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Summary: We propose a semiparametric Bayesian method for handling measurement error in nutritional epidemiological
data. Our goal is to estimate nonparametrically the form of association between a disease and exposure variable while the
true values of the exposure are never observed. Motivated by nutritional epidemiological data, we consider the setting where
a surrogate covariate is recorded in the primary data, and a calibration data set contains information on the surrogate
variable and repeated measurements of an unbiased instrumental variable of the true exposure. We develop a flexible Bayesian
method where not only is the relationship between the disease and exposure variable treated semiparametrically, but also the
relationship between the surrogate and the true exposure is modeled semiparametrically. The two nonparametric functions are
modeled simultaneously via B-splines. In addition, we model the distribution of the exposure variable as a Dirichlet process
mixture of normal distributions, thus making its modeling essentially nonparametric and placing this work into the context
of functional measurement error modeling. We apply our method to the NIH-AARP Diet and Health Study and examine its
performance in a simulation study.
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1. Introduction
We consider the logistic regression of disease status Y on co-
variates (X, Z), where X is unobservable and can only be
measured with an error, and the goal is to understand its ef-
fect on Y. In doing so, we assume that the logit of the disease
probability is a linear function of Z and possibly a nonlinear
function of X but its exact form is unknown, thus yielding a
partially linear logistic model. Although we work with a lo-
gistic model, the method is applicable to any distributional
model of partially linear form.

The commonly used classical measurement error model as-
sumes that instead of observing X, for every subject one ob-
serves, possibly after data transformation, a surrogate W that
is unbiased for X involving purely random error with a con-
stant variance (Carroll et al., 2006). However, in large nu-
tritional epidemiological studies, dietary intake for all indi-
viduals is usually measured by a food frequency question-
naire (FFQ), which we denote here by Q. It has become
well appreciated in the literature that FFQs have substantial
measurement error, both random and systematic, therefore
violating the classical measurement error assumptions. Our
motivating example is the NIH-AARP Diet and Health Study
(http://dietandhealth.cancer.gov/), the details of which
can be found in Schatzkin et al. (2001). It is important to note
that any case–control study for finding diet-cancer association

is subject to differential recall bias between cases and controls.
Secondly, a homogeneous population with a narrow range of
fat intake usually fails to find any association between fat
intake and breast cancer. To circumvent these issues, in the
NIH-AARP Diet and Health Study a large and diverse pop-
ulation was targeted where diet was assessed prior to diag-
nosis. In this study, the initial cohort of 617,119 men and
women who responded to an FFQ in 1995–1996 has been
followed for the evaluation of possible diet-cancer associa-
tions. The latest database till the year 2003 contained in-
formation on 27 types of cancer, and breast cancer is one
of them, which is considered as the response variable in this
article. To adjust for FFQ measurement error in estimated
relationships, the NIH-AARP study includes a so-called cal-
ibration substudy with approximately 2000 men and women
who, in addition to the FFQ, were administered two noncon-
secutive 24-hour dietary recalls (24hr) denoted by W. Fol-
lowing the study design, we assume W follows the classical
measurement error model. Thus the study design consists of
the binary response Y (occurrence or nonoccurrence of inva-
sive breast cancer during follow up), covariates without error
Z , true unobserved main exposure X, observed exposure Q
that measures X with both bias and random error. In ad-
dition, a calibration substudy includes both Q and W along
with Z .
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To handle the substantial random and systematic measure-
ment error in the FFQ in a semiparametric fashion, we assume
that conditional on (X, Z), the surrogate variable Q has a
partially linear model, where the effect of Z is linear and
the effect of X on Q is still unknown, but assumed to be a
smooth and monotone function. In fact for our data example,
we found that a linear regression between Q and the average
of W is not sufficient to explain the nature of association be-
tween these two variables, which is an indication of a possible
nonlinear association between Q and X. Although a simple
logistic regression of the occurrence of invasive breast can-
cer (Y) on the percentage of nonalcohol energy from total fat
measured via FFQ (Q) revealed a significant association, we
want to measure how the risk changes with the true value of
the percentage of nonalcohol energy from total fat (X) taking
into account that X is unobserved and Q contains substan-
tial measurement error. Therefore, we will model the effect
of X on the logit of the success probability of Y via splines,
and the effect of X on Q via monotone splines. Since we will
develop a likelihood-based inference for our models, we need
to specify the distribution of the latent variable X. Since the
histogram of the average of W obtained from the calibration
data and that of Q from the cohort study (see Web Figure 1)
do not show strong evidence for the normal distribution as-
sumption for X, we model the distribution of X nonparamet-
rically via an infinite mixture of normal distributions. In fact
the pattern of food intake is likely to vary as the cohort mem-
bers have a diverse background and are from six different
U.S. cities and two metropolitan areas with large minority
populations.

Before describing the novelty of our disease model and the
calibration model and our approach to handling them, we first
point out that the regression calibration (RC) approach is not
applicable in our context. In parametric linear logistic model
for the disease probability, i.e.,

pr(Y = 1 |X, Z) = H{Xξ + ZTζrisk}, (1)

where H(u) = 1/{1 + exp(−u)} is the logistic distribution
function, it has become common to apply RC adjustment
for measurement error, where one regresses W on Q in the
calibration substudy, then replaces X in (1) by the predic-
tions from this regression. However, this method is well known
to be undesirable in semiparametric models such as the par-
tially linear logistic model, and indeed in our simulations it
performs quite poorly. The reason is that RC assumes that
in the induced observed data model pr(Y = 1|W, Z) the ef-
fect of W is conferred only through E(X |W, Z). However,
if the effect of X in the logit of pr(Y = 1|X, Z) is nonlin-
ear, the actual observed data model may be quite far from
the assumed induced observed data model. An example of
this is known in ordinary nonparametric regression, where
if E(Y |X) = sin(2X), X, U ∼ Normal(0, 1), and W = X + U ,
then the approximation E(Y |W ) ≈ sin{2E(X |W )} is sys-
tematically biased and out of phase with the true regression
function.

Carroll and Hall (1988), Fan and Truong (1993), and De-
laigle and Hall (2008) considered deconvolution method to
deal with the classical measurement error in X for a nonpara-
metric regression of Y on X. However, such methods did not
consider systematically biased surrogate such as FFQ. Also,

the methods were not designed to handle the partially linear
logistic model.

There are some related Bayesian methodologies, but none
of them handle the generality of the problem we confront.
Berry, Carroll, and Ruppert (2002) used smoothing splines
and regression splines in the classical measurement error prob-
lem to a linear model set up, but not to the important case of
binary data. Carroll et al. (2004) used Bayesian spline-based
regression when an instrument is available for all study partic-
ipants. In addition, both papers assumed that the unknown
X is normally distributed. Mallick and Gelfand (1996) con-
sidered covariate measurement error in the generalized linear
model with an unknown link function, where the distribu-
tion of X was modeled via a multivariate normal distribution.
Müller and Roeder (1997) considered the multivariate normal
mixture of the Dirichlet process (DP) prior for handling co-
variate measurement error in case–control studies. Bayesian
nonparametric regression approaches without measurement
error in the covariate for binary data have been considered
by Wood and Kohn (1998), Wood et al. (2002), and Holmes
and Mallick (2003), among others. In summary, all the above-
mentioned papers considered either (a) a nonparametric re-
gression without any measurement error or (b) measurement
error in covariates while the regression model is parametri-
cally specified. None of these papers allowed for the partially
linear model for the response variable Y, nor did they even
begin to address partially linear calibration model to han-
dle systematic bias in FFQ. Johnson et al. (2007) considered
a problem similar to ours, although the data structures are
slightly different, since in their example the FFQ is replicated.
The important differences are that in place of the semipara-
metric risk model for Y given (X, Z), they used the paramet-
ric model (1), and in place of the partially linear calibration
model for Q given (X, Z), they used a linear model. The im-
portant similarity is that they, like us, used a mixture of the
DP model for the distribution of the latent variable.

In summary, the three novel features of our approach are
the following. First, we consider a semiparametric logistic
model with a nonparametric component subject to measure-
ment error. Second, we allow for the fact that in actual epi-
demiological practice, the vast majority of the data only have
a systematically biased measure of the true risk covariate,
and we handle this feature via a semiparametric model with a
monotone nonparametric component, the monotonicity being
natural in the scientific context. Although the idea of system-
atic and random bias in Q has appeared in many papers in
nutritional epidemiology (Kipnis et al., 2001, 2003), our con-
sideration of a semiparametric model for the systematic com-
ponent of the bias is new. Third, we model the distribution of
the unobserved covariate nonparametrically via the DP mix-
ture of normal distributions. While the use of such models in
general is not new (Johnson et al., 2007), using the idea in a
semiparametric context has not previously been investigated.
To the best of our knowledge then, this is the first work in the
semiparametric measurement error field where two smooth
nonparametric functions are estimated simultaneously, one in
the exposure–response association, and the other in the asso-
ciation between the surrogate variable and the true exposure,
while at the same time treating the distribution of the true ex-
posure variable essentially nonparametrically. Moreover, the
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estimation of two nonparametric functions, where one is de-
pendent on the other, is not an easy task, especially for a bi-
nary regression when the covariate distribution is unknown.
The simulation study and data analysis show the importance
of such flexible models.

An outline of the article is as follows. The model and as-
sumptions are described in Section 2, while the method of
estimation is described in Section 3. Section 4 contains the
data analysis of the NIH-AARP Study. A simulation study is
described in Section 5. Section 6 contains concluding remarks.

2. Model and Assumptions
2.1 Outline
In this section, we give the model structure for the ob-
served data (Y, Q, Z , W ) given the latent long-term diet X
(Section 2.2), the model structure for X (Section 2.3), and
the models for the semiparametric functions that are in the
model (Section 2.4).

2.2 Model Structure for Observed Data
Let Y be the binary response variable, X the covariate of
interest, Q the surrogate variable for X, and Z a vector of
error-free covariates. The primary data consist of (Yi , Qi , Z i )
for i = 1, . . . , n. In order to obtain information about the re-
lationship of Qi and Xi , we assume that there is an external
calibration data where we observe Q, Z , and repeated mea-
surements of some unbiased surrogate variable W. Therefore,
the calibration data are (Qi , Z i , Wij ) for j = 1, . . . , J , and
i = n + 1, . . . , N , where N = n + m. The basic risk model is

pr(Y = 1|X, Z) = H{θrisk(X) + ZTζrisk}, (2)

where θrisk(·) is an unknown function, and Q is related to
(X, Z) via

Q = θcal(X) + ZTζcal + UQ , (3)

where θcal(·) is an unknown smooth monotone function. We
further assume that the within-person random measurement
error UQ i is nondifferential, and we make the standard as-
sumption that UQ i follows a normal distribution with mean
zero and variance σ2

Q . Let Δi be an indicator variable corre-
sponding to subject i, which takes on value 1 if the ith subject
belongs to the calibration study and 0 otherwise. Therefore,
when Δi = 1 we observe (Qi , Z i , Wij , j = 1, . . . , J), and when
Δi = 0 we observe (Yi , Qi , Z i ) for the ith subject. For identi-
fiability, we require that the distribution of Q given (X, Z) is
the same in both primary and calibration data, for example
the latter is a randomly chosen subset of the primary data.

For the unbiased surrogate variable, there are j = 1, . . . , J
replicates and we assume Wij = Xi + UW ij . Furthermore, we
assume that conditional on X, UW ij are independent and
identically distributed Normal(0, σ2

W ), and conditional on
(X, Z), UQ i is assumed to be independent of UW ij . Note that
the assumptions of normality and independence for the errors
UQ i and UW ij can be relaxed to any bivariate parametric
model.

2.3 Distribution of the Unobserved Covariate X
A likelihood-based approach requires a distribution for the
unobserved covariate X. Since the misspecification of this
distribution may result in biased estimates of the quanti-

ties of interest, we model the distribution in a flexible semi-
parametric fashion. We assume that conditional on Z i , μi ,
and σ2

i , Xi ∼ Normal(μi + ZT
i ζx , σ2

i ), and assume that a pri-
ori the parameters (μi , σ

2
i ) come from a distribution G, that

means, φT
i = (μi , σ

2
i ) ∼ G, and a priori G ∼ DP (α0G0), where

G0 is the base probability measure defined on (χ,B). Here
χ = (−∞,∞) × (0,∞) and B is the σ-algebra generated by χ.
Under G0, [μ |σ2, τ ] ∼ Normal(0, τσ2), σ2 ∼ IG(aσ , bσ ), and
the hyperparameter τ ∼ IG(aτ , bτ ), where IG(aτ , bτ ) denotes
the inverse-gamma distribution with mean 1/{bτ (aτ − 1)}.
Since for any set A, G(A) has mean G0(A) and variance
G0(A){1 − G0(A)}/(α0 + 1), the parameter α0 plays an im-
portant role in determining the concentration of the random
process G around the base probability measure G0. The stick-
breaking representation of the DP indicates that G is almost
surely a discrete probability measure with infinite many mass
points, which in turn implies that the distribution of X is an
infinite mixture of normal distributions, and the parameters
of the component distribution come from the base probability
measure G0. In addition, the mixing probabilities πk ’s are ob-
tained via πk = γk

∏k−1
j=1 (1 − γj ), where γk = Beta(1, α0), and∑∞

k=1 πk = 1.

2.4 Semiparametric Models for θrisk(•) and θcal(•)
We wish to estimate θrisk(X) in the interval [a, b] and for this
purpose we use B-splines. Let BT

risk(X) = {B1risk(X), . . . , Bp risk

(X)} be a set of cubic spline basis functions for krisk fixed knot
points. With p = krisk + 4, our model is

θrisk(X) =
p∑

j=1

Bj risk(X)βj .

Also based on kcal fixed knot points, with q = kcal + 4, we
express θcal(·) as

θcal(X) =
q∑

j=1

Bj cal(X)αj ,

where BT
cal(X) = {B1cal(X), . . . , Bq cal(X)} is also a set of cu-

bic spline basis. The use of cubic splines implies that the
nonparametric functions have continuous second derivatives.
The chosen knot points for the two nonparametric functions
could be the same, and consequently the spline basis func-
tions would be the same. In order to estimate θrisk(•) prop-
erly, θcal(•) should be a monotonic nondecreasing function of
its argument, which is a natural assumption regarding the
conditional mean of Q given X. Because the B-spline basis
functions are nonnegative, under the monotonicity constraint
for θcal(X), the first derivative θ

(1)
cal (X) is nonnegative if the

coefficients αj ’s are nondecreasing, i.e., α1 � α2 � · · · � αq .
This property of B-splines has been previously used by Leit-
enstorfer and Tutz (2007) among many others. Also we chose
a moderately large number of knot points that will make
the inference insensitive to the location of knots (Ruppert,
2002). Next, we describe the method of estimation within the
Bayesian paradigm.

3. Method of Estimation
Let βT = (β1, . . . , βp ), αT = (α1, . . . , αq ), φ = (φ1, . . . , φn +m ),
and define θ = (αT, βT, ζT

risk, ζ
T
cal, ζ

T
x , σ2

Q , σ2
W). The observed



4 Biometrics

data likelihood function is

Lo =
∫ n +m∏

i=1

{
f 1−Δi (Yi , Qi |Z i , θ, φ)

× fΔi (Qi , Wij , j = 1, . . . , J |Z i , θ, φ)

}
dG(φ), where

f (Yi , Qi |Z i , θ, φ) =
∫

f (Yi , Qi , Xi |Z i , θ, φ)dXi

=
∫

prY i (Y = 1 |Xi , Z i , θ)pr1−Y i

×(Y = 0 |Xi , Z i , θ)f (Qi |Xi , Z i , θ)

×f (Xi |Z i , θ, φ)dXi

=
∫

exp[Yi{θrisk(Xi ) + ZT
i ζrisk}]

1 + exp{θrisk(Xi ) + ZT
i ζrisk}

1
(σ2

Q )1/2

× exp

[
− 1

2σ2
Q

{
Qi − θcal(Xi ) − ZT

i ζcal

}2
]

× 1
(σ2

i )1/2 exp

{
− 1

2σ2
i

(
Xi−μi−ZT

i ζx

)2
}

dXi,

f (Qi , Wi1, . . . , WiJ |Z i , θ, φ)

=
∫

f (Qi , Wi1, . . . , WiJ , Xi |Z i , θ, φ)dXi

=
∫

f (Qi |Xi , Z i , θ)f (Wi1, . . . , WiJ |Xi , Z i , θ)

×f (Xi |Z i , θ, φ)dXi

=
∫

1
(σ2

Q )1/2 exp

[
− 1

2σ2
Q

{
Qi − θcal(Xi ) − ZT

i ζcal

}2
]

× 1
(σ2

W )J/2 exp

{
− 1

2σ2
W

J∑
j=1

(Wij − Xi )2

}

× 1
(σ2

i )1/2 exp

{
− 1

2σ2
i

(
Xi − μi − ZT

i ζx

)2
}

dXi .

Before describing prior specification and posterior inference,
we would like to mention that one could adopt a complete
nonparametric method by modeling the joint distribution of
X, Q, and Z for Y = 0 and Y = 1 using a dependent DP prior.
However, that method would involve multidimensional DP
integrals, which is quite challenging in terms of computation.
Therefore, to reduce the dimensionality and computational
complexity of the problem we model the distribution of X
conditional on Z where Z is always observed without any
error.

3.1 Specification of Priors
In order to avoid oversmoothing due to large number of
knot points in the spline models, following Ruppert, Wand,
and Carroll (2003), we use the following prior distribution
for α and β, π(α | δα ) ∝ exp{−(δα /2)

∑q

j=3(Δ
2αj )2 −

(δα /2V )αTα}, and π(β | δβ ) ∝ exp{−(δβ /2)
∑p

j=3(Δ
2βj )2 −

(δβ /2V )βTβ}, where δα and δβ are the two penalty
parameters corresponding to α and β. Note that the priors

are proper for any choice of V > 0, and we set V = 108.
Also, Δ represents the first-order difference operator, i.e.,
Δαj = αj − αj−1, and Δ2αj = αj − 2αj−1 + αj−2. We assume
δα ∼ Gamma(aα , bα ) and δβ ∼ Gamma(aβ , bβ ). For σ2

Q , σ2
W ,

we use IG(aQ , bQ ) and IG(aW , bW ) priors respectively. For
each component of ζcal, ζrisk, ζx we use a Normal(0, σ2

ζ ) prior.
As mentioned earlier, for (μi , σ

2
i ) ∼ G and a priori G ∼

DP (α0G0). The DP prior involves two parameters G0 and
α0. Note that the tuning parameter of the DP prior α0 has a
dual role. On the one hand it determines how concentrated G
is around G0, and on the other hand it determines the num-
ber of clusters, that is, the number of distinct mass points
of G. Hence, the choice of α0 is an important one. Follow-
ing Escobar and West (1995) one may put a prior on α0.
However, we will estimate α0 empirically following an ex-
isting characterization of its maximum-likelihood estimator
(McAuliffe, Blei, and Jordan, 2006). In summary, for our pro-
posed method one needs to specify the following quantities:
V, aα , bα , aβ , bβ , aQ , bQ , aW , bW , σ2

ζ , and G0.

3.2 Posterior Inference
Our primary goal is to estimate ζrisk, ζcal, β, α, σ2

Q , and σ2
W .

Posterior means are used as the parameter estimates. As we
can see the posterior means cannot be calculated analytically,
we propose an efficient posterior sampling algorithm for simu-
lating random numbers from the posterior distributions, and
the details are given in the Web Appendix. At each Markov
chain Monte Carlo (MCMC) iteration, we estimate α0 empir-
ically by solving the following equation:

N∑
r=1

α0

α0 + r − 1
= E(k |Xi , i = 1, . . . , N, α0), (4)

where the right-hand side of (4) is obtained by taking aver-
age of k, the number of distinct φi ’s, of the last 30 Gibbs
sampling iterations, i.e., we take E(k |Xi , i = 1, . . . , N, α0) ≈∑30

l=1 kl/30.
Note, as φ1, . . . , φN are independent and identically dis-

tributed observations from G, and G has a DP (α0G0) prior,
the posterior distribution of G given φ1, . . . , φN is again a
DP (α∗

0G
∗
0), where α∗ = α0 + N and G∗

0 = (α0 + N )−1(α0G0 +∑N

i=1 δφi
). Thus, for future realization φN +1, pr(φN +1∈

A |φ1, . . . , φN ) = E{G(A) |G∼DP (α∗
0G

∗
0)} = G∗

0(A). There-
fore, the predictive distribution of φN +1 |φ1, . . . , φN is G∗

0.

4. Application to the NIH-AARP Diet
and Health Data

4.1 Background
In this illustration of our methodology, we consider the associ-
ation between percentage of nonalcohol energy from total fat
and the risk of invasive breast cancer (Y) in the NIH-AARP
cohort. Here are some details about this study.

During 1995–1996, 3.5 million baseline questionnaires were
mailed to current members of the AARP (formally the Amer-
ican Association of Retired Persons), aged 50–71 years, and
567,169 members completed them satisfactorily (Schatzkin
et al., 2001). Of these, the investigators excluded an addi-
tional withdrawal (n = 1), duplicate records (n = 179), sub-
jects who moved out of the eight states included in the study
before returning the baseline questionnaire (n = 321), or were
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found to have died before study entry (n = 261). After these
exclusions, the NIH-AARP baseline cohort included 566,407
persons that we considered in our analysis. Thiébaut et al.
(2007) analyzed this cohort with nonalcohol energy from to-
tal fat as well as fatty acid as the main exposure variables,
in addition to several potential confounders. In our illustra-
tion, we use nonalcohol energy from total fat as the main
exposure and body mass index (BMI) measured in the met-
ric unit kg/m2 as the error-free covariate Z. We considered
only postmenopausal women who did not report a personal
history of any cancer, did not develop breast cancer in situ
during the follow-up, and whose BMI values were not miss-
ing. Of the remaining 144,366 subjects, we excluded those
women who reported extreme values (i.e., more than two in-
terquartile range above the 75th percentile or below the 25th

percentile on the logarithmic scale) for total fat, energy, or
percentage of nonalcohol energy from total fat, thus leaving
us with 142,364 subjects, of whom 2,724 women developed
invasive breast cancer during the follow-up period. The aver-
age follow-up time for these subjects was 4.52 years. Based
on the daily alcohol consumption in grams, total fat intake
in grams, and total energy intake in Kcals, the percentage of
nonalcohol energy from total fat was calculated by using the
following formula:

Percentage of nonalcohol energy from total fat

= energy from total fat
nonalcohol energy × 100,

where energy from total fat was obtained by multiplying total
daily consumption of fat by 9 Kcals, and nonalcohol energy
was calculated by subtracting energy from alcohol from to-
tal energy. Energy from alcohol was computed by multiplying
alcohol consumption measured in grams by 7 Kcals. The per-
centage of nonalcohol energy from total fat measured from
the FFQ was treated as the surrogate measurement Q of X.

The NIH-AARP calibration substudy was designed to cal-
ibrate the FFQ used in the main study with two noncon-
secutive 24-hour recall telephone interviews as the unbiased
surrogate measure. While there is a concern that 24-hour re-
calls may not be actually unbiased for true intake, these are
the data we have and their use can be justified as a so-called
alloyed gold standard. Of the 1953 subjects of both genders,
we considered only the 919 women who completed two 24-
hour recall interviews and whose BMI values were not missing.
Note that these women were all postmenopausal and cancer
free at the start of the study and they were a random sample
from the main study population. The percentage of nonalco-
hol energy from total fat obtained from the two 24-hour recalls
is considered as the unbiased surrogate, W. We defined the re-
sponse variable Y as one if a person develops invasive breast
cancer during the follow-up period and zero otherwise. Before
the analysis we transformed BMI by dividing by 10, and X
was the logarithm of the percentage of nonalcohol energy from
total fat. In the preliminary analysis, we fit model (1) with-
out any adjustment for measurement error using the primary
data. The result showed that X was significantly positively as-
sociated with the risk of invasive breast cancer with an odds
ratio of 1.176 with a 95% confidence interval (1.016, 1.363)
and p-value = 0.030. Also, we found that BMI was positively

associated with the disease with an odds ratio 1.069 with a
95% confidence interval (1.008, 1.135) and p-value = 0.026.

4.2 Semiparametric Results
First, we used our semiparametric Bayesian (SPB) approach.
We experimented with 15, 11, 9, and 6 knot points, and the
results were fairly insensitive to the number of knot points.
Therefore, here we discuss the results for 6 knot points: (2.9,
3.0, 3.2, 3.4, 3.6, 3.80), and we used cubic B-splines, so
there were p = 10 spline basis functions. We used the same
knot points for θrisk(·) and θcal(·). For δα and δβ we used
Gamma(0.001, 1000) priors. We used IG(25, 0.25) prior for
σ2

Q and σ2
W , and Normal(0, 102) prior for ζrisk, ζcal, and ζx .

For the distribution G0 of the DP prior, the priors chosen
were τ ∼ IG(2.1, 2.0) and σ2 ∼ IG(2.1, 0.91). The prior pa-
rameters were chosen in such a way that the priors cover a
wide range of values for the parameter of interest. We ran
the Gibbs sampling for 20,000 iterations and we discarded
the first 5000 iterations as burn-in samples. The choice of the
initial parameters is an important step for proper and timely
convergence of the MCMC method, and in the next section
we discuss this issue in detail. The solid lines of Figure 1
show the estimated θrisk(·) along with a 95% credible in-
terval. Overall, the method shows that the risk of having
breast cancer increases with the logarithm of the percent-
age of nonalcohol energy from total fat. Figure 2 shows
the estimated θcal(·) function along with 95% credible inter-
val. This figure also shows the scatter plot of (Q − ζ̂calZ, W )
from the calibration data. Both figures clearly indicate that
there is some sort of nonlinearity in both θrisk(·) and θcal(·).
Table 1 presents the posterior mean, posterior standard de-
viation, and 95% credible intervals for ζrisk, ζcal, ζx , σ2

Q , and
σ2

W .
Using the DP prior, we found that the average number of

mixing components is 2.11 with a posterior standard deviation
of 0.33, indicating that the true distribution of X given Z is
not a normal distribution but a mixture of normals that is also
evident from the histogram of an MCMC sample of X values
(Figure 3). Figure 4 shows the histogram of α0, the tuning
parameter of the DP prior. Web Figure 2 shows a plot of the
number of clusters of the DP process prior in the MCMC
samples. Following a referee’s comment we also have added a
summary of cluster sizes using boxplot based on the MCMC
sample (Web Figure 3) when the number of clusters are 2,
3, or 4. Web Figure 4 shows an estimated G∗

0 = E(G |data)
based on the MCMC sample of φN +1.

The null hypothesis of interest is that there is no risk of
fat on breast cancer: under this null hypothesis θrisk should
be constant and thus it is equivalent to test β1 = · · · = βp as∑p

j=1 Bj risk(X) = 1.
Suppose we consider M MCMC samples taking every 300th

observation after the burn-in period. Then the test statis-
tic for testing the null hypothesis is F = [(M − p + 1)/
{(M − 1)(p − 1)}]T 2, where T 2 = MD̄

T
S−1

D D̄, D̄
T =

(D̄1, . . . , D̄p−1), D̄k =
∑M

j=1 Dkj /M, k = 1, . . . , (p − 1).
Here Dkj = βkj − βpj , βk j is the jth value of βk of M

observations, SD =
∑M

j=1(Dj − D̄)(Dj − D̄)T/(M − 1) with
DT

j = (D1j , . . . , Dp−1j ). Under the null hypothesis, for suf-
ficiently large M, the statistic follows an F(p−1),(M −p+1)
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Figure 1. Plot of the estimated θrisk(X) along with a pointwise 95% credible interval using the semiparametric Bayesian
approach (SPB, solid lines) and the parametric Bayesian approach (PRB, dashed lines) approach.
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Table 1
Results of the NIH-AARP data analysis by the

semiparametric Bayesian (SPB) and parametric Bayesian
(PRB) methods

Posterior 95%
Posterior standard credible

Method Parameter mean deviation interval

SPB ζrisk 0.0516 0.0173 (0.0205, 0.0830)
ζcal 0.0008 0.0039 (−0.0046, 0.0096)
σ2

Q 0.0260 0.0025 (0.0229, 0.0295)
ζx 0.0697 0.0038 (0.0598, 0.07677)
σ2

W 0.1104 0.0145 (0.0889, 0.1368)
PRB ζrisk 0.0397 0.0234 (−0.0134, 0.0754)

ψ0 1.3960 0.1365 (1.0577, 1.6327)
ψ1 0.5915 0.0463 (0.5137, 0.7036)
ζcal 0.0268 0.0052 (0.0134, 0.0327)
σ2

Q 0.0496 0.0019 (0.0458, 0.0533)
γ0 3.1550 0.0562 (3.0576, 3.2253)
ζx 0.0839 0.0199 (0.0563, 0.1187)
σ2

X 0.0528 0.0065 (0.0370, 0.0637)
σ2

W 0.0916 0.0043 (0.0836, 0.1065)

distribution. The observed value of the test statistic was 14.78
with a p-value 2.01 × 10−10. Thus, we rejected the null hy-
pothesis at 1% level of significance, and concluded that θrisk

was not a constant function. Before conducting this test we

made sure that there is no significant correlation between
Dkj and Dkj+1 for any k. Note that if X changes from 3.0
to 3.1, according to our SPB method, θrisk(3.0) = −4.226 and
θrisk(2.9) = −4.223, and thus the risk increases by 0.35%. In
contrast, θrisk(3.4) = −4.113, and θrisk(3.3) = −4.162 thus the
risk increases by 5.03% for changing X from 3.3 to 3.4, which
signifies that the rate of change of the relative risk is not
constant in our method. In the SPB method, the estimated
odds ratio for BMI is 1.057 with a 95% credible interval
(1.021, 1.087) for an increase of 10 kg/m2 BMI. In addition,
following a referee’s comment we fitted model (1) by replacing
X by X̂ = η̂0 + η̂1Q + η̂3Z , where η̂0, η̂1, η̂3 are the MLE of the
simple linear regression of the average of W on Q and Z based
on the substudy. The estimated odds ratio is 1.36 for one unit
change in X, with a p-value = 0.03, or more specifically the
risk increases by 3.04% for 0.1 unit increase in X for all values
of X.

4.3 Parametric Calibration Model
One of the unique features of our approach is the semi-
parametric model for the calibration function given in (3),
where θcal(·) is an unknown smooth monotone function. In
addition, we model the distribution of X in a semiparamet-
ric manner. Here, we compare the results to those that as-
sume this calibration function is linear in the unmeasured
X, and that the unmeasured X is normally distributed given
Z. With a slight abuse of terminology, we will refer to this
method as the Parametric Bayes (PRB) approach. In the
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Figure 3. Histogram of X obtained from the MCMC sample using our SPB method along with the density plot of a normal
distribution with the same mean and variance as of X.
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Figure 4. An empirical distribution of α0 of the Dirichlet process prior that is determined according to equation (4) in each
MCMC sample of the SPB method.

PRB method we modeled the surrogate variable as Qi =
ψ0 + ψ1Xi + Ziζcal + UQ i , UQ i ∼ Normal(0, σ2

Q ) and assumed
that Xi ∼ Normal(μ0 + Ziζx , σ2

X ). All other components and
assumptions remained the same as the SPB approach. The
parameters were estimated by MCMC. For this method, we
used the same prior that we had used in the SPB method.
For ψ0, ψ1, and μ0, we used Normal(0, 102) priors, and used
IG(2.1, 0.91) prior for σ2

X . The posterior mean, standard devi-
ation, and 95% credible intervals for the parameters are given
in Table 1. It is obvious that the estimate of σ2

Q is significantly
larger in the PRB approach compared to the SPB method,
which is an indicator that possibly E(Q |X, Z) is better ex-
plained by the partly linear function θcal(X) + Zζcal than a
linear function of X and Z. The dashed lines in Figure 1 show
the estimated θrisk for the PRB approach along with a 95%
credible interval. For this method, using the above F-test, we
again concluded that θrisk is not a constant function in the
interval of interest.

4.4 Model Checking
It is possible to compare the SPB and PRB models, i.e., to
compare whether either θcal(·) is nonlinear or the distribution
of X is nonnormal. In order to compare these two models
we calculated the marginal likelihood under each model.
Suppose ΘT = (θT, φ) is the set of all parameters, then

the marginal likelihood under the SPB model is mSPB =∏n

i=1

∫
f 1−Δi (Yi , Qi |Z i ; Θ)fΔi (Qi , Wij |Z i ; Θ) π(Θ)dΘ,

where the expressions for f (Yi , Qi |Z i ; Θ) and
f (Qi , Wij |Z i ; Θ) are given in Section 3. Following Newton
and Raftery (1994), we estimate the marginal likelihood via

m̂SPB =

{
1
M

M∑
m =1

1∏n

i=1f
1−Δi(Yi , Qi |Z i ; Θ(m ))fΔi (Qi , Wij |Z i ; Θ(m ))

}−1

,

where Θ(1), . . . , Θ(M ) are M draws from the poste-
rior distribution of Θ. Note that f (Yi , Qi |Z i ; Θ(m )) =∫
f (Yi , Qi |Xi , Z i ; Θ(m ))f (Xi |Z i , Θ(m ))dXi and f (Qi , Wij |Z i ;

Θ(m )) =
∫

f (Qi , Wij |Xi , Z i ; Θ(m ))f (Xi |Z i , Θ(m ))dXi : these
integrals were calculated by a numerical quadrature. In a
similar manner we estimated mPRB via m̂PRB. Finally, we
obtain m̂BSP/m̂PRB = 111.21, which suggests that the SPB
fits the data far better than does the PRB model.

5. Simulation
To test our methodology, we performed a simulation study
that has some of the complexities of the NIH-AARP study,
in terms of design and nonlinearity. First we created a
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cohort of size n = 10, 000 with Y, X, Q, W1, and W2. We
considered two different cases. In case I, we simulated
X from the Normal(γ0 = 3.5, σX = 0.5) distribution and in
case II, X was simulated from (1/2)Gamma(65, 0.0455) +
(1/2)Normal(3.8, 0.12). The second case clearly indicates that
the distribution of X is not normal. For each case, af-
ter simulating X, we generated the unbiased variable W as
Wij = Xi + UW ij , where UW ij = Normal(0, σ2

W ), j = 1, 2. We
took two different values for σW , 0.2 and 0.5, where the
value 0.5 mimics the large measurement error situation com-
mon in nutritional epidemiology. The surrogate variable Q
was generated as Qi = θcal(Xi ) + UQ i , UQ i = Normal(0, σ2

Q )
and we used two different values for σQ , 0.1 and 0.2. We
considered a situation where θcal(X) = 1.25 + 0.6X , a lin-
ear function of X and another situation where θcal(X) = 2 +
3 exp{4(X − 3.5)}/[1 + exp{4(X − 3.5)}]. Conditional on X,
the binary disease variable Y was generated with success prob-
ability H{θrisk(X)}, where θrisk(X) = −2.8 + 1.5 exp{10(X −
3.5)}/[1 + exp{10(X − 3.5)}]. On average the above probabil-
ity resulted in 10–12% subjects with Y = 1. To create a cal-
ibration data from the same cohort, we randomly drew m =
1000 subjects and obtained the variables Q, and the unbiased
surrogate variables W1 and W2. Note that for the primary
data we only considered (Yi , Qi ), i = 1, . . . , 10, 000 whereas
for the calibration data we considered (Qj , Wj 1, Wj 2), j =
1, . . . , 1000.

Under each scenario we generated R = 200 data sets, and
each simulated data set was analyzed by the SPB approach
and by the PRB approach. In both the SPB and PRB ap-
proaches, the nonparametric effect of X on the disease risk
θrisk was modeled via B-splines with 9 knot points, and the
knots were placed at every 10th percentile of the distribution
of the average values of W starting with the 10th percentile.
One should note the two main differences between the SPB
and PRB approach. In the PRB approach X was always mod-
eled as a normal random variable whereas in the SPB method
X was modeled as a DP mixture of normal random variable.
In addition, in the PRB approach, θcal(X) was assumed to be
linear in X, whereas in the SPB method we do not assume
any specific form for θcal, rather we simply impose the restric-
tion that θcal(X) is a smooth and a monotone nondecreasing
function of X. One can of course construct many other meth-
ods to be compared with the SPB method. We have chosen
to use the PRB approach to investigate the extent to which
less-flexible models in terms of the distribution of the latent
covariate X and the calibration model affect results.

For both the SPB and PRB methods, we used a
Gamma(0.001, 1000) distribution for δβ . In the analysis, we
used IG(25, 0.25) prior for σ2

Q and σ2
W . The PRB approach in-

volves ψ0 and ψ1, and we put a Normal(0, 102) prior on each of
them. Also, in the PRB approach we used Normal(0, 102) prior
for μ0 and IG(2.1, 0.91) prior for σ2

X . In the SPB method,
we need to estimate θcal(X) using B-splines, which involves
αj , j = 1, . . . , q, and we used a Gamma(0.001, 1000) prior for
δα . The previously mentioned knot points are also used for
estimating θcal(X). In the DP prior, we used IG(2.1, 2) and
IG(2.1, 0.91) priors for τ and σ2, respectively.

For the initial values of X and α, we first regress (W1 +
W2)/2 on Q in the calibration study. Let η̂0, η̂1, and σ̂2

η be the
estimated intercept, slope parameter, and the residual vari-

ance of the regression obtained using the calibration study.
For the true exposure variable, we set the initial value of
Xi = η̂0 + η̂1Qi , for i = 1, . . . , n and set Xi = (Wi1 + Wi2)/2
for i = (n + 1), . . . , (n + m). The initial value of α was ob-
tained by fitting penalized nonparametric regression through
{Qi , (Wi1 + Wi2)/2} using the calibration data. We set the
initial penalty parameters δα = 0.005 and δβ = 0.005.

The performance of the methods was assessed via the fol-
lowing two statistics. The major concern of the article is
how well we estimate the risk function θrisk(X). We consid-
ered a set of grid points from 2.8 to 4.2 with 0.01 incre-
ment. Letting gj be the jth grid point, for the sth data
set, we estimated θrisk(gj ) by θ̂s ,risk(gj ) and let θ̂risk(gj ) =∑200

s=1 θ̂s ,risk(gj )/200. We computed integrated square bias as∑141
j=1{θ̂risk(gj ) − θrisk(gj )}2/141 and integrated mean square

error as
∑141

j=1

∑200
s=1{θ̂s ,risk(gj ) − θrisk(gj )}2/(141 × 200). In ad-

dition to the above methods, each data set was analyzed by
the naive method where we estimated θrisk(X) using the data
on (Yi , Qi ) and assuming Xi = Qi . For this method, we mod-
eled θrisk(X) via B-splines and estimated β and δβ using the
logistic likelihood in a Bayesian framework.

The results of the simulation study are presented in
Table 2. From the results one can quickly make the following
important observations. For both the SPB and PRB meth-
ods, bias increases with σQ and σW . The value of integrated
squared bias due to PRB method is significantly higher than
the SPB approach when the underlying model assumptions
of the PRB approach are violated. When E(Q |X) is a lin-
ear function of X, and X follows a normal distribution, the
performance of the SPB and PRB methods is equivalent for
moderate values of σW . Note that the integrated squared bias
of the naive method is significantly larger than that for the
SPB method. Also we found that except for the situation
when θcal(X) is a nonlinear function of its argument and X is
generated from a mixture distribution, the bias of the PRB
approach is smaller than that for the naive method. Gener-
ally the variance of the SPB method is higher than the PRB
approach, and the variance of the naive approach is smaller
among all three approaches.

Along with the proposed method each data set was ana-
lyzed by the RC technique assuming X was a linear function
of Q. As expected from Carroll et al. (2006), the method be-
haved very badly in comparison to the SPB and PRB meth-
ods, and we do not present the results here.

6. Discussion
In this article, we considered the logistic regression when an
error-prone covariate X is modeled nonparametrically, while
exactly measured covariates Z are modeled parametrically,
the result being a partially linear model. The logistic frame-
work could be readily generalized to any distributional model.

There are two additional important and novel components
to our approach. First, we recognize that in current practice,
the surrogate Q for the unobserved X is not unbiased for X,
and hence we have a situation where the classical measure-
ment error model does not hold. We model the relationship
of Q to (X, Z) also in a partially linear fashion, while forcing
the nonparametric function θcal(X) for X to be monotone.
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Table 2
Results of the simulation study based on 200 simulations. Here, ISB and IMSE represent

integrated square bias and the integrated mean square error. Here n = 10, 000 and m = 1, 000. In
case I, X is generated from Normal(3.5, 0.52), and in case II, X is generated from

(1/2)Normal(3.8, 0.12) + (1/2)Gamma(65, 0.0455). Note that UQ i ∼ Normal(0, σ2
Q ), and

W = X + UW , where UW ∼ Normal(0, σ2
W ). SPB and PRB stand for the proposed

semiparametric Bayesian approach and the parametric Bayesian approach to the analysis of the
simulated data, respectively.

Case σQ Method ISB IMSE ISB IMSE ISB IMSE

I θcal = 1.25 + 0.6Xi

σW = 0.2 σW = 0.5 Naive
0.1 SPB 0.0062 0.0149 0.0080 0.0155 0.0905 0.1004

PRB 0.0058 0.0140 0.0067 0.0147
0.2 SPB 0.0065 0.0152 0.0082 0.0164 0.0915 0.1011

PRB 0.0060 0.0145 0.0069 0.0150
I θcal(X) = 2 + 3 exp{4(Xi − 3.5)}/[1 + exp{4(Xi − 3.5)}]

σW = 0.2 σW = 0.5 Naive
0.1 SPB 0.0087 0.0161 0.0089 0.0164 0.0462 0.0551

PRB 0.0114 0.0194 0.0144 0.0236
0.2 SPB 0.0088 0.0169 0.0092 0.0189 0.0470 0.0575

PRB 0.0118 0.0198 0.0150 0.0249
II θcal(X) = 1.25 + 0.6Xi

σW = 0.2 σW = 0.5 Naive
0.1 SPB 0.0149 0.0354 0.0221 0.0429 0.1550 0.1635

PRB 0.0283 0.0423 0.0560 0.0801
0.2 SPB 0.0168 0.0368 0.0245 0.0450 0.2004 0.2208

PRB 0.0289 0.0439 0.0805 0.1030
II θcal(X) = 2 + 3 exp{4(Xi − 3.5)}/[1 + exp{4(Xi − 3.5)}]

σW = 0.2 σW = 0.5 Naive
0.1 SPB 0.0184 0.0394 0.0335 0.0552 0.0610 0.0668

PRB 0.0606 0.0749 0.0684 0.0831
0.2 SPB 0.0232 0.0450 0.0347 0.0560 0.0650 0.0710

PRB 0.0799 0.0965 0.0874 0.1054

Finally, in a small subset of individuals, a so-called calibra-
tion study, we observed replicated unbiased versions W of X.
We then model the distribution of the unobserved X nonpara-
metrically through the DP. As stated in the Introduction, this
appears to be the first paper in semiparametric measurement
error models where the two functions, one of them monotone,
are estimated jointly nonparametrically, while the distribu-
tion of X is modeled nonparametrically.

The simulation study shows that our method generally
vastly outperforms the RC method. In terms of integrated
mean square error our SPB method shows much better per-
formance than the less-flexible PRB approach. The simulation
study also indicates that the prices of no model assumption
(naive method) and wrong model assumption (PRB method)
could be significant. Instead of a single covariate with nonlin-
ear effect, our method could also be used for the generalized
additive model with multiple covariates.

One of the challenging parts of the method is the compu-
tation that requires appropriate choice of the initial values of
the parameters and proposal distributions of the Metropolis–
Hastings algorithm for the Gibbs sampling that are dis-
cussed in the appendix. The computation were done us-
ing Fortran and R, and the computer code is available at
http://www.stat.tamu.edu/∼sinha/research.html.

7. Supplementary Materials
The Web Appendix, and Web Figures 1–4 referenced in Sec-
tions 1, 3, and 4 are available under the Paper Informa-
tion link at the Biometrics website http://www.biometrics.

tibs.org.
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