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Summary. We take a semiparametric approach in fitting a linear transformation model to a right censored data when predic-
tive variables are subject to measurement errors. We construct consistent estimating equations when repeated measurements
of a surrogate of the unobserved true predictor are available. The proposed approach applies under minimal assumptions on
the distributions of the true covariate or the measurement errors. We derive the asymptotic properties of the estimator and
illustrate the characteristics of the estimator in finite sample performance via simulation studies. We apply the method to
analyze an AIDS clinical trial data set that motivated the work.
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1. Introduction
Errors in covariates are common in clinical studies, and stan-
dard data analysis tools ignoring the fact that the covariates
are measured with errors may result in biased and inconsis-
tent parameter estimation. Traditionally two approaches ex-
ist in handling errors in covariates: the functional approach
where unobserved true covariates are assumed to be unknown
parameters, and structural approach where unobserved true
covariates are treated as a random variable with a probability
distribution. The modern perspective further makes a differ-
ence between whether or not a method imposes a parametric
model for the distribution of the unobserved covariates, and
considers the parametric modeling as structural approach,
while classifies the nonparametric modeling as a kind of func-
tional approach. From this perspective, our work belongs to
the modern structural approach framework.

Errors in covariates in the Cox proportional hazard (CPH)
model has been studied extensively by Prentice (1982),
Nakamura (1992), Hu, Tsiatis, and Davidian (1998), Huang
and Wang (2000), Hu and Lin (2004) and Zucker (2005). In
the extended cure rate model context, Ma and Yin (2008)
proposed a corrected score estimator to handle errors in co-
variates. However, relatively less attention has been given for
developing general methodology for handling errors in covari-
ates in the proportional odds (PO) model and in the lin-
ear transformation model which contains the CPH and PO
models as two special cases. Some recent works in the area
of linear transformation models include Fine, Ying, and Wei
(1998), Gao and Tsiatis (2005), Lu and Zhang (2010). Wen
and Chen (2012) developed a conditional score approach for
handling errors in covariates in the context of current status
data using the PO model. Cheng and Wang (2001) considered
measurement errors in covariates in analyzing right censored
data using the linear transformation model. In their set up,
they assumed parametric models for both the paired differ-

ences of the measurement errors and the paired differences of
the unobserved true covariates.

In this article we develop a semiparametric method for an-
alyzing right censored failure time data using the linear trans-
formation model while a covariate is measured with error. We
consider the scenario where replicated measurements of a sur-
rogate variable are available. We build our estimator through
forming an estimating equation which inherits the structure of
the estimating equation in Chen, Jin, and Ying (2002), where
estimation and inference of linear transformation model with-
out covariate measurement errors is considered. The nice fea-
ture of such estimating equation approach is that there ex-
ists a closed form expression for the standard errors for the
finite dimensional regression parameter estimator. An addi-
tional advantage of our approach is that we can accommo-
date any error distributions. Furthermore, unlike Cheng and
Wang (2001), our approach is applicable as long as the time-
to-failure and the censoring time are independent conditional
on the covariates.

This work is motivated by an AIDs clinical trial data
Hammer et al. (1996). The goal of this trial was to compare
the efficacy of several therapies on the HIV-infected adults.
One of the critical parameter for HIV-infection is the CD4
cell counts, the building blocks of body’s immune system. In
this trial, CD4 cell counts were first measured for screening
purpose, then repeated measurements were taken at the base-
line, and finally they were measured on a regular basis after
the treatment began. Since the true CD4 counts is impossi-
ble to obtain, we treated the two baseline measurements as
the erroneous values of the actual CD4 counts. Our interest
is in finding the effect of baseline CD4 cell counts and the
four therapies on the time to death or AIDS using a linear
transformation model.

The rest of the article is organized as the following. In Sec-
tion 2, we describe the model and its background information.
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We then explain how to estimate the distribution of the unob-
servable covariate conditional on the observable ones and the
surrogates in Section 3. The main estimation methodology is
given in Section 4, and we derive the corresponding large sam-
ple properties of the estimator in Section 5. The method and
its finite sample performance are investigated through sim-
ulation studies in Section 6. We analyze the AIDs trial data
using our method in Section 7 and conclude the article in Sec-
tion 8. All the technical details are collected in an Appendix
and in the supplementary materials.

2. Basic Model and Background

Suppose that the observed data are n iid copies of (T ∗, �,Z,

W∗), where Z is a p × 1 vector of observed covariates, T ∗ =
min(T, C), where T is the time-to-failure, C is the censoring
time, and � = I(T ≤ C). We assume that conditional on the
complete covariates (X,Z), where X is unobservable, T and
C are independent. Here W∗ = (W∗

1, . . . , W∗
m)T is a surrogate

measurement for the scalar covariate X, which implies that
conditional on X, W∗ is independent of T and Z. Furthermore,
under the additive measurement errors

W∗
ij = Xi + U∗

ij, i = 1, . . . , n, j = 1, . . . , m,

where the measurement errors U∗
ij are assumed to be iid copies

of a random variable U∗ which follows a symmetric distri-
bution centered at 0. We assume that U∗ is independent of
(T, X,Z, C).

The linear transformation model is

H(T ) = −βT
1 Z − β2X + e, (1)

where H is an unknown monotone transformation function, e

is a random variable with a known distribution and is inde-
pendent of Z and X, and β = (βT

1 , β2)
T is an unknown regres-

sion parameter of interest. The proportional hazards model
and the proportional odds model are two special cases of (1)
with e following the extreme-value distribution and the stan-
dard logistic distribution, respectively. Let λ(•) and �(•) be
the corresponding hazard and cumulative hazard functions
of e, respectively. In the following paragraph we describe the
estimation procedure given in Chen et al. (2002) when X is
observed without any measurement errors.

Define Yi(t)= I(T ∗
i ≥ t), Ni(t)= I(T ∗

i ≤ t, �i = 1) and M∗(t)=
N(t) − ∫ t

0
Y(u)d�{βT

10Z + β20X + H0(u)}, where β0 = (βT
10,

β20)
T and H0(•) are the true values of β and H , respectively.

Note that M∗(t) is a martingale process with respect to fil-
tration σ{Y(u), N(u),Z, X, 0 ≤ u < t}. The nonparametric es-
timate of H will be derived at the observed failure times.
Define H as the collection of non-decreasing step functions
defined on [0, ∞). Also, for any H ∈ H, set H(0) = −∞. Chen
et al. (2002) recommended to estimate β and H by solving the
following estimating equations:

Uβ(β, H) =
n∑

i=1

∫ ∞

0

(
Zi

Xi

)
[dNi(u)

− Yi(u)d�{βT
1 Zi + β2Xi + H(u)}] = 0,

UH(β, H) =
n∑

i=1

[dNi(u) − Yi(u)d�{βT
1 Zi

+ β2Xi + H(u)}] = 0, for all u ≥ 0.

Clearly the Ĥ that solves UH(β, H) = 0 belongs to H.

3. Estimation of fX|W,Z(x|w, z)

To handle the measurement errors, we need to understand
the relation between the unobservable true covariates and the
observed ones. To this end, we first point out that under
the independent symmetric error assumption, the measure-
ment error distribution can be easily estimated. For exam-
ple, we can form Wi = ∑m

j=1
ajW

∗
ij = Xi + ∑m

j=1
ajU

∗
ij and Vi =∑m

j=1
bjW

∗
ij = ∑m

j=1
bjU

∗
ij, where

∑m

j=1
aj = 1, and

∑m

j=1
bj =

0. Write Ui = ∑m

j=1
ajU

∗
ij = Wi − Xi. As long as Ui’s and Vi’s

have the same distribution, we can use the observed Vi’s to
estimate fU(·). In terms of minimizing the error variance,
{a1, · · · , am} should be chosen so that

∑m

j=1
ajU

∗
ij has a mini-

mum variance. Let η = [m/2] be the largest integer smaller or
equal to m/2, then the optimal choice of ai’s and bi’s yield

Wi =
η∑

j=1

W∗
ij

2η
+

m∑
j=η+1

W∗
ij

2m − 2η
, Vi =

η∑
j=1

W∗
ij

2η
−

m∑
j=η+1

W∗
ij

2m − 2η
.

We can estimate fU(·) using the above formed V1, . . . ,

Vn. For example, a nonparametric estimator f̂U(u) =
(nh)−1

∑n

i=1
K

{
(Vi − u)/h

}
is given in Hall and Ma (2007),

where K(·) is a symmetric kernel function and h > 0 is a band-
width.

The availability of Wi’s and Zi’s easily allow us to ob-
tain an assessment of fW |Z(w | z). Because fU(u) can also
be estimated, this allows us to recover the distribution of
fX|Z(x | z), or at least provides us sufficient information to
propose a suitable model for fX|Z(x | z). See also Li and
Vuong (1998) for more in depth study on how to assess
fX|Z(x | z) from multiple observations. Thus, we use a para-
metric model fX|Z(x | Z, θ) to denote the conditional den-
sity of X given Z, where θ is a finite dimensional parame-
ter. Therefore we work in a partly structural model frame-
work by assuming the functional form of fX|Z to be known,
while leaving the error distribution unspecified. Although the
functional form of fX|Z is assumed to be known, it does
not have to belong to any specific family such as the nor-
mal distribution family. Observe that fX|W,Z(x|w, z; θ, fU) =
fX|Z(x | z, θ)fU(w − x)/

∫
fX|Z(x | z, θ)fU(w − x)dx. Here and

in the following text, we use fX|W,Z(x | w, z; θ, fU) to empha-
size that the conditional probability density function of X on
W,Z relies on fU . In the case when fU(u) is estimated non-

parametrically, we write fX|W,Z(x | w, z; θ, f̂ U). Note that f̂ U

can be obtained based on Vi’s directly. Subsequently, θ̂ can be
obtained through maximizing

n∑
i=1

log

{∫
fX|Z(x | zi; θ)f̂ U(wi − x)dx

}
. (2)

While allowing the error distribution fU to be unspecified is
very flexible, we retained the parametric assumption on fX|Z
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in our model. Obviously, this implies certain restriction. For
example, because X is unobservable, fX|Z is harder to model
than if X had been available. However, once fU is estimated,
fX|Z is identifiable through a deconvolution step, hence its
modeling is not completely unfounded. In addition, in our
numerical experiments (See Section 6), we have found that
slight or even moderate model mis-specification of fX|Z does
not cause severe estimation bias, while a parametric approach
of fX|Z brings dramatic simplification both theoretically and
numerically. Hence we adopted this modeling approach. We
would like to point out that Zucker (2005) assumed that
fX|Z,W is known up to a finite dimensional parameter, which is
a much easier model to handle than the one considered here.

4. Estimation of β With Estimated fX|W,Z(x | w, z)

Having obtained θ̂ and f̂ U , we can plug in the resulting

fX|W,Z(x | w, z; θ̂, f̂ U) and carry out the estimation proce-
dure described. Specifically, the induced model of T given
(W,Z) is

pr(T ≥ t|W,Z; θ̂, f̂ U) =
∫

exp[−�{βT
1Z + β2x + H(t)}]

fX|W,Z(x | W,Z; θ̂, f̂ U)dx.

Therefore, the induced cumulative hazard of T given W and
Z is

�T (t|W,Z;H, β, θ̂, f̂ U) = −log

∫
exp[−�{βT

1 Z + β2X + H(t)}]

fX|W,Z(x | W,Z; θ̂, f̂ U)dx,

and the induced hazard for T given W and Z is λT (t|W,Z;H, β,

θ̂, f̂ U)=J(t|W,Z;H, β, θ̂, f̂U)Ḣ(t), where Ḣ(t)=∂H(t)/∂t, and

J(t|W,Z;H, β, θ̂, f̂U)= ∫
λ{βT

1 Z+ β2x + H(t)}G(x|t, W,Z; H, β,

θ̂, f̂U)dx with G(x|t, W, Z;H, β, θ̂, f̂U) = exp[−�{βT
1 Z + β2x +

H(t)}] fX|W,Z(x | W, Z; θ̂, f̂ U) /
∫

exp[−�{βT
1 Z + β2x + H(t)}]

fX|W,Z(x | W,Z; θ̂, f̂U)dx.
Let β0, H0, θ0 be the true values of β, H and

θ respectively. Then, M(t) = N(t) − ∫ t

0
Y(u)λT (u | W,

Z;H0, β0, θ0, fU)du is a martingale process with respect
to filtration σ{Y(u), N(u),Z, W, 0 ≤ u < t}. Now define

Uβ(β, H, θ̂, f̂ U) =
n∑

i=1

∫ ∞

0

(
Zi

Wi

)
[dNi(u)

−Yi(u)λT (u|Wi,Zi;H, β, θ̂, f̂ U)du] = 0, (3)

UH(β, H, θ̂, f̂ U) =
n∑

i=1

[dNi(u) − Yi(u)λT

× (u|Wi, Zi;H, β, θ̂, f̂ U)du]= 0 for all u ≥ 0.

(4)

Our proposal is to estimate β and H by solving estimating
equations (3) and (4). Let Ĥ(u, β, θ̂, f̂ U) be the solution of
Equation (4).

5. Asymptotic Theory

To facilitate the derivation and statement of the asymptotic
theories, we define λ̇(u) = dλ(u)/du, CD(u) = E[Y(u)J{u|W,

Z, H0(u), β0, θ0, fU}], CN(u) = E[Y(u)∂J{u|W,Z, H0(u), β0, θ0,

fU}/∂H0(u)]=E{Y(u)
∫
I2(u,x,W,Z,H0,β0,θ0,fU)dx},λ∗{H0(t)}=

exp[
∫ t

a
{CN(s)/CD(s)}dH0(s)], for 0 < a ≤ t ≤ τ, and I1(u, x, W,

Z, H0, β0, θ0, fU) = [λ{βT
10Z+β20x +H0(u)} − J{u|W,Z, H0(u),

β0, θ0, fU}] ×G(x|u, W,Z, H0, β0, θ0, fU), I2(u, x, W,Z, H0, β0,

θ0, fU) = [λ̇{βT
10Z+β20x + H0(u)} − λ2{βT

10Z+ β20x +H0(u)}+
J{u|W,Z, H0(u), β0, θ0, fU}λ{βT

10Z + β20x + H0(u)}]G(x|u, W,

Z, H0, β0, θ0, fU) for 0 < a ≤ t ≤ τ, where τ = inf{t : pr(T ∗ >

t) = 0}. Here ∂J/∂H0(u) is obtained by replacing the H0(u)
function in J with a variable, taking partial derivative of J

with respect to this variable, and then replacing this variable
by H0(u) in the result. For a generic function g(u, β, ·),
write gu(u, β, ·)=∂g(u, β, ·)/∂u, gβ(u, β, ·)=∂g(u, β, ·)/∂β. Also
assume that 0 < t1 < · · · < tK(n) are the distinct failure times
in the observed data. Before we describe the asymptotic
properties of the estimator, we require some lemmas.

Lemma 1. For any t ∈ (0, τ]

(i) lim
n→∞

Ĥβ(t, β0, θ0, fU) = lim
n→∞

∂Ĥ(t, β, θ0, fU)

∂β
|β=β0

= γ1(t, β0, H0, θ0, fU) + op(1),

(ii) lim
n→∞

Ĥβt(t, β0, θ0, fU) = lim
n→∞

∂2Ĥ(t, β0, θ0, fU)

∂β∂t
|β=β0

= γ2(t, β0, H0, θ0, fU) + op(1),

where γ1(t) = γ1(t, β0, H0, θ0, fU), γ2(t) = γ2(t, β0, H0, θ0, fU)
and

γ1(t) = − 1

λ∗{H0(t)}

∫ t

0

λ∗{H0(s)}
CD(s)

E[Y(s)

× ∂

∂β0

J{s|W, Z, H0(s), β0, θ0, fU}]dH0(s), (5)

γ2(t) = − E[Y(t)∂J{t|Wi,Zi, H0(t), β0, θ0, fU}/∂β0] + CN(t)γ1(t)

CD(t)

× Ḣ0(t). (6)

The proof of Lemma 1 and the remaining lemmas are
given in the supplementary material. We now summarize the
asymptotic properties of the estimator β̂.

Theorem 1. Under the regularity conditions listed in the
Appendix,

√
n(β̂ − β0) → Normal(0, 
−1

1 
∗
−1
1 )

in distribution when n → ∞, where the expressions for 
∗ and

1 are given in (A1) and (A2) respectively in the Appendix.
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Despite of the relatively complex form of 
1 and 
∗, we are
able to derive their consistent estimators which are essential
for inference purpose. Specifically,


̂1 = n−1

n∑
i=1

(∫ T ∗
i

0

(
Zi

Wi

)∫ {(
Zi

x

)
+ γ̂1(u)

}T

× I2(u, x, Wi,Zi, Ĥ, β̂, θ̂, f̂ U)dxĤu(u)du

)
+ n−1

n∑
i=1

[∫ T ∗
i

0

(
Zi

Wi

)
J{u|Wi,Zi, Ĥ, β̂, θ̂, f̂ U}γ̂T

2 (u)du

]
,

where Ĥ(u) = Ĥ(u, β̂, θ̂, f̂ U) is the solution of (4), γ̂1(u) =
γ̂1(u, β̂, θ̂, f̂ U), γ̂2(u) = γ̂2(u, β̂, θ̂, f̂ U), and


̂∗ = 1

n

n∑
i=1

∑
k:tk≤T ∗

i

�̂i(tk)�̂
T
i (tk)J(tk|Wi,Zi, Ĥ, β̂, θ̂, f̂ U)

× {Ĥ(tk)−Ĥ(tk−1)} + 1

n

n∑
i=1

[∑
k

ϒ̂i(tk){Ĥ(tk)−Ĥ(tk−1)}
]⊗2

,

with a⊗2 ≡ aaT for any matrix or vector a and

�̂i(u) =
(

Zi

Wi

)
− λ̂∗{Ĥ(u)}

nĈD(u)

n∑
j=1

[∫ τ

u

Yj(s)

(
Zj

Wj

)

×
{∫

I2(s, x, Wj,Zj, Ĥ, β̂, θ̂, f̂ U)dx

}
dĤ(s)

λ̂∗{Ĥ(s)}

]

− 1

nĈD(u)

n∑
j=1

[(
Zj

Wj

)
Yj(u)J{u|Wj,Zj; Ĥ(u), β̂, θ̂, f̂ U}

]

+ λ̂∗{Ĥ(u)}
nĈD(u)

∫ τ

u

dĤ(s)ĈN(s)

λ̂∗{Ĥ(s)}ĈD(s)

×
n∑

j=1

[(
Zj

Wj

)
Yj(s)J{s|Wj,Zj; Ĥ(s), β̂, θ̂, f̂ U}

]
,

and λ̂∗{Ĥ(u)} = exp[
∫ u

a
{ĈN(s)/ĈD(s)}dĤ(s)], where ĈD(u) and

ĈN(u) are obtained by replacing the true parameters by their
consistent estimators and expectations by their empirical av-
erages in CD(u) and CN(u). Although 
̂1 contains terms like

∂Ĥ(·, β, θ̂, f̂U)/∂β, it does not involve ∂θ̂/∂β or ∂f̂U/∂β as θ and

fU were estimated independent of β. Note that in 
̂∗, the first
term is due to the linear transformation model whereas the
second term involving ϒ̂i(u) is due to estimated θ and fU(·),

and

ϒ̂i(u) =
[

− Q̂i(Z
∗, u) + D̂1(Z

∗, u) exp

{∫ u

0

−ĈN(s)dĤ(s)

ĈD(s)

}

×
∫ u

0

exp

{∫ s

0

ĈN(l)dĤ(l)

ĈD(l)

}
Q̂i(1, s)dĤ(s)

ĈD(s)

]

+1

n

n∑
i=1

[(
Zi

Wi

)
Yi(u)J{u|Wi,Zi; Ĥ(u), β̂, θ̂, f̂ U}

]

× exp

{∫ u

0

−ĈN(s)dĤ(s)

ĈD(s)

}

×
[
exp

{∫ u

0

ĈN(s)dĤ(s)

ĈD(s)

}
Q̂i(1, u)

ĈD(u)

− ĈN(u)

ĈD(u)

∫ u

0

exp

{∫ s

0

ĈN(l)dĤ(l)

ĈD(l)

}
Q̂i(1, s)dĤ(s)

ĈD(s)

]
.

Due to limited space, here we provide consistent es-
timators for D1 and Qi, and the actual expressions
are given in the supplementary materials. Specifically,
ĈN(t) = n−1

∑n

i=1
Yi(t)

∫
I2(t, x, Wi,Zi, Ĥ, θ̂, f̂ U) dx, D̂1(Z

∗, t)

= n−1
∑n

i=1
(ZT

i , Wi)
T

Yi(t)
∫

I2(t, x, Wi,Zi, Ĥ, θ̂, f̂ U)dx. Let

ÂW,Z = n−1
∑n

j=1
∂[{∫ f ′

X|Z (x|Zj, θ)f̂ U(Wj − x)dx}/{∫ fX|Z(x|
Zj, θ)f̂ U(Wj − x)dx}]/∂θT, then

D̂2(Z
∗, t) = 1

n

n∑
j=1

{∫
Ê{Y(t) | x,Zj}

(
Zj

Wj

)
× I1(t, x, Wj,Zj, Ĥ, θ̂, f̂ U)dxST

W,Z,θ(Wj,Zj, θ̂)

−
∫

Ê{Y(t) | x,Zj}
(

Zj

Wj

)
ST

X,Z,θ(x,Zj, θ̂)

× I1(t, x, Wj,Zj, Ĥ, θ̂, f̂ U)dx

}
Â−1

W,Z,

Q̂i(Z
∗, t)

= D̂2(Z
∗, t)

{
SW,Z,θ(Wi,Zi, θ̂)

−1

n

n∑
j=1

∫
SW,Z,θ(W,Zj, θ̂)fX|Z(W − vi|Zj)dW

}

+1

n

n∑
j=1

∫ (
Ê{Y(t) | W,Zj}

(
Zj

W

)
× [λ{β̂T

1 Zj + β̂2(W − vi) + Ĥ(t)}
− J(t | W,Zj, Ĥ, β̂, θ̂, f̂ U)] exp

[−�{β̂T

1 Zj + β̂2(W − vi) + Ĥ(t)}]

/

∫
exp[−�{β̂T

1 Zj + β̂2x + Ĥ(t)}]
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Table 1
Results of the simulation study where log(T ) = −Z − X + ε. The number of replications is 500. NV, CW, and SP stand for
the naive, Cheng and Wang’s method, and the proposed semiparametric approach. Here SD, MSE, ESE, and CP denote the
standard deviation of the estimates, mean squared error, estimated standard error based on the formula, and 95% coverage

probability. The sample size was n = 400 and U∗ ∼ Normal(0, σ2
U)

10% Censoring 50% Censoring

NV CW SP NV CW SP

r β1 β2 β1 β2 β1 β2 β1 β2 β1 β2 β1 β2

0 Bias −0.081 −0.021 0.001 0.015 0.014 0.037 −0.053 −0.159 0.089 0.394 0.019 0.088
SD 0.187 0.063 0.233 0.103 0.215 0.105 0.241 0.069 0.354 0.218 0.262 0.113
MSE 0.042 0.004 0.054 0.011 0.046 0.012 0.061 0.030 0.133 0.203 0.069 0.021
ESE 0.187 0.058 0.217 0.105 0.242 0.067 0.298 0.127
CP 0.924 0.082 0.958 0.954 0.942 0.366 0.968 0.972

0.5 Bias −0.037 −0.173 0.028 0.019 0.001 0.033 −0.025 −0.138 0.055 0.313 0.022 0.084
SD 0.256 0.082 0.265 0.108 0.274 0.116 0.304 0.084 0.375 0.181 0.321 0.124
MSE 0.067 0.036 0.071 0.012 0.075 0.015 0.093 0.026 0.144 0.131 0.103 0.022
ESE 0.265 0.081 0.279 0.117 0.309 0.089 0.341 0.126
CP 0.96 0.42 0.952 0.964 0.954 0.652 0.968 0.96

1 Bias −0.014 −0.161 0.029 0.013 0.014 0.028 −0.014 −0.139 0.065 0.252 0.023 0.065
SD 0.331 0.103 0.309 0.121 0.346 0.137 0.353 0.099 0.432 0.199 0.368 0.137
MSE 0.109 0.036 0.096 0.014 0.119 0.019 0.124 0.029 0.191 0.103 0.136 0.023
ESE 0.342 0.101 0.352 0.133 0.356 0.106 0.370 0.142
CP 0.958 0.614 0.956 0.956 0.954 0.714 0.948 0.954

1.5 Bias −0.011 −0.157 0.029 0.011 0.007 0.022 −0.005 −0.140 0.062 0.177 0.025 0.054
SD 0.406 0.125 0.378 0.145 0.417 0.161 0.403 0.117 0.502 0.230 0.416 0.155
MSE 0.164 0.040 0.144 0.0211 0.174 0.026 0.162 0.033 0.255 0.084 0.174 0.026
ESE 0.419 0.120 0.427 0.154 0.405 0.119 0.417 0.156
CP 0.962 0.714 0.958 0.946 0.954 0.76 0.952 0.946

2 Bias −0.008 −0.157 0.032 0.008 0.005 0.018 0.000 −0.141 0.100 0.151 0.026 0.047
SD 0.479 0.148 0.406 0.152 0.491 0.186 0.448 0.131 0.567 0.269 0.460 0.169
MSE 0.229 0.046 0.165 0.023 0.241 0.034 0.201 0.037 0.331 0.095 0.212 0.031
ESE 0.498 0.141 0.505 0.178 0.452 0.133 0.463 0.172
CP 0.964 0.792 0.966 0.942 0.948 0.80 0.95 0.958

× fX|W,Z(x | W,Zj)dx

−
∫

E{Y(t) | x,Zj}
(

Zj

W

)
I1(t, x, W,Zj, Ĥ, θ̂, f̂ U)dx

)
× fX|Z(W − vi|Zj)dW,

where Ê{Y(t) | Wj,Zj} is an estimate of E{Y(t) | Wj,Zj} =
pr(Y(t) = 1 | Wj,Zj). To estimate E{Y(t) | x,Zj} = pr(Y(t) =
1 | x,Zj), we make use of pr{Y(t) = 1 | w, z} = ∫

pr{Y(t) = 1 |
x, z}fX|W,Z(x | w, z)dx. We have used a linear logistic model
to estimate pr{Y(t) = 1 | w, z} and pr{Y(t) = 1 | x, z}. Alterna-
tively, pr{Y(t) = 1 | w, z} can be estimated through the non-
parametric kernel method and pr{Y(t) = 1 | x, z} can be es-
timated via the deconvolution approach (Carroll and Hall,
1989). The estimator of θ and fU are plugged into the esti-

mating equations (3) and (4), and then β̂ is obtained. Because
of this profiling procedure, analyzing the asymptotic behavior
β̂ requires us to study the asymptotic behavior of θ̂ and f̂ U as
well. A sketch proof of the theorem is given in the appendix
whereas the detailed derivation is collected in the online sup-
plementary materials.

6. Simulation Study

In order to investigate the performance of the proposed ap-
proach in finite sample we carried out simulation studies. We
generated X and Z from a Normal(0, 1) and a Uniform(0, 1)
distribution, respectively. We further generated the time to
event, T , from the model log(T ) = −Z − X + e, where e is gen-
erated from the distribution with its hazard function λ(u) =
exp(u)/{1 + r exp(u)}. We considered r = 0, 0.5, 1, 1.5, and 2.
Note that r = 0 and 1 correspond to the proportional hazard
model and the proportional odds model, respectively. We set
the censoring variable C = X2 + Uniform(0, K), and choose
K to yield 10% and 50% right censored data. The erroneous
measurement W∗ is created by adding noise U∗ to X, and we
generated U∗ from two different distributions, Normal(0, σ2

U)
with σ2

U = 0.5 and Uniform(−1.75, 1.75). We generated three
replicates of W∗ for each subject, and here we present the re-
sults for n = 400. The supplementary material contains the
results for n = 200.

We analyzed each data set by using the naive (NV) ap-
proach, the method proposed in Cheng and Wang (2001)
(hereafter referred to as CW), and the proposed semiparamet-
ric (SP) approach. In the naive approach, we used the method
proposed in Chen et al. (2002) and used W

∗
i = ∑m

j=1
W∗

ij/m in
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Table 2
Results of the simulation study where log(T ) = −Z − X + ε. The number of replications is 500. NV, CW, and SP stand for
the naive, Cheng and Wang’s method, and the proposed semiparametric approach. Here SD, MSE, ESE, and CP denote the
standard deviation of the estimates, mean squared error, estimated standard error based on the formula, and 95% coverage

probability. The sample size was n = 400 and U∗ ∼ σUUniform(−1.75, 1.75)

10% Censoring 50% Censoring

NV CW SP NV CW SP

r β1 β2 β1 β2 β1 β2 β1 β2 β1 β2 β1 β2

0 Bias −0.078 −0.212 0.013 0.020 0.018 0.037 −0.054 −0.162 0.102 0.394 0.019 0.086
SD 0.181 0.061 0.234 0.105 0.209 0.102 0.241 0.072 0.359 0.224 0.263 0.115
MSE 0.038 0.046 0.055 0.011 0.044 0.012 0.061 0.031 0.139 0.205 0.069 0.021
ESE 0.187 0.058 0.216 0.101 0.242 0.067 0.290 0.118
CP 0.946 0.072 0.952 0.952 0.944 0.36 0.972 0.936

0.5 Bias −0.032 −0.176 0.023 0.018 0.014 0.032 −0.024 −0.139 0.072 0.311 0.024 0.085
SD 0.253 0.079 0.267 0.107 0.272 0.114 0.304 0.086 0.376 0.191 0.320 0.124
MSE 0.065 0.037 0.072 0.012 0.074 0.014 0.093 0.026 0.146 0.133 0.103 0.023
ESE 0.265 0.081 0.279 0.109 0.309 0.089 0.323 0.120
CP 0.964 0.406 0.96 0.946 0.962 0.626 0.952 0.949

1 Bias −0.006 −0.165 0.026 0.016 0.020 0.026 −0.012 −0.141 0.089 0.253 0.026 0.067
SD 0.331 0.099 0.312 0.118 0.347 0.134 0.354 0.102 0.433 0.198 0.369 0.141
MSE 0.109 0.037 0.098 0.014 0.121 0.018 0.125 0.030 0.195 0.103 0.137 0.024
ESE 0.343 0.101 0.352 0.133 0.356 0.105 0.371 0.143
CP 0.96 0.594 0.96 0.954 0.946 0.706 0.956 0.942

1.5 Bias −0.003 −0.161 0.018 0.015 0.015 0.021 −0.003 −0.141 0.076 0.174 0.029 0.058
SD 0.405 0.119 0.375 0.133 0.418 0.155 0.404 0.120 0.503 0.226 0.418 0.161
MSE 0.164 0.040 0.141 0.018 0.175 0.024 0.163 0.034 0.259 0.081 0.176 0.029
ESE 0.419 0.120 0.427 0.155 0.404 0.119 0.417 0.156
CP 0.964 0.708 0.962 0.958 0.958 0.76 0.956 0.948

2 Bias 0.000 −0.161 0.032 0.011 0.014 0.017 0.003 −0.142 0.098 0.138 0.031 0.051
SD 0.480 0.141 0.409 0.149 0.493 0.179 0.449 0.135 0.570 0.265 0.462 0.176
MSE 0.230 0.046 0.168 0.022 0.243 0.032 0.202 0.038 0.335 0.089 0.214 0.034
ESE 0.498 0.141 0.505 0.171 0.452 0.132 0.464 0.172
CP 0.96 0.766 0.96 0.950 0.954 0.788 0.948 0.952

place of Xi, where m = 3. The standard error of the naive
approach was calculated based on the formula given in (8)
of Chen et al. (2002). In the CW method we estimated
the parameters by solving Equation (7) of CW and we as-
sumed that censoring mechanism is independent of T, X, Z

and W∗. Furthermore, we assumed that for i = j, Xij ≡ (Xi −
Xj)|W+

ij ∼ Normal{(1 − ρ2)W+
ij , ρ2σ2

W }, where W+
ij ≡ W

∗
i − W

∗
j ,

ρ2 = σ2
e /(mσ2

W + σ2
e ), σ2

e = var(W∗
il − W∗

jl
′ |Xij), σ2

W = var(Xij).

For m = 3, we used σ̂2
W = (3n2)−1

∑n

i=1

∑n

j=1
(W∗

ij1W
∗
ij2 +

W∗
ij1W

∗
ij3 + W∗

ij2W
∗
ij3), and σ̂2

e = (6n2)−1
∑n

i=1

∑n

j=1
{(W∗

ij1)
2 +

(W∗
ij2)

2 + (W∗
ij3)

2}, where W∗
ijl = W∗

il − W∗
jl. The survival proba-

bility of the censoring variable was estimated by the Kaplan-
Meier method using the data {T ∗

i , (1 − δi)}. In the SP method
we assumed that X given Z follows a normal distribution with
mean γ0 + γ1Z and variance σ2

x . To estimate fU(·) following
the process described in Section 3, we selected the bandwidth
h via the plug-in bandwidth selection method from Sheather
and Jones (1991). The standard error of the SP method was
calculated based on the formula given in Section 5.

For the NV and SP methods we present the bias, the
standard deviation of the estimates, the mean squared error
(MSE), the estimated standard error, and the coverage rate of
the 95% confidence intervals. For the CW method, we present

only the bias, standard deviation, and the MSE of the esti-
mates. The results shown in Tables 1 and 2 (and Tables 1 and
2 in the supplementary materials) clearly indicate that the es-
timates of β2, the coefficient for X, are highly biased in the
NV method and the corresponding coverage probabilities are
strikingly lower than the nominal level 0.95. The CW method
has large biases when the censoring rate is high, caused by
the violation of the censoring mechanism assumption. In con-
trast, the proposed SP method has less bias compared with
the naive approach and the CW approach when 50% data
are censored, the estimated standard errors are closer to the
sample standard deviation of the estimates and the coverage
rates are close to 95%. In addition, using the proposed SP
method, the amount of estimation bias decreases as the sam-
ple sizes increase, and the standard errors are decreasing with
sample size. These features reflect the established asymptotic
properties of the proposed estimator.

In order to assess the robustness of our approach we
simulated Z from the Normal(0, 1) distribution and X

from a two component mixture of normals distribution
RNormal(−0.6, 0.52) +(1 − R)Normal(1.25, 0.52), where R ∼
Bernoulli(0.33) distribution. We generated U∗ from the
Normal(0, 0.712) distribution and an asymmetric distribution
R∗Uniform(−1, 0) + (1 − R∗)Normal( 0.499, 0.652), where R∗
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Table 3
Results of the simulation study where log(T ) = −Z − X + ε. The number of replications is 500. NV, CW, and SP stand for
the naive, Cheng and Wang’s method, and the proposed semiparametric approach. Here SD, MSE, ESE, and CP denote the
standard deviation of the estimates, mean squared error, estimated standard error based on the formula, and 95% coverage

probability. Here X followed a mixture of normals and the sample size was n = 400

10% Censoring 80% Censoring

NV CW SP NV CW SP

r β1 β2 β1 β2 β1 β2 β1 β2 β1 β2 β1 β2

U∗ ∼ Normal(0, 0.712)
0 Bias −0.093 −0.216 0.004 0.015 0.001 0.020 −0.022 −0.228 −0.336 −0.431 0.017 −0.051

SD 0.193 0.059 0.236 0.105 0.219 0.104 0.356 0.111 0.309 0.111 0.378 0.149
MSE 0.046 0.050 0.056 0.011 0.048 0.011 0.127 0.064 0.208 0.198 0.143 0.025
ESE 0.187 0.059 0.349 0.112 0.215 0.103 0.365 0.150
CP 0.928 0.072 0.956 0.956 0.952 0.472 0.954 0.918

1 Bias −0.023 −0.156 0.007 0.010 0.008 0.012 0.008 −0.197 −0.354 −0.409 0.024 −0.033
SD 0.332 0.099 0.313 0.117 0.354 0.134 0.462 0.139 0.401 0.134 0.481 0.185
MSE 0.111 0.034 0.098 0.014 0.125 0.018 0.214 0.058 0.286 0.185 0.232 0.035
ESE 0.343 0.100 0.353 0.128 0.465 0.145 0.477 0.187
CP 0.956 0.626 0.952 0.946 0.952 0.68 0.956 0.944

2 Bias −0.005 −0.154 0.019 0.008 0.012 0.005 −0.009 −0.178 −0.244 −0.301 0.015 −0.018
SD 0.483 0.144 0.409 0.147 0.496 0.183 0.524 0.156 0.542 0.166 0.537 0.202
MSE 0.233 0.044 0.168 0.022 0.246 0.034 0.275 0.056 0.353 0.118 0.289 0.041
ESE 0.502 0.140 0.509 0.175 0.528 0.160 0.542 0.209
CP 0.966 0.794 0.96 0.946 0.954 0.766 0.96 0.956

U∗ ∼ rUniform(−1, 0) + (1 − r)Normal(0.499, 0.652), r ∼ Bernoulli(0.5)
0 Bias −0.097 −0.225 0.004 0.009 0.009 0.020 −0.027 −0.238 −0.335 −0.432 0.019 −0.065

SD 0.197 0.063 0.239 0.107 0.223 0.109 0.353 0.108 0.309 0.114 0.379 0.152
MSE 0.048 0.055 0.057 0.012 0.050 0.012 0.125 0.068 0.208 0.200 0.144 0.027
ESE 0.186 0.059 0.216 0.104 0.366 0.150
CP 0.906 0.076 0.952 0.956 0.954 0.438 0.946 0.90

1 Bias −0.02 −0.154 0.010 0.026 0.018 0.022 −0.011 −0.204 −0.353 −0.418 0.18 −0.060
SD 0.336 0.101 0.313 0.118 0.357 0.134 0.474 0.144 0.403 0.135 0.484 0.186
MSE 0.113 0.034 0.098 0.015 0.128 0.018 0.225 0.062 0.287 0.193 0.267 0.038
ESE 0.344 0.101 0.354 0.129 0.466 0.146 0.479 0.188
CP 0.946 0.61 0.948 0.950 0.952 0.66 0.954 0.93

2 Bias −0.003 −0.142 0.027 0.017 0.019 0.015 0.006 −0.186 −0.255 −0.303 0.029 −0.035
SD 0.486 0.143 0.408 0.146 0.500 0.179 0.527 0.162 0.541 0.184 0.539 0.204
MSE 0.236 0.041 0.167 0.022 0.250 0.032 0.278 0.061 0.358 0.126 0.291 0.043
ESE 0.502 0.140 0.509 0.175 0.527 0.160 0.541 0.204
CP 0.96 0.792 0.946 0.960 0.956 0.744 0.952 0.958

has a Bernoulli(0.5) distribution. This is a clear violation of
our assumption. The censoring variable C was generated from
a Uniform(0, K) distribution independently of any other vari-
ables, and we choose K to yield 10% and 80% right censored
data, the latter resembles the very high percentage of censor-
ing in the real data example. In the SP method we assumed
that conditional on Z, X follows a normal distribution. Table
3 contains the results for r = 0, 1 and 2. The results indicate
that SP method works quite well even when (1) the assumed
model for X given Z is quite wrong and (2) measurement
errors follow an asymmetric distribution. This suggests that
SP seems to have certain robustness property, and moderate
model violations may not have much visible impact on the re-
sults of the analysis. However, we would like to caution that
in our experience, when the distribution of X conditional on
Z is very different from the truth, estimation bias does occur.

To avoid possible convergence issues, we recentered W∗
ij by

subtracting the mean of all W∗
ij. In the numerical calculations,

we used the Hermite quadrature formula to compute integrals
with respect to x. Since Ĥ(·) is a step function, any Stieltjes

integral with respect to Ĥ(·) is a sum of the product of the in-

tegrand and dĤ(·), that is,
∫

fdĤ = ∑
j:T ∗

j
,�j=1

f (T ∗
j )dĤ(T ∗

j ).

The naive estimates were used as the initial values for the
computation of the SP method. We did not encounter any
convergence issue in using the Newton–Raphson procedure to
estimate the parameters. We point out that the computation
time of these methods changes with the sample sizes and the
percentage of censoring. For example, for n = 400, 10% cen-
sored data, r > 0, and 500 replications, computation of the
estimates takes about 3.15 hours for the SP method and 16.3
hours for the CW method. All simulations were done on a
2.8GHz Intel Xeon X5560 processor.
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Figure 1. Plot of two log(CD4) measurements of 1036 subjects in the ACTG 175 data set.

7. Analysis of the AIDS Clinical Trial Data

We now apply the proposed method to analyze a subset of
the data from the ACTG 175 study. This was a randomized,
double-blind, placebo-controlled trial to understand the ef-
fect of the four therapies, 600 mg of zidovudine, 600 mg of
zidovudine plus 400 mg of didanosine, 600 mg of zidovudine
plus 2.25 mg of zalcitabine and 400 mg of didanosine on HIV-
1 infected patients, see Hammer et al. (1996) for details. For
our analysis we considered only n = 1036 subjects who did
not have antiretroviral treatment before this trial, and 262,
257, 260, 257 subjects received the above 4 treatments, respec-
tively. These subjects had two (i.e., m = 2) baseline measure-
ments of CD4 counts prior to the start of their treatment,
see Figure 1 for a scatter plot of these measurements. We
considered time to AIDs or death from the date treatment
started as the response variable T . Among the 1036 subjects,
85 subjects experienced the above event, and the median and
average follow-up time were approximately 27 and 32 months,
respectively.

We fit model (1) to this data set, where the logarithm of
the actual CD4 count at the baseline minus 5.89 is consid-
ered as X. The choice of 5.89 is to make the distribution
centered around 0. The two baseline measurements are con-
sidered to be two erroneous measurements for X. The three
dummy variables corresponding to the four treatments are
considered to be error free covariates Z where 600 mg of zi-

dovudine was considered as the reference category. We mod-
eled the hazard function of e in model (1) through he(u) =
exp(u)/{1 + r exp(u)}, and choose r = 0, 0.5, 1, 1.5, 2. Table 4
contains the estimate and the estimated standard error based
on NV, CW, and SP methods. Figure 2 shows the deconvo-
luted density of X = log(CD4) under Normal and Laplacian
errors for each treatment category obtained from W

∗
1, · · · , W

∗
n

where W
∗
i = ∑2

j=1
W∗

ij/2. The bandwidth was selected using
1000 bootstrap samples. Since none of the deconvoluted den-
sities deviates much from a unimodal bell-shaped curve, in
the SP method we assume that X given Z follows a normal
distribution.

The results of both the naive and the proposed methods
indicate that log(CD4) has a statistically significant effect on
the time to event. More importantly, after adjusting for the
measurement errors, the estimate of the coefficient for CD4
counts, β2, is very different from the naive estimate. Overall,
the naive estimate tends to underestimate the effect of CD4
counts. We find that compared to the monotherapy with zi-
dovudine, other three therapies have statistically significant
effect on delaying the time to event.

8. Conclusions

We have proposed a semiparametric method for handling
mismeasured covariates in the linear transformation model.
This approach resolves the errors-in-covariates issue in many
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Table 4
Analysis of the ACTG 175 aids clinical trial data. Here Est. and SE stand for estimate and standard error, respectively.

Also, Z, Z+D, Z+Z, and D stand for zidovudine, zidovudine plus didanosine, zidovudine plus zalcitabine, and didanosine,
respectively

r = 0 r = 0.5 r = 1 r = 1.5 r = 2

Method Est. SE Est. SE Est. SE Est. SE Est. SE

NV Z+D (Ref: Z) −0.706 0.292 −0.736 0.304 −0.765 0.317 −0.795 0.330 −0.824 0.343
Z+Z (Ref: Z) −0.919 0.310 −0.956 0.322 −0.993 0.334 −1.030 0.345 −1.067 0.358
D (Ref: Z) −0.703 0.282 −0.733 0.295 −0.763 0.308 −0.793 0.321 −0.882 0.334
log(CD4) −2.033 0.348 −2.114 0.368 −2.195 0.388 −2.275 0.406 −2.355 0.425

CW Z+D (Ref: Z) −0.109 0.082 −0.137 0.111 −0.164 0.135 −0.191 0.159 −0.219 0.178
Z+Z (Ref: Z) −0.178 0.066 −0.222 0.089 −0.266 0.107 −0.311 0.127 −0.356 0.143
D (Ref: Z) −0.145 0.076 −0.181 0.099 −0.216 0.119 −0.253 0.139 −0.289 0.154
log(CD4) −0.569 0.129 −0.711 0.159 −0.853 0.188 −0.996 0.217 −1.139 0.246

SP Z+D (Ref: Z) −0.736 0.295 −0.770 0.309 −0.804 0.324 −0.837 0.338 −0.871 0.352
Z+Z (Ref: Z) −0.943 0.313 −0.986 0.326 −1.029 0.339 −1.071 0.353 −1.113 0.367
D (Ref: Z) −0.697 0.286 −0.730 0.300 −0.762 0.315 −0.794 0.329 −0.826 0.342
log(CD4) −2.602 0.456 −2.714 0.485 −2.826 0.513 −2.937 0.540 −3.049 0.569

models including the proportional hazard model and pro-
portional odds model. We make minimal assumptions on
the errors associated with the covariate, and resort to a

nonparametric estimation of this error density using repeated
measurements. We work in the structural model framework
and make a parametric model assumption regarding the
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Figure 2. Deconvoluted density plot of log(CD4) − 5.89 based on laplacian (dotted) and normal errors (solid) along with
the histogram of the average of the erroneous measurements of log(CD4) − 5.89.
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distribution of X given Z. Although a misspecification of
this assumption will lead to a biased estimator in principle,
in practice, one can make this bias negligible by taking a
flexible parametric model, such as a mixture of normals.
Simulation study indicated that a moderate model violation
may not have much impact on the results, while severe model
violation certainly will bring estimation bias.

The proposed method has two steps. In the first step, we
estimate the model parameters involved in the distribution of
X given Z. In the second step, we use these estimated param-
eters to estimate the main regression parameters. The two
step procedure is easy to implement and is tractable analyt-
ically. Alternatively, a maximum likelihood based estimator
is also possible, where one would maximize the joint density
of (T ∗

i , �i, W
∗
i ) given Zi with fU(·) being estimated separately

and plugged in. This will require separate analysis both the-
oretically and numerically. The difference between this ap-
proach and our approach is that of the difference between the
Martingale based approach and the NPMLE based approach
in general survival analysis, and further investigation will be
interesting and fruitful.

Results of the simulation study clearly indicate the use-
fulness of the proposed approach. In principle, the proposed
method can be extended to handle the scenario where the
main data contains only a single and possibly a biased mea-
surement of the true covariate, where an external calibration
study contains this biased surrogate variable and some gold
standard measurements of the true covariate to assess the er-
ror distribution.

9. Supplementary Materials

Proofs and tables referenced in Sections 5 and 6, and the
source code for computation are available with this paper at
the Biometrics website on Wiley Online Library.
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Appendix: A sketch proof of Theorem 1.

A Taylor expansion of the estimating equation yields

0 = n−1/2Uβ{β̂, Ĥ(·, β̂, θ̂, f̂ U), θ̂, f̂ U}

= E

[
∂

n∂βT
0

Uβ{β0, Ĥ(·, β0, θ0, fU), θ0, fU}
]√

n(β̂ − β0)

+ 1√
n
Uβ{β0, Ĥ(·, β0, θ̂, f̂ U), θ̂, f̂ U}

+op(1) = −
1

√
n(β̂ − β0)

+ 1√
n
Uβ{β0, Ĥ(·, β0, θ̂, f̂ U), θ̂, f̂ U} + op(1).

Thus, we first consider the asymptotic expansion of
n−1/2Uβ{β0, Ĥ(·, β0, θ̂, f̂ U), θ̂, f̂ U}. In the supplementary ma-

terials we show that

n−1/2Uβ{β0, Ĥ(·, β0, θ̂, f̂ U), θ̂, f̂ U}

= n−1/2

n∑
i=1

∫ τ

0

{�i(u)dMi(u) + ϒi(u)dH0(u)} + op(1),

where

�i(u) =
(

Zi

Wi

)
− λ∗{H0(u)}

CD(u)
E

(∫ τ

u

Y(s)

(
Z

W

)
×

[∫
λ̇{βT

10Z + β20x + H0(s)}

× G(x|s, W,Z;H0, β0, θ0, fU)dx

−
∫

λ2{βT
10Z + β20x + H0(s)}

× G(x|s, W,Z;H0, β0, θ0, fU)dx

+ J2(s|W,Z;H0, β0, θ0, fU)

]
dH0(s)

λ∗{H0(s)}

)
− 1

CD(u)
E

[(
Z

W

)
Y(u)J{u|W,Z;H0(u), β0, θ0, fU}

]
+ λ∗{H0(u)}

CD(u)

∫ τ

u

dH0(s)CN(s)

λ∗{H0(s)}CD(s)

× E

[(
Z

W

)
Y(s)J{s|W,Z;H0(s), β0, θ0, fU}

]
,

ϒi(u) =
[

−Qi(Z
∗, u)+D1(Z

∗, u) exp

{∫ u

0

−CN(s)dH0(s)

CD(s)

}

×
∫ u

0

exp

{∫ s

0

CN(l)dH0(l)

CD(l)

}
Qi(1, s)dH0(s)

CD(s)

]

+ E

[(
Z

W

)
Y(u)J{u|W,Z;H0(u), β0, θ0, fU}

]
× exp

{∫ u

0

−CN(s)dH0(s)

CD(s)

}
×

[
exp

{∫ u

0

CN(s)dH0(s)

CD(s)

}
Qi(1, u)

CD(u)
− CN(u)

CD(u)

×
∫ u

0

exp

{∫ s

0

CN(l)dH0(l)

CD(l)

}
Qi(1, s)dH0(s)

CD(s)

]
.

Observe that �i(u) is a predictable and bounded pro-
cess for u ∈ (0, τ] with respect to the filtration Fu− =
σ{Y(s), N(s),Z, W, 0 ≤ s < u}. Due to the martingale property
E{∫ τ

0
�i(u)dMi(u)} = 0. On the other hand, ϒi(u) belongs to a

Hilbert space of square integrable random variable with zero
mean, that is, E{ϒ2

i (u)} < ∞, E{ϒi(u)} = 0 for all u ∈ (0, τ].
Now, using the Martingale central limit theorem we can write
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n−1/2Uβ{β0, Ĥ(·, β0, θ̂, f̂ U), θ̂, f̂ U} asymptotically follows a
normal distribution with mean 0 and variance


∗ = E

[{∫ τ

0

�i(u)�T
i (u)Yi(u)λT (u|Wi,Zi, H0, β0, θ0, fU)

}
du

+
{∫ τ

0

ϒi(u)dH0(u)

}⊗2]
. (A1)

The above equality used the fact that cov{∫ τ

0
�i(t)dMi(t),∫ τ

0
ϒi(t)dH0(t)} = 0. Observe that the randomness of

ϒi(u) comes only from its random covariates Wi,Zi, and
consequently for any u, u

′ ∈ (0, τ], cov{dMi(u), ϒi(u
′
)} =

E[E{dMi(u)ϒi(u
′
)|Fu−}] = E[ϒi(u

′
)E{dMi(u)|Fu−}] = 0.

Hence,

cov{
∫ τ

0

�i(t)dMi(t),

∫ τ

0

ϒi(t)dH0(t)}

= E

{∫ τ

0

∫ τ

0

�i(u)dMi(u)ϒi(u
′
)dH0(u

′
)

}
= E

{∫ τ

0

∫ τ

0

ϒi(u
′
)�i(u)E(dMi(u)|Fu−)dH0(u

′
)

}
= 0.

We now consider the calculation of 
1. Observe that

1

n

∂

∂βT
Uβ{β, Ĥ(·, β, θ0, fU), θ0, fU}

= 1

n

n∑
i=1

(
Zi

Wi

)
∂

∂βT

∫ τ

0

{dNi(u)−Yi(u)

J(u|Wi,Zi, Ĥ, β, θ0, fU)Ĥu(u, β, θ0, fU)}du

= −1

n

n∑
i=1

(
Zi

Wi

)∫ τ

0

Yi(u)
[
Jβ{u|Wi,Zi, Ĥ

× (u, β, θ0, fU), β, θ0, fU}Ĥu(u, β, θ0, fU)

+ J(u|Wi,Zi, Ĥ, β, θ0, fU)Ĥβu(u, β, θ0, fU)
]T

du,

where Jβ{u|Wi,Zi, Ĥ(u, β, θ0, fU), β, θ0, fU} =∫
[λ̇{βT

1Zi + β2x+
Ĥ0(u, β, θ0, fU)} − λ2{βT

1Zi + β2x + Ĥ(u, β, θ0, fU)} + J{u|Wi,

Zi, Ĥ(·, β), β, θ0, fU}λ{βT
1Zi + β2x + Ĥ(u, β, θ0, fU)}](ZT

i , x)T +
Ĥβ(u, β, θ0, fU)]G{x|u, Wi,Zi,Ĥ(·,β), β,θ0,fU}dx. After setting
β = β0 we obtain

−1

n
E

∂

∂βT
Uβ{β, Ĥ(·, β, θ̂, f̂ U), θ̂, f̂ U} |β=β0

a.s→

−1

n
E

∂

∂βT
Uβ{β, Ĥ(·, β, θ0, fU), θ0, fU} |β=β0

a.s→ 
1,

where


1 = E

(∫ τ

0

Y(u)

(
Z

W

)∫ [
λ̇{βT

10Z + β20x + H0(u)}

− λ2{βT
10Z + β20x + H0(u)}

+ J{u|W,Z, H0(u), β0, θ0, fU}λ{βT
10Z + β20x + H0(u)}

]
×

{(
Z

x

)
+ γ1(u)

}T

G(x|u, Wi,Zi, H0, β, θ0, fU)

×dxdH0(u)

)
+ E

[∫ τ

0

Y(u)

(
Z

W

)
× J{u|W,Z, H0(u), β0, θ0, fU}γT

2 (u)du

]
. (A2)
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