studies for the purpose of making inferences about covariate relative-

risk/hazard-ratio parameters. In the standard Cox model, the disease of interest is

treated as a single event and the time to incidence of the event is treated as the outcome

of interest. In modern epidemiological studies, however, the disease of interest can often

be classified into finer subtypes based on various pathologic and molecular traits of the

disease. Although there has recently been tremendous progress in methods for using such

disease classification data for the study of survival and prognosis after disease incidence,

much less attention has been given to methods for incorporating such disease trait data

into an etiologic investigation of a disease.

In this article, we develop methods for incorporating disease trait information into

the analysis of cohort data with the scientific aim of studying “etiologic heterogeneity”,

that is, whether the effects of the underlying risk factors vary for the different subtypes

of a disease. The basic idea involves using a competing-risk framework to model the

hazards of different disease subtypes separately. There are, however, two major analytic

complexities. First, a combination of multiple disease traits, some of which can be ordinal

or even continuous, can potentially define a very large number of disease subtypes. Using

each disease subtype as a separate entity, without imposing any further structure, will

require a large number of parameters in the underlying Cox models, potentially causing

problems of interpretation, inefficiency, and power loss in related testing procedures due

to the imprecision of parameter estimates and the large number of degrees of freedom.

Second, the disease classification data in epidemiologic studies can often be incomplete

for a large number of subjects due to missing data for the underlying disease traits.

A complete-case analysis, using only those diseased subjects who have complete trait
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information, can result in both bias and inefficiency.

We propose dealing with these problems by the use of a two-stage regression model

coupled with an estimating-equation inferential method. There are several novel as-

pects to our proposal. First, motivated by our earlier work on polytomous logistic

regression models (Chatterjee, 2004), we propose to reduce the number of parameters

in the competing-risk proportional hazard model by imposing a natural structure on

the relative-risk parameters through the underlying disease traits. The parameters of

the reduced model themselves are of scientific interest and are useful for testing etio-

logic heterogeneity in terms of the underlying disease traits. Second, for the purpose of

inference, we propose a general extension of an estimating equation method of Goetghe-

beur & Ryan (1995) that was originally designed to deal with missing information on

causes of failure in an unstructured competing-risk problem. The proposed extension

allows one to incorporate the underlying structure of the competing events through a

“second-stage” trait design-matrix with the missing data being dealt with by taking

suitable expectations of the design-matrix, given the observed covariate and trait data.

Third, we prove unbiasedness of our estimating-equation method under a more general

missing-at-random assumption than that has been considered before. Finally, we use

empirical process theory to develop the asymptotic theory of our estimating equation

method and an associated influence-function-based robust sandwich variance estima-

tor under the general missing-at-random assumption. The finite sample properties of

the proposed estimator are studied via a simulation studies involving small and large

numbers of disease subtypes. Moreover, we apply the proposed method to a data set

on breast cancer incidence and various histopathologic traits of breast tumors from the

well-known Cancer Prevention Study (CPS-II) of the American Cancer Society.
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2. Model and Assumption

Suppose that in a cohort study of size n, each subject is followed until the first occurrence

of the disease of interest or the censoring, whichever comes first. Following standard

convention, let T denote the underlying time-to-event for the disease and C denote

time to censoring. For standard cohort analysis, the outcome is represented by (∆, V ),

where ∆ = I(T < C) denotes the indicator of whether or not the disease occurred

before censoring and V = min(C, T ) denotes the time-to-censoring or time-to-disease,

whichever occurs first. Let us assume that, if disease occurs (∆ = 1), the study collects

data on K disease traits, Y = (Y1, . . . , YK), which could be, for example, various tumor

characteristics. If the k-th trait defines Mk categories for the disease, then potentially one

can define potentially a total of M = M1×M2× . . . MK subtypes, based on all possible

combinations of the various characteristics. Breast cancer patients, for example, are

often classified based on estrogen- and progesterone-receptor status into four categories:

ER+PR+, ER+PR-, ER-PR+ and ER-PR-, where +/- indicates the presence/absence

of the corresponding receptor in the breast tumor. Given that follow-up ends at the

occurrence of any type of breast cancer, the M subtypes of the disease can be treated

as competing events. If X denotes a variate vector of covariates of interest, assumed

without loss of generality to be time independent, one can use the proportional hazards

model to specify the cause-specific hazard for each subtype of the disease as

hy(t|X) = lim
h→0

h−1pr(t ≤ T < t + h, Y = y|T ≥ t,X) = λy(t) exp(Xβy),

where λy(·) is the baseline hazard function and βy is the log-hazard-ratio parameter

associated with the disease subtype y. A complication is that modern molecular epi-

demiologic studies collect data on an array of different traits, which can be represented

by a mixture of categorical, ordinal and continuous variable(s). In the above approach,

even with few covariates and disease traits, the total number of regression coefficients

easily can become very large. In the following section, we consider reducing the number
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of parameters by using a second-stage model, following an idea introduced by Chatterjee

(2004) in the context of a polytomous logistic regression model.

2.1. A Second-stage Regression Model for the Subtype-specific

Regression Parameter

First, we focus on modeling the regression coefficients associated with a single covariate.

We note that the indexing of the different disease subtypes by the K underlying disease

traits immediately suggests the following log-linear representation for the hazard-ratio

parameters:

β(y1,···,yK) = θ(0) +
K∑

k=1

θ
(1)
k(yk) +

K∑

k=1

K∑

k
′≥k

θ
(2)

kk
′
(yk,y

k
′ )

+ · · ·+ θ
(K)
12···K(y1,···,yK), (1)

where θ(0) represents the regression coefficient corresponding to a referent subtype of

the disease, the coefficients θ
(1)
k(yk) represent the first-order parameter contrasts, θ

(2)

kk
′
(yk,y

′
k)

denote the second-order parameter contrasts, and so on.

The above representation of the hazard ratio parameters suggests a natural and

hierarchical way of reducing the number of parameters by constraining suitable contrasts

to be zero. For instance, if we assume that the second and all higher-order contrasts are

equal to zero, then (1) reduces to

β(y1,···,yK) = θ(0) +
K∑

k=1

θ
(1)
k(yk), (2)

and in this case the heterogeneity between two subtype-specific regression coefficients

β(y1,···,yk−1,yk,yk+1,···,yK) − β(y1,···,yk−1,y∗k,yk+1,···,yK) = θ
(1)
k(yk) − θ

(1)
k(y∗k). Thus, in this model, the

contrasts of the form θ
(1)
k(yk)−θ

(1)
k(y∗k) give a measure of the degree of etiologic heterogeneity

among the disease subtypes with respect to the k-th trait, holding the level of other traits

to be constant. Further, for ordinal or continuous disease traits, one can impose ordering

constraints on the contrast parameters by using models of the form

θ
(1)
k(yk) = θ

(1)
k s(k)

yk
, yk = 1, . . . , Mk, (3)

4



where
{

0 = s
(k)
1 ≤ s

(k)
2 . . . ≤ s

(k)
Mk

}
are a set of pre-specified scores assigned to the Mk

levels of the k-th trait. This model summarizes the degree of etiologic heterogeneity

with respect to the k-th characteristic in terms of a single regression coefficient θ
(1)
k ,

with θ
(1)
k = 0 implying no heterogeneity.

The additive model (2) could be extended further to include interaction terms be-

tween pairs of disease traits, thus potentially allowing the degree of etiologic heterogene-

ity with respect to one trait to vary with the level of the other trait, and vice versa.

For ordinal traits, the interaction parameters can also be constrained to maintain their

ordering by modeling them in terms of underlying continuous scores. More details about

these modeling techniques can be found in Chatterjee (2004).

The second-stage model described above can be represented as β = Bθ, where the

design matrix B relates the coefficients β of the unstructured competing-risk Cox model

to the parameters θ of the log-linear model. When there are multiple covariates of

interest, say X = (X1, . . . , XP ), then one can consider a separate two-stage model of

the form βp = B(p)θp for each of the covariates Xp. In the following exposition, we will

assume B(p) = B for all p for notational convenience.

3. Inference

3.1. Estimation Methodology

If there are no missing data on any of the disease traits, inference on the covariate

regression parameters can be performed based on a partial likelihood of the form

Ln =
∏

i:∆i=1

{ hYi
(Vi|Xi)∑n

j=1 I(Vj ≥ Vi)hYi
(Vi|Xj)

}
=

∏
i:∆i=1

{ exp(
∑

p BT
Yi

θpXip)∑n
j=1 I(Vj ≥ Vi) exp(

∑
p BT

Yi
θpXjp)

}
, (4)

where Yi = (Yi1, . . . , YiK) denotes the observed disease traits for the i-th subject given

∆i = 1 (case) and BT
Yi

represents the row of the design matrix B that corresponds to

the trait values Yi. The maximum partial likelihood estimate of θ can be obtained by
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maximizing (4) without requiring any assumption about the subtype-specific baseline

hazard functions λy(t). The score function associated with (4) can be written in the

general form

S∗θ =
∑
∆i=1

{
BYi

⊗Xi −
∑n

j=1 I(Vj ≥ Vi)BYi
⊗Xj exp(

∑
p BT

Yi
θpXjp)∑n

j=1 I(Vj ≥ Vi) exp(
∑

p BT
Yi

θpXjp)

}
, (5)

where ⊗ denotes the Kronecker product. If data on some or all of the disease traits

are missing for some study subjects, one can use (4) to perform a complete-case anal-

ysis involving only those cases who have complete data on all the disease traits. Such

complete-case analyses, however, potentially may require discarding large numbers of

cases resulting in inevitable loss of efficiency and possibly bias due to non-random miss-

ingness.

Several researchers in the past have studied the problem of missing cause-of-failure

with two underlying competing events. Dewanji (1992) proposed a partial-likelihood-

based solution by assuming that the baseline hazards for the two causes of failure are

proportional. Goetghebeur & Ryan (1995) also exploited the same assumption but pro-

posed a more robust estimation equation approach that is less sensitive to misspecifica-

tion of the constant hazard-ratio assumption. Craiu & Duchesne (2004) proposed a full-

likelihood-based solution allowing for flexible piecewise-constant modeling of the baseline

hazard functions. Lu & Tsiastis (2001) considered a multiple-imputation method that

estimates the odds of one failure type against the other as a function of failure time

and covariates by parametric logistic regression analysis of the complete-case data. Gao

& Tsiatis (2005) proposed an inverse probability-weighted complete case estimator and

a doubly robust estimator in general linear transformation models. Although each of

these methods has its own advantages, we find that the method of Goetghebeur & Ryan

(1995) is particularly appealing for extension to our setting, as this method is quite effi-

cient and yet relies minimally on the assumptions about the failure-type-specific baseline

hazard functions. In particular, when there are no missing data on cause of failure, the

method boils down to standard partial likelihood method. When there are missing data,
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although some assumptions about the interrelationship among the event-specific base-

line hazard functions are needed, the method remains relatively robust, as it relies on

those assumptions only when it is needed for dealing with events with missing cause of

failure. In the following, we propose a general extension of the approach of Goetghebeur

& Ryan (1995) for a structured competing-risk problem where the competing events are

defined by underlying related disease traits.

We first introduce some additional notations. Let Rk denote the indicator of whether

the k-th disease trait is observed (Rk = 1) or not (Rk = 0), for a diseased subject. Define

R = (R1, . . . , RK) and let r = (r1, . . . , rK) be a realization of R. We observe that r can

take on 2K possible values, each corresponding to a particular pattern of missing data

for the disease traits. We will assume that the data are missing-at-random, in the sense

that

Pr(R = r|T, X, Y, ∆ = 1) = Pr(R = r|T,X, ∆ = 1) = π(r)(T, X), (6)

i.e., the probabilities for the different patterns of missing data do not depend on the

trait values Y . The model (6) is more general than that considered by Goetghebeur &

Ryan, as they allowed the missingness probability to depend only on T , but not on X.

For any given patten of missingness r, partition the disease traits as Y = (Y or , Y mr),

where Y or and Y mr denote the vectors of traits that have been observed and missing,

respectively. Now, we can write the hazard of the disease with a missingness pattern

R = r and disease trait yor as

hyor (t|X) =

∫

ymr

λ(ymr ,yor )(t) exp{β(ymr ,yor )Xi}dµ(ymr),

where µ(·) denotes a suitable measure on the sample space of ymr .

Define

Qymr

yor (t,X) =
h(ymr ,yor )(t|X)

hyor (t|X)

and observe that Qymr

yor (t,X) can be interpreted as the conditional probability that a

diseased subject with the incidence time t and the covariate value X has trait value
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y = (ymr , yor), given the observed disease traits yor . Now define

Eyor (BY |T = t,X) =

∫

ymr

B(yor ,ymr )Q
ymr

yor (t, X)dµ(ymr)

to be the conditional expectation of the design vector BY given the observed traits yor ,

the time to first disease occurrence T = t, and the covariate data X. Now, we propose

to estimate θ based on the estimating function

Sθ ≡
∑

r

S
(r)
θ ≡

∑
r

∑
∆i=1,Ri=r

{
Eyor

i
(BY |Ti, Xi)⊗Xi

−
∑n

j=1 I(Vj ≥ Vi)Eyor
i

(BY |Ti, Xj)⊗Xjhyor
i

(Ti|Xj)∑n
j=1 I(Vj ≥ Vi)hyor

i
(Ti|Xj).

}
= 0. (7)

The unbiasedness of the estimating equation (7) under the general missing-at-random

model (6) is proved in the Appendix. In the absence of any missing data on disease

traits, Eyor
i

(BY |X) corresponds to the row of the second-stage design matrix B associated

with the observed disease traits yi and the estimating equation (7) is equivalent to

the score equation associated with the partial likelihood (4). If we assumed discrete

disease subtypes and did not impose any structure through the second-stage model,

then EyO
i
(BY |Xi, Ti) would simply correspond to the conditional probability vector for

observing the different disease subtypes, given the observed traits, and the estimating

equation (7) would essentially very similar to that proposed by Goetghebeur and Ryan

for dealing with two failure types.

The estimating equation (7) cannot be used by itself, as it involves the “nuisance”

baseline hazard function λy(t). A complete nonparametric estimation of λy(t) may not

be feasible because when the number of disease subtypes gets large, the number of cases

for the individual subtypes gets sparse. In the following, we consider a semi-parametric

estimation approach for the baseline hazard functions. First, we express

λy(t) = λ(1,···,1)(t) exp{αy(t)},

where λ(1,···,1)(t) denotes the baseline hazard associated with a reference disease subtype

and exp{αy(t)} denotes the baseline hazard for the disease subtype y expressed as a
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multiple of that for the reference subtype. Similar to Goetghebeur and Ryan, we now

invoke an assumption of a time-independent hazard-ratio, that is, αy(t) ≡ αy for all

values of y. In addition, to overcome the potential sparsity problem when there are a

large number of disease subtypes, we propose to specify exp(αy) using log-linear models

analogous to those we used to specify the covariate hazard-ratio parameters exp(βy).

We could, for example, consider an additive model of the form

α(y1,...,yK) = ξ(0) +
K∑

k=1

ξ
(1)
k(yk).

Let α = Aξ represent such a model, and let AY denote the row of the design matrix A
which corresponds to the trait Y . Define

hu(t|X) =

∫

y

λy(ti) exp(βyXi)dµ(y),

Qy
u(X) =

exp(αy + βyX)∫
y
exp(αy + βyXi)dµ(y)

, wu(X) =

∫

y

exp(αy + βyX)dµ(y)

and observe that hu(t|X) denotes the marginal hazard for the disease integrated over

all different values of the disease traits and Qy
u(Xi) is the probability that a subject has

disease trait y, given simply that it is a case (∆ = 1) but ignoring all other disease trait

information.

Under the constant-hazard-ratio assumption αy(t) ≡ αy, the quantities Qymr

yor (t, X)

and hyor (t|X) in the definition of estimating equation (7) can be replaced by

Qymr

yor (X) =
exp{α(ymr ,yor ) + β(ymr ,yor )X}∫

ymr exp{α(yor ,ymr ) + β(yor ,ymr )X}dµ(ymr)

and

wyor (X) =

∫

ymr

exp{α(yor ,ymr ) + β(yor ,ymr )X}dµ(ymr),

respectively. We further let

Eyor (AY |X) =

∫

ymr

A(yor ,ymr )Q
ymr

yor (X)dµ(ymr) and Eu(AY |X) =

∫

y

AyQ
y
u(X)dµ(y).
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Now, following Gotnberger and Ryan, we propose to estimate ξ based on the partial-

likelihood

L∗n =
∏

r

∏
Ri=r,∆i=1

{ hyor
i

(Vi|Xi)∑n
j=1 I(Vj ≥ Vi)hu(Vi|Xj)

}
.

The associated score function can be conveniently expressed as

Sξ ≡
∑

r

S
(r)
ξ ≡

∑
r

∑
∆i=1,Ri=r

{
Eyor

i
(AY |Xi)−

∑n
j=1 I(Vj ≥ Vi)Eu(AY |Xj)ωu(Xj)∑n

j=1 I(Vj ≥ Vi)ωu(Xj)

}
. (8)

In our applications, we solved both sets of estimating equations Sθ = 0 and

Sξ = 0 by using Newton-Raphson method. In principle, these equations can

also be solved by EM-type algorithm where the expectation steps will involve

computing the conditional expectations EyO
i
(BY |Xi, Ti) and Eyor

i
(AY |Xi), and

then the M-step will involve solving partial-likelihood-like score equations of

the form (7).

3.2. Asymptotic Theory and Variance Estimation

In this section, we study the asymptotic theory for the proposed estimator. Unlike a

martingale-based approach considered by Goetghebeur and Ryan, here we consider an

empirical process representation of the score functions to derive the influence function of

the proposed estimator and an associated robust sandwich estimator for the asymptotic

variance. Application of the robust sandwich estimator, as opposed to a model based

estimator, in this setting is particularly appealing because of the possibility of the mis-

specification of the models for the baseline hazard functions as a function of time t and

the disease trait y. In the following lemma, we first provide a result about asymptotic

unbiasedness of the estimating functions.

Lemma 1.Under the regularity conditions listed in the Appendix and the missing-at -

random mechanism (6), as n →∞,

1

n
Sθ ≡ 1

n

∑
r

S
(r)
θ →p 0 and

1

n
Sξ ≡ 1

n

∑
r

S
(r)
ξ →p 0,
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at the true parameter values. Moreover, if π(T, X) = π(T ),

1

n
S

(r)
θ →p 0 and

1

n
S

(r)
ξ →p 0 for each specific r.

An interesting corollary of the above lemma is that the complete-case analysis, which

corresponds to r = (1, . . . , 1), is unbiased when the missingness probability depends

only on T , but not on X. Lemma 1 also shows that the martingale representation that

Goetghebeur & Ryan used for their estimating function for each specific type of missing

data pattern is not valid under the more general missing data model we consider. Now,

we define some further notation. Let

S
(1)
θ (Vi, Y

or
i ) =

1

n

n∑
j=1

I(Vj ≥ Vi)EY or
i

(BY |Xj)⊗XjωY or
i

(Xj),

S
(1)
ξ (Vi, u) =

1

n

n∑
j=1

I(Vj ≥ Vi)Eu(AY |Xj)ωu(Xj),

S(0)(Vi, Y
or
i ) =

1

n

n∑
j=1

I(Vj ≥ Vi)ωY or
i

(Xj), S(0)(Vi, u) =
1

n

n∑
j=1

I(Vj ≥ Vi)ωu(Xj),

and denote by s(1)(Vi, Y
or
i ), s(0)(Vi, Y

or
i ), s(1)(Vi, u), and s(0)(Vi, u) the corresponding

population expectations. The parameter vector η = (θ>, ξ>)T is estimated by solving

Tn =


 Sθ

Sξ


 = 0. (9)

Define I = limn→∞(1/n)∂Tn/∂η. The formulae for the various components of I are

given in the Appendix. The following theorem summarizes the asymptotic property of

the estimators.

Theorem 1. Under the regularity conditions listed in the Appendix, the estimating equa-

tion Tn = 0 has a unique consistent sequence of solutions (θ̂n, ξ̂n) that is asymptotically

normally distributed, with the influence function representation given by

n1/2


 θ̂n − θ0

ξ̂n − ξ0


 = I−1 1√

n

n∑
i=1


 Jθ

ni

Jξ
ni


 + op(1), (10)
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where

Jθ
ni = ∆i

∑
r

I(Ri = r)
{
EY or

i
(BY |Xi)⊗Xi − s(1)(Vi, Y

or
i )

s(0)(Vi, Y
or
i )

}
+

∑
r

E∆,R,V,Y or

[
∆I(R = r)

I(V ≤ Vi)ωY or (Xi)

s(0)(V, Y or)

{
EY or (BY |Xi)⊗Xi − s(1)(V, Y or)

s(0)(V, Y or)

}]

and

Jξ
ni = ∆i

∑
r

I(Ri = r)
{
EY or

i
(AY |Xi)⊗Xi − s(1)(Vi, u)

s(0)(Vi, u)

}
+

E∆,V

[
∆

I(V ≤ Vi)ωu(Xi)

s(0)(V, u)

{
Eu(AY |Xi)− s(1)(V, u)

s(0)(V, u)

}]
.

To obtain an “empirical” sandwich variance estimator, we can estimate Jθ
ni and Jξ

ni

by

Ĵθ
ni = ∆i

∑
r

I(Ri = r)
{
EY or

i
(BY |Xi)⊗Xi − S(1)(Vi, Y

or
i )

S(0)(Vi, Y
or
i )

}
+

∑
r

n∑

l=1

∆lI(Rl = r)
I(Vl ≤ Vi)ωY or

l
(Xi)

S(0)(Vl, Y
or
l )

{
EY or

l
(BY |Xi)⊗Xi − S(1)(Vl, Y

or
l )

S(0)(Vl, Y
or
l )

}

and

Ĵξ
ni = ∆i

∑
r

I(Ri = r)
{
EY or

i
(AY |Xi)⊗Xi − S(1)(Vi, u)

S(0)(Vi, u)

}
+

n∑

l=1

∆l
I(Vl ≤ Vi)ωu(Xi)

S(0)(Vl, u)

{
Eu(AY |Xi)− S(1)(Vl, u)

S(0)(Vl, u)

}

The sandwich variance estimator for η̂ = (θ̂>, ξ̂>)> can now be obtained as Î−1
V̂ Î−T

,

where Î = ∂Tn/∂η (see the supplementary materials for the formula) and V̂ =
∑n

i=1 ĴniĴ
T
ni.

4. Simulation Study

In this section, we study the finite sample performance of the proposed estimator under

correct and misspecified models for the baseline hazard functions. We consider two
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different simulation scenarios. In the first, we assume the total number of distinct disease

traits to be small and the number of cases observed for each trait value to be reasonably

large. Within this first scenario, we consider trait values to be missing-completely-at-

random and missing-at-random. In the second setting, we allow the number of distinct

disease traits to be large and the number of cases observed for the different trait values

to be potentially sparse.

4.1. Moderate number of disease subtypes

In this setting, we simulated data by mimicking the incidence pattern of four subtypes of

breast cancer: ER+PR+, ER+PR-, ER-PR+, and ER-PR-. We denote the four disease

subtypes as (2, 2), (2, 1), (1, 2), and (1, 1). We first generated a scalar covariate X

from the Normal(0, σ = 1) distribution for a cohort of size n, with n = 10, 000. Next

we generated the age-at-onset for the four different subtypes of the disease using the

proportional hazards model

λ(y1,y2)(t|X) = λ(y1,y2)(t) exp(β(y1,y2)X),

with a Weibull specification for the baseline hazard functions,

λ(y1,y2)(t) = γ(y1,y2)λ
γ(y1,y2)

(y1,y2) tγ(y1,y2)−1, (11)

for y1 = 1, 2 and y2 = 1, 2.

We assumed that β(y1,y2) = θ(0) +θ
(1)
1(y1) +θ

(1)
2(y2) with θ

(1)
1(1) = θ

(1)
2(1) = 0 for identifiability.

We set the value of θ(0), a common parameter across all subtypes, to be 0.35, which

indicated an overall positive association between the covariate and the hazard of the

disease. In addition, we set θ
(1)
2(2) = 0.25, implying a stronger effect of the covariate on

the risk of PR+ tumors compared with PR- tumors. We assumed θ
(1)
1(2) = 0, that is,

no difference in the effect of the covariate between ER+ and ER- tumors. We assume

γy1,y2 = γ = 4.355 for all (y1, y2), which guaranteed constant hazard ratios between the
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different subtypes. We next further specifies λ(y1,y2) in such a way that the hazard ratios

α(y1,y2) = {λ(y1,y2)/λ(1,1)}γ satisfied the constraint

log{α(y1,y2)} = ξ(0) + ξ
(1)
1(y1) + ξ

(1)
2(y2), (12)

with ξ(0) = 0, ξ
(1)
1(1) = ξ

(1)
2(1) = 0, ξ

(1)
1(2) = −0.0295 and ξ

(1)
2(2) = −2.1779.

We generated the censoring time C for the subjects using a Normal(75, 52) distribu-

tion. In our simulation setting, we observed, on average, 3.912%, 3.864%, 0.562%, and

0.514% cases of subtypes (2, 2), (2, 1), (1, 2), and (1, 1), respectively. After generating

data for the entire cohort, we simulated missing trait values under missing-completely-

at-random and missing-at-random models. Under missing-completely-at-random, we

deleted ER and PR status randomly, independently of each other, using Bernoulli sam-

pling with the probability of missing (p = 1 − π) for each being 0.20 or 0.50. Under

missing-at-random, we assumed the trait values to be completely observed for cases

whose X and T values are greater than the 80th percentile values for the respective

distributions. Among the remaining cases, we simulated missing traits by deleting ER

and PR status randomly, independently of each other, using Bernoulli sampling with

the probability of missing data (p) for each being 0.31 and 0.78, so that the overall

missingness probability for each trait is, approximately, 0.20 or 0.50 respectively.

Under each scenario, we simulated 500 data sets and analyzed each of them using

three different methods. In the first, subsequently referred to as Full Cohort analysis,

we applied the partial likelihood (4) to the entire cohort, assuming that data on both

of the disease traits had been observed for all the cases. In the second, subsequently

referred to as Complete-Case analysis, we applied the partial likelihood (4) to the cohort

after deleting all the cases who had missing data in any of the traits. In the third,

subsequently referred to as the Estimating-Equation analysis, we applied the proposed

method to analyze data on all the cases, including those with one or both of the two

traits missing.

The results presented in Table 1 reveal that the proposed estimating equation
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method had negligible bias for estimation of both the null and non-null values of the θ-

parameters. Moreover, the proposed robust sandwich variance estimator also performed

very well for estimation of the true variance of the parameter estimates. The coverage

probabilities for the associated 95% confidence intervals were also close to the nominal

level. Under missing-completely-at-random, the complete-case analysis also produced

unbiased parameter estimates. The estimating equation method, however, was clearly

more efficient, as it incorporated data on all cases irrespective of whether they had miss-

ing traits or not. In fact, when the proportion of missing was modest, e.g 20%, the

estimating equation method lost only modest efficiency - in the range of 4-15% - com-

pared with the full-cohort analysis. In contrast, the loss of efficiency for complete-case

analysis ranged between 30 and 40%, even with a modest amount of missing data. Under

missing-at-random, the complete-case analysis yielded a biased estimate of the param-

eter θ(0), with the magnitude of bias being quite high when the missingness probability

was 0.50. Moreover, under missing-at-random, the loss of efficiency for the complete case

analysis was more dramatic than that observed under missing-completely-at-random.

Next we investigated the robustness of the estimating-equation method against mis-

specification of the semiparametric model for the trait specific baseline hazard functions.

The simulation design remained the same as above, except that now in model (11) we al-

lowed the parameters γ(y1,y2) and λ(y1,y2) to vary freely. In particular, we set γ(1,1) = 2.692,

γ(1,2) = 4.058, γ(2,1) = 5.433, γ(2,2) = 4.355, and λ(1,1) = 0.0026, λ(1,2) = 0.0038,

λ(2,1) = 0.0063 and λ(2,2) = 0.0072, giving rise to approximately 1.34%, 1.64%, 0.73%

and 7.06% disease incidence of subtypes (1,1), (2,1), (1,2), and (2,2), respectively, in

the underlying cohort. Figure 1 shows how log{λ(y1,y2)(t)/λ(1,1)(t)} changes over time

as opposed to taking a constant value under the “working” model for the estimating-

equation method. From the results shown in Table 2, we observe that in this

setting, under missing-completely-at-random all of the methods produced

nearly unbiased estimates for all the parameters, but some noticeable bias
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was observed for the estimating-equation method for the estimation of the

parameter θ
(1)
1(2) under the setting of 50% missing data. Under missing-at-

random, in contrast, the complete-case analysis produced severe bias in es-

timating the parameter θ(0) and the corresponding 95% coverage probability

was unacceptably low. Under missing-at-random, the bias of the estimating-

equation method also increased, but still remained small in absolute terms

and the corresponding 95% coverage probabilities were reasonable.

4.2. A Large number of disease subtypes

In the third and final setting, we considered three disease traits, each with four levels,

say yj = 1, 2, 3, and 4, with the total number of disease subtypes equal to 4 × 4 ×
4 = 64. As earlier, we generated the failure times for different disease subtypes from

a trait-specific Cox proportional hazards model, where the covariate log-hazard-ratio

parameters satisfied the constraint

β(y1,y2,y3) = θ(0) + θ
(1)
1 s1(y1) + θ

(1)
2 s2(y2) + θ

(1)
3 s3(y3),

with sj(yj) = (yj−1)0.3 (see Chatterjee, 2004) and the baseline hazard functions followed

Weibull distribution of the form (11). We chose θ(0) = 0.35, θ
(1)
1 = 0.15, θ

(1)
2 = 0.0

and θ
(1)
3 = 0.5. We allowed 64 unrestricted values for the λ- and γ- parameters of the

baseline Weibull distribution by randomly drawing their values from the Uniform(3.5, 4)

and Uniform(0.0021, 0.0024) distributions, respectively. As before, X ∼ Normal(0, 1)

and the censoring time was generated from a Normal(75, 52) distribution. In this setting,

the fraction of the subjects in the cohort who developed the disease was approximately

11%, with the subtype-specific disease occurrence rates ranging between 0.076% and

0.314%. We considered two different sample sizes, n = 5, 000 and 10, 000.

As before, we analyzed each data set using three methods: full-cohort, complete-case

and estimating-equation. For the estimating-equation method, we assumed constant
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hazard ratios across subtypes and a working model of the form log{α(y1,y2,y3)} = ξ(0) +

ξ
(1)
1(y1) + ξ

(2)
2(y2) + ξ

(3)
3(y3). The results from this simulation study (shown in Table 1 of

supplemental materials) reveal that all of the different methods produced valid inferences

in this setting of highly stratified disease subtypes. The bias of the estimating-equation

method, along with that for the complete-case and the full-cohort analyses, was small

even though the working model for the baseline hazard functions was incorrectly specified

for the first method. Further, the estimating-equation method often gained remarkable

efficiency compared with the complete-case analysis.

5. Analysis of the Cancer Prevention Study II

Nutrition Cohort

The Cancer Prevention Study (CPS)-II Nutrition Cohort is a prospective study of cancer

incidence and mortality among men and women in the United States that was established

in 1992 and was ended on June 30, 2005.

In brief, the study participants completed a mailed, self-administered questionnaire

in 1992 or 1993 that included a food frequency diet assessment and information on

demographic, medical, behavioral, environmental, and occupational factors. Beginning

in 1997, follow-up questionnaires were sent to cohort members every 2 years to update

exposure information and to ascertain newly diagnosed cancers; response rates for all

followup questionnaires have been at least 90% (for details see Feigelson et al., 2006).

For the purpose of illustration, we considered weight gain from age 18 to the year 1992

as the main covariate of interest as it has previously been shown to be related to risk

of breast cancer in the CPS-II cohort. After excluding women who were either lost to

follow-up, had unknown weights, had extreme values of weight, or reported prevalent

breast or other cancer at baseline, except nonmelanoma skin cancer, we were left with

44, 172 women who are postmenopausal at baseline in 1992.
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Among the 44, 172 women, we found that 1516 had some form of breast cancer. The

cancer cases were verified by obtaining medical records or through linkage with state

cancer registries when complete medical records could not be obtained. We analyze avail-

able data on five tumor traits; (1) Grade, with three categories: well/moderately/poorly

differentiated; (2) Stage, with two categories: localized/distant; (3) Histologic type, with

three categories: ductal/lobular/other; (4) Estrogen receptor (ER) status with two cate-

gories: ER+/ER-; (5) Progesterone receptor (PR) status, with two categories PR+/PR-.

The aim of our analysis was to study how the association between weight gain and risk

of breast cancer varied by various tumor traits.

The five traits yielded a total of up to 3 × 2× 3× 2× 2 = 72 subtypes. Out of the

1516 cancer patients, 782 subjects were information on all of the disease traits, while

the remaining 734 subjects had information on at least one of the traits missing. Let y1,

y2, y3, y4, and y5 denote the level of grade, stage, histology, ER status, and PR status,

respectively. We modeled the hazard of the various cancer subtypes as

h(y1,y2,y3,y4,y5)(t|X) = λ(y1,y2,y3,y4,y5)(t) exp{Xβ(y1,y2,y3,y4,y5)}, (13)

where, further, we assumed β(y1,y2,y3,y4,y5) = θ(0) + θ
(1)
1(y1) + θ

(1)
2(y2) + θ

(1)
3(y3) + θ

(1)
4(y4) + θ

(1)
5(y5).

We set well-differentiated, localized, ductal, ER+ and PR+ as the referent levels for

the associated tumor traits. Thus, in our model, θ(0) represents the log hazard ratio

of weight gain associated with this referent breast cancer subtype and the parameters

θ
(1)
k(yk), k = 1, 2, 3, 4, 5, yield a measure of heterogeneity in the effect of weight gain by

the levels of the corresponding disease trait. We performed both the complete-case and

the estimating-equation analysis of the data. For our estimating-equation method, we

assumed the constraint

log{λ(y1,y2,y3,y4,y5)(t)/λ(1,1,1,1,1)(t)} = ξ
(1)
1(y1) + ξ

(1)
2(y2) + ξ

(1)
3(y3) + ξ

(1)
4(y4) + ξ

(1)
5(y5).

From the results presented in Table 3, it is evident that both methods produced estimates

of θ(0) to be positive and highly significant, indicating an overall positive association of
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weight gain with the risk of breast cancer. Moreover, the significance of the estimate of

θ
(1)
2(2) in both the methods indicated that the association between weight gain and risk of

breast cancer is stronger for distant compared with localized tumors. The significance of

the estimate of θ
(1)
5(2) in both methods also suggests that the association between weight

gain and risk of breast cancer is stronger for PR+ compared with PR- tumors. For

all parameters, the estimating-equation method produces substantially smaller standard

errors compared with the complete-case analysis.

6. Discussion

In this article, we have considered an estimating-equation approach for inference in

the proposed two-stage proportional hazards regression model in the presence of miss-

ing disease trait information. The proposed method is semiparametric in the sense

that it involves an unspecified baseline hazard function for a baseline disease subtype.

The method requires an assumption of missing-at-random but it does not require any

modeling assumption for π(T, X), the missingness probability, for the disease traits.

The asymptotic unbiasedness of the method, however, does require correct parametric

specification for the interrelationships of the nuisance baseline hazard functions for the

different disease subtypes.

Our extensive simulation study suggests that in practice, the magnitude of bias gen-

erated by the proposed method for estimation of θ, the focus parameters of interest,

is generally quite small, even when the model for λy(t)/λ(1,...,1)(t) is grossly misspeci-

fied. The theory we have developed is valid for more general parametric specification of

λy(t)/λ(1,...,1)(t) which does not necessarily assume constancy over t. Thus the proposed

methods can be used to conduct sensitivity analyses against alternative models for the

baseline hazards. In principle, one could also construct a doubly robust estimator for

θ along the lines of Gao & Tsiastis (2005). In particular, one could use the constant

hazard ratio and log-linear modeling assumption for the baseline hazard functions to
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develop a doubly-robust estimator of θ that would be unbiased for a correctly specified

model for π(T, X) or for λy(t)/λ(1,...,1)(t). Hence, it would be interesting to develop such

a method and to examine how its gain in robustness compensates for its potential loss

of efficiency compared with the estimating equation method in practical settings.

References

Chatterjee, N. (2004). A two-stage regression model for epidemiological studies

with multivariate disease classification data. Journal of the American Statistical

Association, 99, 127–138.

Cox, D. R. (1972). Regression models and life-tables. Journal of the Royal Statistical

Society, Series B, 34, 187–220.

Craiu, R. V. & Duchesne, T. (2004). Inference based on the EM algorithm for the

competing risks model with masked causes of failure. Biometrika, 91, 543–558.

Dewanji, A. (1992). A note on a test for competing risks with missing failure type.

Biometrika, 79, 855–857.

Feigelson, H. S., Patel, A. V., Teras, L. R., Gansler, T., Thusn, M. J.,

& Calle, E. E. (2006). Adult weight gain and histopathologic characteristics of

breast cancer among postmenopausal women. Cancer, 107, 12–21.

Gao, G. & Tsiatis, A. A. (2005). Semiparametric estimators for the regression

coefficients in the linear transformation competing risks model with missing cause

of failure. Biometrika, 92, 875–891.

Goetghebeur, E. & Ryan, L. (1995). Analysis of competing risks survival data

when some failure types are missing. Biometrika, 82, 821–833.

Lu, K. & Tsiatis, A. A. (2005). Comparison between two partial likelihood ap-

proaches for the competing risks model with missing cause of failure. Lifetime Data

20



Analysis, 11, 29–40.

Vaart, A. W. van der. (1998). Asymptotic Statistics, Cambridge University Press:

Cambridge, UK.

21



Appendix

Regularity Conditions

In the following, let |θ|p denote the sum of the absolute values of the θ-parameters

associated with the vector of covariates Xp.

(A1) π(r)(T, S) > 0 almost surely in (T, S) for r = (1, 1, . . . , 1).

(A2) The elements of the second-stage design matrices B and A remain uniformly

bounded in absolute value by constants, say cB and cA, respectively.

(A3) Assume the function X⊗3 exp
(
cB

∑P
p=1 |θ|pXp

)
can be bounded by an integrable

function of X uniformly in a open neighborhood of θ0.

(A4) The functions EV,XI(V ≥ v) exp
(
−cA − cB

∑P
p=1 |θ|pXp

)
are bounded away from

zero uniformly in v and η = (θT , ξT )T in a open neighborhood of η0.

(A5) The matrix I is positive definite.

Proof of the asymptotic unbiasedness of the estimating equation under the general

missing-at-random assumption

In this section, we provide an outline of the proof the asymptotic unbiasedness of the

estimating equations Sθ = 0 and Sξ = 0 under the general missing at random mechanism

specified by equation (6). Further details of the proof can be found in Supplementary

appendix.

First, it is easy to see that the asymptotic limit of (1/n)S
(r)
θ can be written in general

form asth

ER,V,∆,Y r
o

(
I(R = r)∆

[
∂

∂θ
log{hY or (V |X)} − s(1)(V, Y or)

s(0)(V, Y or)

])
,
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where

s(1)(V, Y or) = EV ′ ,X′I(V
′ ≥ V )

[
∂log{hY or (V

′|X ′
)}/∂θ

]
hY or (V

′|X ′
),

s(0)(V, Y or) = EV
′
,X
′I(V

′ ≥ V )hY or (V
′|X ′

), and ∂log{hY or (V |X)}/∂θ = EY or (By|V, X)⊗X.

Now, under the missing-at-random assumption, we can show

C(r) ≡ E [∆I(R = r)∂log{hY or (V |X)}/∂θ]

=

∫

v,yor

EV,X

(
I(V ≥ v)π(r)(v, X) [∂log{hyor (v|X)}/∂θ] h(v, yor |X)

)
dvdµ(yor).

Similarly, we can show,

D(r) ≡ E

{
∆I(R = r)

s(1)(V, Y or)

s(0)(V, Y or)

}

= D(r) =

∫
s(1)(v, yor)

s(0)(v, yor)
EV,X {I(V ≥ v)πr(v, X)hyor (v|X)} dvdµ(yor).

Now, we note that, if π(r)(T, X) ≡ π(r)(T ), then we have

C(r) = D(r) =

∫
π(r)(v)s(1)(v, yor)dvdµ(yor),

implying the asymptotic unbiasedness of S
(r)
θ for each specific r.

When π(r)(T, X) depends on X, in general C(r) 6= D(r), but we can show that

∑
r

C(r) =
r∑

D(r) =

∫

v,y

s(1)(v, y)dvdµ(y)

by rearrangements of integrals and sums.

Derivation of the influence function and asymptotic normality

The asymptotic unbiasedness of the estimating function, together with the fact that

under the given regularity conditions, (1/n)∂Tn/∂η → I uniformly in an open neighbor-

hood η0, proves the local consistency of the proposed estimator. In the following lemma,

we state a key step that is needed for the proof of Theorem 1.

Lemma 2.

(1.a) n1/2
{

S(1)(v,y)

S(0)(v,y)
− s(1)(v,y)

s(0)(v,y)

}
=

1
n1/2

1
s(0)(v,y)

∑n
j=1 I(Vj ≥ v)hy(Vj|Xj)

[
∂
∂θ

log{h(Vj, y|Xj)} − s(1)(v,y)

s(0)(v,y)

]
+ op(1).

(1.b) The above result holds uniformly for all (v, y).
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The proof of part (a) follows by a standard application of the functional δ-theorem

(Theorem 20.8 of van Der Vaart, 1998) by viewing the quantities S(k)(v, y), k = 0, 1,

as functions of the underlying empirical process defined by {Vj, Xj}n
j=1. Since both

s(1)(v, y) and s(0)(v, y) are linear functionals of the underlying distribution function of V

and X, the required condition for their Hadamard differentiability follows easily under

the regularity conditions (A2)-(A3). Moreover, under (A4), we can apply the chain

rule to show that the ratio s(1)(v, y)/s(0)(v, y) is Hadamard differentiable. Part (b) of

Lemma 2, that is uniform convergence, follows by the uniform boundedness conditions

(A2)-(A4).

Now, to derive an asymptotic representation of n−1/2Sθ, we write

1

n1/2
Sθ =

1

n1/2

∑
r

∑
i

∆iI(Ri = r)

[
∂

∂θ
log{hY or

i
(Vi|Xi)} − s(1)(Vi, Y

or
i )

s(0)(Vi, Y
or
i )

]

− 1

n1/2

∑
r

∑
i

∆iI(Ri = r)

{
S(1)(Vi, Y

or
i )

S(0)(Vi, Y
or
i )

− s(1)(Vi, Y
or
i )

s(0)(Vi, Y
or
i )

}
,

where the second term, using Lemma 2, can be written as

∑
r

∑
i

1

n3/2

∆iI(Ri = r)

s(0)(Vi, Y
or
i )

n∑
j=1

I(Vj ≥ Vi)hY or
i

(Vj|Xj)

[
∂

∂θ
log{hY or

i
(Vj|Xj)}−

s(1)(Vi, Y
or
i )

s(0)(Vi, Y
or
i )

]
+ op(1),

which, in turn, after rearrangement of the sums, can be written as

1

n1/2

n∑
j=1

∑
r

(
1

n

n∑
i=1

∆iI(Ri = r)

s(0)(Vi, Y
or
i )

I(Vi ≤ Vj)hY or
i

(Vj|Xj)

[
∂

∂θ
log{hY or

i
(Vj|Xj)}

− s(1)(Vi, Y
or
i )

s(0)(Vi, Y
or
i )

])
+ op(1).

Now, by the law of large numbers, it is easy to see that the expression within the above

square brackets converges to the second term in the expression of Jθ
ni given in Theorem

2. The derivation of the asymptotic representation of Sξ as an i.i.d. sum requires a

similar step. The asymptotic normality of (θ̂n, ξ̂n) now follows by the application of the

central limit theorem.
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Table 1: Results of the simulation study, where the disease has four subtypes based on two

disease traits, each with two levels. The true value of θ(0) = 0.35, θ
(1)
1(2) = 0 and θ

(1)
2(2) = 0.25.

Each of the disease traits is missing via a missing-completely-at-random and missing-at-random

mechanism. The cohort size for the simulation is n = 10, 000. Evar and 95%CP stand for

means of estimated variances and 95% coverage probability, respectively, over the different

simulations.
Method θ(0) θ

(1)
1(2) θ

(1)
2(2) θ(0) θ

(1)
1(2) θ

(1)
2(2)

missing-completely-at-random missing-at-random

Full-cohort Bias(×102) -0.06 -0.10 0.42 -0.06 -0.10 0.42

Var(×102) 0.25 0.45 1.15 0.25 0.44 1.15

Etvar(×102) 0.24 0.46 1.15 0.24 0.46 1.15

95% CP 95.6 94.4 94.2 95.6 94.4 94.2

20% missing 20% missing

Complete- Bias(×102) 0.69 -0.13 0.93 2.49 -0.19 0.47

case Var(×102) 0.36 0.65 1.79 0.48 0.98 2.39

Etvar(×102) 0.38 0.72 1.81 0.51 0.97 2.41

95% CP 96.2 96.4 95.8 94.0 94.6 93.8

Estimating- Bias(×102) -0.08 -0.11 0.70 0.00 -0.18 0.17

equation Var(×102) 0.26 0.51 1.35 0.28 0.59 1.54

Etvar(×102) 0.27 0.57 1.40 0.29 0.65 1.61

95% CP 95.6 96.0 96.0 95.8 96.0 96.2

50% missing 50% missing

Complete- Bias(×102) 1.24 -0.27 0.03 24.30 1.00 2.90

case Var(×102) 1.06 1.96 5.03 4.48 9.96 22.52

Etvar(×102) 0.98 1.87 4.81 4.29 8.25 24.17

95% CP 93.4 94.2 94.6 76.8 92.2 95.2

Estimating- Bias(×102) -0.10 -0.15 0.65 0.10 0.51 -2.66

equation Var(×102) 0.43 1.02 2.57 0.67 1.84 4.55

Etvar(×102) 0.37 0.90 2.18 0.63 1.86 4.47

95% CP 93.2 93.2 92.0 94.4 93.8 91.6
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Table 2: Results of the simulation study with a misspecified model for the baseline hazard

functions. Here, the disease has four subtypes based on two disease traits, each with two levels.

The true value of θ(0) = 0.35, θ
(1)
1(2) = 0, and θ

(1)
2(2) = 0.25. Each of the disease traits is missing-

completely-at-random and missing-at-random with probability 0.5 or 0.2. The cohort size for

the simulation is n = 10, 000. Etvar and 95%CP stand for means of estimated variances and

95% coverage probability, respectively, over the different simulations.

Method missing-completely-at-random missing-at-random

θ(0) θ
(1)
1(2) θ

(1)
2(2) θ(0) θ

(1)
1(2) θ

(1)
2(2)

Full-cohort Bias(×102) 0.09 -0.15 0.41 -0.04 0.43 -0.13

Var(×102) 0.14 0.56 0.70 0.15 0.58 0.75

Etvar(×102) 0.14 0.55 0.72 0.14 0.55 0.72

95% CP 94.8 96.2 95.6 96.0 95.4 94.8

20% missing 20% missing

Complete- Bias(×102) 1.15 0.01 0.34 3.11 1.07 -1.37

case Var(×102) 0.20 0.88 1.09 0.30 1.17 1.46

Etvar(×102) 0.22 0.87 1.13 0.29 1.17 1.53

95% CP 95.4 94.4 94.2 90.8 95.4 95.8

Estimating- Bias(×102) -0.37 2.02 -0.35 -0.68 3.60 -1.46

equation Var(×102) 0.16 0.65 0.88 0.17 0.74 0.95

Etvar(×102) 0.15 0.64 0.83 0.16 0.72 0.93

95% CP 93.6 95.0 94.2 94.2 91.4 94.2

50% missing 50% missing

Complete- Bias(×102) 2.21 -0.45 0.92 25.84 3.75 -8.37

case Var(×102) 0.59 2.32 2.68 2.66 9.73 14.91

Etvar(×102) 0.56 2.25 2.94 2.35 9.70 13.67

95% CP 93.6 95.2 96.0 60.6 95.4 92.8

Estimating- Bias(×102) -0.14 4.49 -0.79 -1.99 7.23 -4.15

equation Var(×102) 0.19 0.97 1.16 1.59 8.82 3.09

Etvar(×102) 0.20 0.96 1.23 1.66 7.23 2.46

95% CP 94.2 93.4 95.2 91.9 88.2 93.3

26



T
ab

le
3:

R
es

ul
ts

of
th

e
da

ta
an

al
ys

is
.

H
er

e
w
e

co
ns

id
er

fiv
e

di
se

as
e

tr
ai

ts
:

G
ra

de
,
St

ag
e,

H
is

to
lo

gy
,
E
R

st
at

us
,
an

d
P
R

st
at

us
.

G
ra

de

an
d

H
is

to
lo

gy
ea

ch
ha

ve
3

le
ve

ls
,

an
d

St
ag

e,
E
R

st
at

us
,

an
d

P
R

st
at

us
ea

ch
ha

ve
2

le
ve

ls
.

H
er

e
E
ST

an
d

SE
st

an
d

fo
r

es
ti
m

at
e

an
d

st
an

da
rd

er
ro

r,
re

sp
ec

ti
ve

ly
.

G
ra

d
e

S
ta

ge
H

is
to

lo
gy

E
R

S
ta

tu
s

P
R

S
ta

tu
s

(R
ef

:
W

el
l)

(R
ef

:
L
o
ca

li
ze

d
)

(R
ef

:
D

u
ct

al
)

(R
ef

:
E

R
+

)
(R

ef
:

P
R

+
)

M
o
d
er

at
e

P
o
or

D
is

ta
n
t

L
ob

u
la

r
O

th
er

E
R

-
P

R
-

%
m

is
si

n
g

24
.5

2.
0

0.
0

32
.8

36
.6

M
et

h
o
d

θ(
0
)

θ(1
)

1
(2

)
θ(1

)
1
(3

)
θ(1

)
2
(2

)
θ(1

)
3
(2

)
θ(1

)
3
(3

)
θ(1

)
4
(2

)
θ(1

)
5
(2

)

C
om

p
le

te
-

E
S
T

1.
08

21
-0

.2
10

4
-0

.0
59

1
0.

80
92

-0
.2

56
8

0.
37

62
0.

37
47

-0
.9

21
0

ca
se

S
E

0.
30

51
0.

36
06

0.
40

31
0.

31
20

0.
41

37
0.

47
24

0.
50

62
0.

39
78

p
-v

al
u
e

0.
00

04
0.

55
96

0.
88

34
0.

00
95

0.
53

48
0.

42
58

0.
45

91
0.

02
06

E
st

im
at

in
g-

E
S
T

0.
87

68
0.

07
49

0.
16

80
0.

69
31

-0
.5

19
6

0.
32

69
0.

76
01

-1
.1

47
7

eq
u
at

io
n

S
E

0.
24

63
0.

28
93

0.
30

05
0.

20
96

0.
27

41
0.

28
67

0.
40

77
0.

34
09

p
-v

al
u
e

0.
00

04
0.

79
57

0.
57

61
0.

00
09

0.
05

80
0.

25
42

0.
06

23
0.

00
08

27



30 40 50 60 70 80 90

−1
0

1
2

30 40 50 60 70 80 90

−1
0

1
2

time

30 40 50 60 70 80 90

−1
0

1
2

Figure 1: Plot of the log{λ(y1,y2)(t)/λ(1,1)(t)}. The solid line (—), dashed line (−−), and

dotted line (· · ·) correspond to (y1, y2) = (1, 2), (2, 1) and (2, 2), respectively.
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