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In this article, we develop a functional approach for handling errors-in-covariates in matched case–control
studies which are commonly analysed through the conditional logistic regression. We propose to estimate
the parameters from a set of unbiased estimating equations. We require that the moment-generating function
of the measurement errors exists. We investigate the asymptotic properties of the estimators. The finite
sample performance of the method is judged via simulation studies. The proposed methodology is illustrated
by analysing the data from the NIH-AARP Diet and Health study.

Keywords: Bootstrap variance; case–control; conditional likelihood; estimating-equation; moment-
generating function; NIH-AARP Diet and health study

1. Introduction

In nutrition epidemiology, the association between nutrient intakes and a disease outcome, such
as cancer, is investigated, and many such studies show a lack of significant association between
the disease and nutrient intakes. One of the possible causes of lack or weak association is the
presence of errors in the reported intakes. Usually, the estimator of the association parameter is
biased if one ignores the measurement errors-in-covariates. In this paper, we propose a functional
approach to handling additive measurement errors in a matched case–control data. This design
is routinely used for studying association between a disease and risk factors after controlling
some confounding variables which are markedly associated with the disease and the potential risk
factors. A matched case–control study consists of several matched strata which are formed by a
set of confounding variables, and each stratum contains a case (diseased subject) and a number
of controls (non-diseased subjects), and a logistic regression is used to model the disease risk in
terms of the covariates and the confounding (matching) variables.

Measurement errors in the logistic regression model have drawn considerable attention and
the work can be broadly classified into two categories: the structural and functional approaches.
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2 S. Sinha

In the structural approaches (Guolo 2008; Carroll, Ruppert, Stepanski, and Crainiceanu 2006,
pp. 181–203), the unknown true exposure is treated as a random variable, and it requires the
knowledge of the distribution of the true exposure and the measurement errors. In the func-
tional approach (Stefanski and Carroll 1987; Buzas and Stefanski 1996; Huang and Wang 2001),
the unobserved true covariate is unknown, but considered to be fixed, and consequently no
assumption is made regarding the distribution of unobserved true covariate. For dealing with
measurement errors in the logistic regression, Wang and Wang (1997) extended the pseudo-
conditional likelihood (Breslow and Cain 1988) and the mean-score approach (Reilly and Pepe
1995) using a kernel-based method where the observed surrogate variable was a continuous vari-
able. Cheng and Hsueh (2003) proposed a semiparametric efficient estimator based on inverse
probability-weighted estimating equation (EE) when a covariate is mismeasured and the binary
response variable is misclassified. Rabe-Hesketh, Pickles, and Skrondal (2003) proposed a non-
parametric maximum likelihood method for handling normal additive measurement error, and
their study design included replicated measurements of the surrogate variable. In this paper,
we develop a functional approach to handle the measurement errors in the conditional logistic
regression.

Alternative to the structural and functional approaches is the regression calibration (RC) method
where the unobserved true exposure is replaced by its conditional expectation given the surrogate
and other error-free covariates (Carroll et al. 2006, p. 65). The RC method is easy to apply but
lacks theoretical justification. Sugar, Wang, and Prentice (2007) proposed some modifications to
the RC method.

It is to be noted that a potential difficulty in analysing a matched data is that the distribution of
the exposure in the underlying population differs from that in the case–control sample, a feature
that makes the structural inferential analysis difficult and potentially nonrobust. Furthermore, the
distribution of the exposure among the cases and controls potentially depends on the matching
variables, and a parametric modelling of this distribution may risk model misspecification. Also,
the methods for handling measurement errors in a prospective study are not directly applicable
to a matched design due to (1) stratum-level dependence among the case and controls and (2)
the functional form of the effect of the matching variables on the logit of the disease risk is left
unspecified.

For handling additive errors-in-covariates in a matched case–control study, Armstrong, Whit-
temore, and Howe (1989) proposed a simple method when the measurement errors and the
unobserved true covariates both follow normal distribution. Their method had the flexibility
to handle the differential measurement error, that means, the measurement errors that may have
different distributions for the case and control groups. Forbes and Santner (1995) developed
a method of estimating log-odds ratio parameter for a dichotomous exposure variable while
the continuous confounding variables are measured with errors. McShane, Midthune, Dorgan,
Freedman, and Carroll (2001) proposed a conditional score approach for handling errors in the
potential risk factors. They assumed that the measurement errors followed a normal distribution,
otherwise the method did not require any assumption on the distribution of the unobserved true
covariate. The last three articles used external calibration data sets to calibrate the error variance.
Guolo and Brazzale (2008) presented a simulation-based comparison of the RC, SIMEX, and the
likelihood-based approach with a known distribution for the unobserved covariate for the additive
measurement errors.

All the above-mentioned methods are particularly designed to handle normal measurement
errors. Of course in the full likelihood-based method of Guolo and Brazzale (2008), one can
incorporate any parametric distribution for the measurement errors. We propose a functional
approach where parameter estimates are obtained by solving a set of unbiased EEs and the method
works as long as the moment-generating function (MGF) of the measurement errors exists. The
key concept is to form an unbiased EE in terms of the observed data such that its conditional
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Journal of Nonparametric Statistics 3

expectation is a weighted average of the score functions or the EEs which are used when none
of the covariates are measured with errors. Originally, this idea was used by Buzas (1998) for
estimating parameters of the Cox proportional hazard model when covariates were measured
only with random errors whose means are zero. Along that line Huang and Wang (2000) proposed
nonparametric method for analysing the Cox regression model in the presence of replicated
measurements of a surrogate variable. Their method is nonparametric because their approach
does not require that the distribution of the errors be known. Due to some similarities between
the Cox partial likelihood and the conditional logistic likelihood, we adopt Buzas’s (1998)’s
idea in matched case–control studies, and solve the problem when covariates are measured with
systematic and random errors. Like Huang and Wang (2000), we also do not require that the
distribution of the errors be known, but our design is somewhat different from that of the Huang
and Wang (2000) as we do not have replicated measurements of the surrogate variable in the main
study. In addition, in our set-up the true covariate is never observed, even in the calibration data.
The important advantage of the proposed method is that we get consistent estimators without
making any assumption regarding the distribution of the unobserved true covariate and the errors
associated with the main surrogate variable.

In order to illustrate the proposed methodology, we construct a matched case–control data
from the NIH-AARP Diet and Health cohort (Schatzkin et al. 2001) using the age at entry into
the study and age at menopause as the matching variables, and study the association between
breast cancer and non-alcohol energy from total fat. The nutrient intakes are measured via food
frequency questionnaire (FFQ) and they involve substantial amount of errors.

A brief outline of the remainder of this article is as follows. In Section 2 we present model and
assumptions while the proposed methodology is described in Section 3. In Section 4 we study the
asymptotic properties of the estimators. Section 5 contains the data analysis. Section 6 contains
a simulation study followed by a discussion given in Section 7.

2. Model and assumption

Suppose that we have a 1:M matched case–control data with n strata, and V is the set of matching
variables which are potentially associated with the disease of interest and the exposure variables.
Typically in a matched case–control study, we observe Y , a binary disease indicator variable, Z , a
q × 1 vector of error-free covariates, and W , an erroneous version of X along with the matching
variables. Here, we assume that the dimensions of X and W are the same. We will be using i and j
as the index for strata and the subjects within a stratum, respectively, and thus j = 1, . . . , (M + 1)

and i = 1, . . . , n. The disease model is

pr(Yij = 1|Vi, Xij, Zij) = H{β0(Vi) + βT
1 Xij + βT

2 Zij},

where H(u) = exp(u)/{1 + exp(u)}, and β1 and β2 are the log-odds ratio parameters correspond-
ing to X and Z , respectively. The effect of the matching variables on the disease risk is captured
through β0(Vi), which is completely unspecified. For no measurement error scenario, that means
when W = X, β = (βT

1 , βT
2 )T is estimated by solving S(β) = ∑n

i=1 Si(β) = 0, where

Si(β) =
M+1∑
j=1

(Yij − pij)

(
Xij

Zij

)
, (1)

D
ow

nl
oa

de
d 

by
 [

T
ex

as
 A

&
M

 U
ni

ve
rs

ity
 L

ib
ra

ri
es

 a
nd

 y
ou

r 
st

ud
en

t f
ee

s]
 a

t 0
7:

50
 2

5 
M

ay
 2

01
2 



4 S. Sinha

and

pij = exp(βT
1 Xij + βT

2 Zij)∑M+1
k=1 exp(βT

1 Xik + βT
2 Zik)

represents the conditional probability that the jth subject in the ith stratum is a case given that there
is only one case in the ith stratum. Note that S(β) is the score function derived from the conditional
logistic regression likelihood (Breslow and Day 1980, p. 251) and E{Si(β) | V , X, Z} = 0. It is
clear from (1) that due to the conditioning on

∑M+1
j=1 Yij = 1, the summands within Si(β) are

not independent which makes it different from the score function of the logistic likelihood for a
prospectively collected data set.

Suppose that Si is partitioned into two parts corresponding to β1 and β2:

S1,i(β) =
∑M+1

k=1 exp(βT
1 Xik + βT

2 Zik)
∑M+1

j=1 YijXij − ∑M+1
k=1 Xik exp(βT

1 Xik + βT
2 Zik)∑M+1

k=1 exp(βT
1 Xik + βT

2 Zik)
,

S2,i(β) =
∑M+1

k=1 exp(βT
1 Xik + βT

2 Zik)
∑M+1

j=1 YijZij − ∑M+1
k=1 Zik exp(βT

1 Xik + βT
2 Zik)∑M+1

k=1 exp(βT
1 Xik + βT

2 Zik)
.

For the errors-in-covariates situation, we observe W instead of X. Since we assume that W is a
surrogate for X, given X , W and Y are independent. The following linear model is assumed for W :

W = �0 + �1X + �2Z + �3V + UW , (2)

where UW has a mean of zero and are assumed to be independent across strata and subjects
within a stratum. Assume that the MGF for UW exists but unknown, and we denote it by MW (·).
Also we assume that the errors UW is non-differential, i.e. its distribution is independent of the
disease status Y . Importantly, it is assumed that the dimensions of W and X are the same, and
�−1

1 exists. Observe that W becomes an unbiased surrogate for X when �0 = 0, �2 = 0, �3 = 0,
and �1 = Ip. Define θ = (vecT(�0), vecT(�1), vecT(�2), vecT(�3))

T, where vec represents the
vectorisation operator.

Following our data example, we consider the scenario where the external data contain repeated
measures of an unbiased surrogate variable T along with W , Z , V . More specifically, for our
data example, the calibration data are Dcalib

l , l = 1, . . . , m, where Dcalib
l = (Vl, Wl, Zl, Tlk , k =

1, . . . , K). Along with model (2), we assume that

Tlk = Xl + UT ,lk ,

and the distribution of UT is known. We assume UT ,lk
iid∼ Normal(0, �T ). Hence, the MGF of UT is

MT (t) = exp(tT�T t/2). Observe that Tlk − Tlk′ = UT ,lk − UT ,lk′ for k �= k′ = 1, . . . , K . There-
fore, based on the calibration data we can readily estimate MT (t)MT (−t). But the estimation of
MT (t) is not so obvious. Therefore, the scenario of unknown MT (t) is definitely a non-trivial
problem, and we will pursue it in a future article. In addition, we assume that all the models
hold for both the external calibration and the matched case–control data with the same parameter
values (transportability assumption).
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Journal of Nonparametric Statistics 5

3. Estimation methodology

3.1. EE method

Define ψ(β, θ) = ∂ log{MW (βT
1 �−1

1 )}/∂β1, Snew = ∑n
i=1 Si,new and Si,new ≡ Si,new(β, θ , ψ(β,

θ)) = {ST
1,i,new(β, θ , ψ(β, θ)), ST

2,i,new(β, θ)}T, where

S1,i,new(β, θ , ψ(β, θ)) =
⎧⎨
⎩

M+1∑
j=1

YijX
+
ij

M+1∑
k=1

exp(βT
1 X+

ik + βT
2 Zik) + ψ(β, θ)

M+1∑
j=1

(1 − Yij)

× exp(βT
1 X+

ij + βT
2 Zij) −

M+1∑
j=1

X+
ij exp(βT

1 X+
ij + βT

2 Zij)

⎫⎬
⎭

÷
M+1∑
k=1

exp{βT
1 E(Xik|Zik , Vi) + βT

2 Zik}

S2,i,new(β, θ) =
⎧⎨
⎩

M+1∑
k=1

exp(βT
1 X+

ik + βT
2 Zik)

M+1∑
j=1

YijZij −
M+1∑
k=1

Zik exp(βT
1 X+

ik + βT
2 Zik)

⎫⎬
⎭

÷
M+1∑
k=1

exp{βT
1 E(Xik|Zik , Vi) + βT

2 Zik},

and X+
ik = �−1

1 (Wik − �0 − �2Zik − �3Vi). Let Qi ≡ ∑M+1
j=1 exp(βT

1 Xij + βT
2 Zij)/

∑M+1
j=1

exp{βT
1 E(Xij |Zij, Vi) + βT

2 Zij}. Then it is easy to check that for r = 1, 2, E{Sr,i,new(β, θ , ψ(β, θ)) |
V , X, Y , Z} = Sr,i(β)MW (βT

1 �−1
1 )Qi. That means the conditional expectation of the estimating

functions Snew with respect to the conditional distribution of W given V , X, and Z yields a weighted
average of the score functions which are obtained from the conditional logistic likelihood function
when all covariates are measured without any error. Since E{Sr,i(β) | V , X, Z} = 0, the proposed
EEs Snew are unbiased.

The denominators of Si,new(β, θ , ψ(β, θ)) act as a weight function, and the choice of this weight
will not affect the consistency of the estimators. The following argument clarifies the issue related
to the choice of the denominator of Si,new. Define Si ≡ Si(β) and S∗

i ≡ Si,new(β, θ , ψ(β, θ))
∑M+1

k=1
exp{βT

1 E(Xik|Zik , Vi) + βT
2 Zik}/G(Z , V , β). The optimal choice of G(Z , V , β), the denomina-

tor of S∗
i , can be obtained by minimising E(Si − S∗

i )(Si − S∗
i )

T. Following the arguments
of Buzas (1998), one can show that the approximate optimal choice of the denominator is∑M+1

k=1 exp{βT
1 E(Xik|Zik , Vi) + βT

2 Zik}. Now, E(X|V , Z) along with θ and �T need to be estimated
from the calibration data.

Suppose that we model E(X|V , Z) in terms of a finite-dimensional parameter, and assume that
E(X|V , Z) = �0 + �1V + �2Z . Define γ ≡ (vecT(�0), vecT(�1), vecT(�2))

T, and from now and
on we will refer to Snew(β, θ , ψ(β, θ)) by Snew(β, θ , γ , ψ(β, θ)). Suppose that θ̂ γ̂ and �̂T are the√

m-consistent regular estimator of θ , γ and �T , respectively, obtained from the calibration data,
and by ψ̂(β, θ , �T ) we denote a

√
m consistent estimator of ψ(β, θ) when β, θ , and �T are known.

We propose to estimate β by solving Snew(β, θ̂ , γ̂ , ψ̂(β, θ̂ , �̂T )) = ∑n
i=1 Si,new(β, θ̂ , γ̂ , ψ̂(β, θ̂ ,

�̂T )) = 0, where Si,new(β, θ̂ , γ̂ , ψ̂(β, θ̂ , �̂T )) = {ST
1,i,new(β, θ̂ , γ̂ , ψ̂(β, θ̂ , �̂T )), ST

2,i,new(β, θ̂ , γ̂ )}T.
For solving the above equation, we adopted the Newton–Raphson procedure.

The proposed EEs not necessarily admit an unique solution because for a given β2, Sı,new is
not a monotone function of β1, when X is a scalar variable. However, the asymptotic unbiased-
ness of the EE and the regularity conditions ensure that there is a sequence of roots of the EE,
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6 S. Sinha

Snew(β, θ̂ , γ̂ , ψ̂(β, θ̂ , �̂T )) = 0 which converges to the true parameter with probability 1. For our
data examples and simulation studies, we found the root by iterating the Newton– Raphson proce-
dure and there we set the RC estimates as the initial value of the parameters. However, we suggest
to follow Stefanski and Carroll (1987)’s recommendation in case of multiple solutions.

3.2. Estimation of the secondary model parameters θ, γ , and �T

The true nutrient intakes (X) are never observed. We will obtain
√

m-consistent estimator of θ

and γ by solving the following set of corrected EEs (Carroll et al. 2006, Chapter 7):

m∑
l=1

(Wl − �0 − �1T̄l − �2Zl − �3Vl) = 0,

m∑
l=1

{
(Wl − �0 − �1T̄l − �2Zl − �3Vl)T̄

T
l + 1

K
�̂T�1

}
= 0, (3)

m∑
l=1

(Wl − �0 − �1T̄l − �2Zl − �3Vl)Z
T
l = 0,

m∑
l=1

(Wl − �0 − �1T̄l − �2Zl − �3Vl)V
T
l = 0,

m∑
l=1

(T̄l − �0 − �1Zl − �2Vl) = 0,

m∑
l=1

(T̄l − �0 − �1Zl − �2Vl)Z
T
l = 0,

m∑
l=1

(T̄l − �0 − �1Zl − �2Vl)Vl = 0,

where �̂T ≡ ∑m
l=1

∑K
j=1(Tlj − T̄l)(Tlj − T̄l)

T/{m(K − 1)} and T̄l = ∑K
j=1 Tlj/K . Due to measure-

ment errors in T , instead of ordinary least-squares method we use the corrected EEs in (3).

3.3. Handling unknown MGF of UW

Observe that for given β1, θ , and �T ,

̂MW (βT
1 �−1

1 ) ≡
{
MT

(
−β1

K

)}−K 1

m

m∑
l=1

exp(βT
1 �−1

1 W∗
l )

a.s→ MW (βT
1 �−1

1 ),

̂∂MW (βT
1 �−1

1 )

∂β1
≡

{
MT

(
−β1

K

)}−K 1

m

m∑
l=1

�−1
1 W∗

l exp(βT
1 �−1

1 W∗
l ) − �Tβ1

K
̂MW (βT

1 �−1
1 )

=
{
MT

(
−β1

K

)}−K 1

m

m∑
l=1

(
�−1

1 W∗
l − �Tβ1

K

)

× exp(βT
1 �−1

1 W∗
l )

a.s→ ∂MW (βT
1 �−1

1 )

∂β1
,
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Journal of Nonparametric Statistics 7

where W∗
l ≡ (Wl − �0 − �1T̄l − �2Zl − �3Vl). Then

ψ̂(β, θ , �̂T ) ≡
∑m

l=1(�
−1
1 W∗

l − �̂Tβ1/K) exp(βT
1 �−1

1 W∗
l )∑m

l=1 exp(βT
1 �−1

1 W∗
l )

is a consistent estimator of ψ(β, θ) provided MW (βT
1 �−1

1 ) > 0. Apparently, it seems that
ψ̂(β, θ , �̂T ) is free from MT (·). However, the second term in the numerator of ψ̂(β, θ , �̂T )

is ∂MK
T (−β1/K)/∂β1 = �Tβ1/K .

4. Asymptotic results

For asymptotic derivations, we assume that there is one case and M controls in every stratum, i.e.∑M+1
j=1 Yij = 1. Also, we assume that M, the number of controls in each stratum, is fixed while

n, m → ∞. However, the ratio (n/m) converges to a finite positive constant as n, m → ∞.
First, we define a few notations needed for the asymptotic derivations. Define X̄i = ∑M+1

j=1 Xijpij,

Z̄i = ∑M+1
j=1 Zijpij, and

A ≡ E

{
∂Si,new(β, θ , γ , ψ(β, θ))

∂β

}
=

(
A11 A12

AT
12 A22

)
,

where A11 = −MW (βT
1 �−1

1 )E[{∑M+1
j=1 (Xij − X̄i)(Xij − X̄i)

Tpij}Qi], A12 = −MW (βT
1 �−1

1 )E

[{∑M+1
j=1 (Xij − X̄i)(Zij − Z̄i)

Tpij}Qi] and A22 = −MW (βT
1 �−1

1 )E[{∑M+1
j=1 (Zij − Z̄i)(Zij − Z̄i)

Tpij}
Qi]. Observed data in stratum i are denoted by Dobs

i = {Yij, Zij, Wij, j = 1, . . . , (M + 1), Vi}. Define
A2 ≡ E{∂Si,new(β, θ , γ , ψ̂(β, θ , �T ))/∂θ} and A3 ≡ E{∂Si,new(β, θ , γ , ψ(β, θ))/∂ψ(β, θ)}.

Proposition 1 Under the regularity conditions listed in the appendix,

(i) Snew = 0 admits a sequence of consistent solutions β̂n.
(ii)

√
n(β̂n − β) = A−1n−1/2 ∑n

i=1 Si, new (β, θ , γ , ψ(β, θ)) + ρA−1m−1/2 ∑m
l=1{A2F−1Sl,calib +

A3a(Dcalib
l )} + op(1), where ρ = limn,m→∞

√
n/m, and F = E(Fl). The expressions for

Sl,calib, Fl and a(Dcalib
l ) are given in the appendix.

(iii) If var{S1,new(β, θ , γ , ψ(β, θ))} < ∞ and var{A2F−1S1,calib(θ) + A3a(Dcalib
1 )} < ∞, then the

asymptotic variance of
√

n(β̂n − β) is A−1[var{S1,new(β, θ , γ , ψ(β, θ))} + ρ2var{A2F−1

S1,calib(θ) + A3a(Dcalib
1 )}]A−T.

The variability due to the estimation of θ is accounted in var(β̂n) through Sl,calib, and a(Dcalib
l )

can be attributed to the estimation of ψ(β, θ). A brief outline of the proof of Proposition 1 is given
in the appendix.

A consistent estimate of the asymptotic variance can be obtained by replacing the true
parameters by their estimates, and by replacing ρ by ρ̂ = √

n/m, F by F̂ = m−1 ∑m
l=1 Fl,

ψ(β, θ) by ψ̂(β̂, θ̂ , �̂T ), A2 by Â2 = n−1 ∑n
i=1{∂Si,new(β, θ , γ , ψ̂(β, θ , �T ))/∂θ}, A3 by Â3 =
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8 S. Sinha

n−1 ∑n
i=1{∂Si,new(β, θ , γ , ψ(β, θ))/∂ψ(β, θ)}, A by

Â = 1

n

n∑
i=1

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡
⎣ ∂

∂β

⎧⎨
⎩

M+1∑
j=1

YijX
+
ij

M+1∑
k=1

exp(βT
1 X+

ik + βT
2 Zik) + ψ̂(β, θ , �̂T )

M+1∑
j=1

(1 − Yij)

× exp(βT
1 X+

ij + βT
2 Zij) −

M+1∑
j=1

X+
ij exp(βT

1 X+
ij + βT

2 Zij)

⎫⎬
⎭

⎤
⎦

÷ ∑M+1
k=1 exp{βT

1 E(Xik|Zik , Vi) + βT
2 Zik}⎡

⎣ ∂

∂β

⎧⎨
⎩

M+1∑
k=1

exp(βT
1 X+

ik + βT
2 Zik)

M+1∑
j=1

YijZij −
M+1∑
k=1

Zik exp(βT
1 X+

ik + βT
2 Zik)

⎫⎬
⎭

⎤
⎦

÷
M+1∑
k=1

exp{βT
1 E(Xik|Zik , Vi) + βT

2 Zik}

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

and MK
T (−β1/K)MW (βT

1 �−1
1 ) in a(Dcalib

l ) by m−1 ∑m
l′=1 exp(βT

1 �−1
1 W∗

l′ ).

5. Analysis of the NIH-AARP diet and health study

5.1. Background information of the data

The NIH-AARP Diet and Health Study was developed at the National Cancer Institute of the
National Institutes of Health to improve our understanding of the relationship between diet and
health (Schatzkin et al. 2001). From 1995 through 1996, 3.5 million questionnaires were mailed
to current members of the AARP who were aged between 50 and 71 years, and the data were
collected prospectively on the exposure of risk factors and occurrence of any type of cancer. Here,
we are particularly interested in the risk of breast cancer and its association with the percentage
of non-alcohol energy from total fat. A part of this data set has been analysed by Sinha, Mallick,
Kipnis, and Carroll (2010) in the context of measurement error in a nonparametric regression
set-up of a logistic model.

There were 226,736 women in the study, and after excluding the subjects with missing values
and or very extreme values of a variable we are left out with 167, 331 women of which 4049
developed breast cancer disease as of 31 December 2000. However, due to lack of matched
controls we are able to include only 4007 case subjects in the analysis, and for each case we
choose three controls by matching the age at natural menopause (V1) and the age at entry (V2).
Thus, we analysed an 1:3 matched case–control data set with n = 4007 strata.

5.2. Description of the variables

The disease variable Y takes on 1 or 0 for the presence and absence of breast cancer, respectively.
The age at natural menopause was a categorical variable which took values 0, 1, 2, and 3 for actual
age of menopause between 50 and 54 years, less than 45 years, between 45 and 49 years, and
more than 55 years, respectively. We considered Z1 ≡ (BMI − 25)/6, total years of replacement
hormone used (Z2), and the number of live born children (Z3) as the other potential risk factors
which were measured without error. Here, Z2 takes on 0, 1, 2, and 3 for never used hormones,
less than 5 years, between 5 and 9 years, more than or equal to 10 years of replacement hormone
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Journal of Nonparametric Statistics 9

used, respectively, and Z3 takes on 0, 1, 2, 3, and 4 for no children, one child, two children, three
children, and four or more children, respectively.

Since the nutrient intakes measured via FFQ involve errors, the cohort data are accompanied
by a prospectively collected calibration data set which contained two 24-h recalls along with
other risk factor questionnaires. The calibration data contained 1953 subjects including men
and women, and we considered only the postmenopausal women who had not used medicine
or surgery to have menopause. The logarithm of the percentage of non-alcohol energy from
total fat measured via 24-h recall will be considered as an unbiased surrogate variable (T ) for
the true logarithm of percentage of non-alcohol energy from total fat (X), and it is defined
as X = log[totalfatintakeingrams × 900/{totalenergy − (alcoholintakeingrams × 7)}]. Figure 1
shows the histogram of W , the logarithm of percentage of non-alcohol energy from total fat
measured via FFQ, among the cases and controls of the matched data set.

5.3. Method of analyses

We analyse the data by using the three methods: (1) naive (NV), (2) RC, and (3) the proposed EE
method. The standard errors of the estimators for the RC method are calculated by drawing 100
Bootstrap samples from the calibration data and from the matched case–control data.

5.4. Results of the analyses

The results of all analyses are presented in Table 1. The parameter estimates are very much
consistent for all three methods except that for the percentage of non-alcohol energy from total fat
which has odds-ratio of exp(0.11) = 1.116, exp(0.198) = 1.219, and exp(0.253) = 1.287, for the
NV, RC, the EE approach, respectively. However, none of the approaches shows any significant
effect of non-alcohol energy from total fat at 5% level. The standard error of the estimator for
the EE approach is higher than the other approaches. If all the other factors remain fixed, the risk
of breast cancer is increased by 10% when the BMI increases 6 units. Overall, the disease risk

W for controls
4.03.53.02.5

W for cases
4.03.53.02.5

0.
0

1.
5

1.
0

0.
5

0.
0

1.
5

1.
0

0.
5

Figure 1. Histogram of logarithm of percentage of non-alcohol energy from total fat (W ) in the cohort data.

D
ow

nl
oa

de
d 

by
 [

T
ex

as
 A

&
M

 U
ni

ve
rs

ity
 L

ib
ra

ri
es

 a
nd

 y
ou

r 
st

ud
en

t f
ee

s]
 a

t 0
7:

50
 2

5 
M

ay
 2

01
2 



10
S.Sinha

Table 1. Analysis of the matched case–control data constructed from the NIH-AARP Diet and Health study.

NV RC EE

Variable EST SE p-Value EST SE p-Value EST SE p-Value

Z1 0.093 (0.052, 0.134) 0.021 <0.001 0.092 (0.053, 0.131) 0.020 <0.001 0.093 (0.052, 0.134) 0.021 <0.001
Hormone years 1 vs. 0 0.219 (0.117, 0.321) 0.052 <0.001 0.226 (0.129, 0.322) 0.049 <0.001 0.225 (0.121, 0.328) 0.053 <0.001
Hormone years 2 vs. 0 0.341 (0.227, 0.455) 0.058 <0.001 0.347 (0.231, 0.462) 0.059 <0.001 0.359 (0.243, 0.475) 0.059 <0.001
Hormone years 3 vs. 0 0.284 (0.180, 0.387) 0.053 <0.001 0.287 (0.191, 0.383) 0.049 <0.001 0.292 (0.188, 0.396) 0.053 <0.001
Live child 1 vs. 0 −0.205 (−0.346, −0.063) 0.072 0.005 −0.219 (−0.368, −0.070) 0.076 0.004 −0.221 (−0.366, −0.076) 0.074 0.003
Live child 2 vs. 0 −0.248 (−0.362, −0.134) 0.058 <0.001 −0.253 (−0.367, −0.139) 0.058 <0.001 −0.256 (−0.372, −0.140) 0.059 <0.001
Live child 3 vs. 0 −0.306 (−0.411, −0.200) 0.054 <0.001 −0.313 (−0.419, −0.207) 0.054 <0.001 −0.313 (−0.420, −0.205) 0.055 <0.001
Live child 4 or more vs. 0 −0.524 (−0.667, −0.381) 0.073 <0.001 −0.527 (−0.688, −0.366) 0.082 <0.001 −0.525 (−0.670, −0.379) 0.074 <0.001
X 0.110 (−0.029, 0.249) 0.071 0.120 0.198 (−0.027, 0.423) 0.115 0.085 0.253 (−0.082, 0.588) 0.171 0.139

Note: Here, X represents the log of the percentage of non-alcohol energy from total fat and Z1 = (BMI − 25)/6, and BMI is measured in kg/m2. Hormone years is a categorical variable for total years of replacement
hormone used. Hormone years 0, 1, 2, and 3 represent no replacement hormone used, replacement hormone used for less than 5 years, replacement hormone used for 5–9 years, and replacement hormone used for
more than 10 years, respectively. Live child represents the number of live children. Here, EST and SE represent the estimate and the estimated standard error, respectively. Also, NV, RC, and EE represent the naive,
regression calibration, and the EE approach, respectively. The Wald-type 95% confidence intervals are given right beneath the point estimates.
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Journal of Nonparametric Statistics 11

increases with the years of replacement hormone used, and the risk decreases with the number
of live born children. Table 1 contains theoretical p-values based on the asymptotic distribution
of the estimators. For the proposed method, we also calculated the empirical p-values based on
10, 000 Bootstrap samples, and the distributions of the estimators under the null hypothesis of no
association between the disease and the covariates are presented in Figure 2. According to the
order of the covariates presented in Table 1, the empirical p-values are 0, 0, 0, 0, 0.0024, 0, 0, 0,
and 0.1324, respectively. For creating Bootstrap samples under the null hypothesis (Field and
Welsh 2007), within each stratum we randomly assign Y = 1 to one of the four subjects and the
other three subjects receive Y = 0.

6. Simulation study

6.1. Simulation designs

First, we simulated a cohort, and from there we constructed a matched case–control data.
We simulated a cohort of size N = 20, 000 by simulating V , Z , X, and Y . From each
cohort, we constructed an 1:2 matched case–control data with n = 300 strata. Here, V ∼
Normal(0, 1), and mimicking the distribution of the body mass index in the real data we sim-
ulated Z from Weibull(3, 2.95) − 2.54 distribution. For scenarios 1 and 2, we set X = 3.322 +
0.1 cos(πV) + ϑ , where ϑ ∼ Gamma(2, 3.5) with mean E(ϑ) = 2

3.5 . We took logit{pr(Y =
1|V , X, Z)} = β0 + 0.2V + β1X + 0.1Z , with two choices for β1, 0.5 and 1, and varied β0

so that marginally pr(Y = 1) ≈ 10%. For the surrogate variable, we took the model W =
0.538 + 0.083V + 0.1Z + 0.84X + UW , and we considered six different distributions (1) UW ∼
Normal(0, σ 2

W ), (2) UW ∼ σW Uniform(−1.8, 1.8), (3) UW ∼ σW {Gamma(3,
√

3) − √
3}, (4)

UW ∼ RNormal(−0.38, 0.122) + (1 − R)Normal(0.38, 0.122), (5) UW = U∗
W − E(U∗

W ), where
U∗

W ∼ RGamma(4.4, 6) + (1 − R)Gamma(1, 5), and (6) UW ∼ RNormal(−0.16, 0.482) + (1 −
R)Gamma(0.8, 5). For scenarios 4, 5, and 6, R ∼ Bernoulli(0.5). We took σ 2

W = 0.15. The
parameter values somewhat mimic the estimated parameters of the real data analysis.

For all simulation scenarios, we construct a calibration data by drawing a random sample of
size m = 100 from the simulated cohort. Along with W , Z , V , the calibration data contained

Index for the parameters

0.
6

0.
4

0.
2

0.
0

−
0.

4
−

06
−

0.
2

1 2 3 4 5 6 7 8 9

Figure 2. Boxplot of the distribution of the estimators under the null hypothesis of no association. The grey squares
denote the estimates of the parameters.
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12 S. Sinha

Table 2. Simulation results for the naive (NV), regression calibration (RC), and the EE approach.

NV RC EE

β1 = 0.5 β2 = 0.1 β1 = 0.5 β2 = 0.1 β1 = 0.5 β2 = 0.1

UW ∼ Normal(0, σ 2
W )

Mean 0.281 0.071 0.554 0.098 0.510 0.100
Emp. SE 0.138 0.073 0.296 0.075 0.282 0.081
Est. SE 0.136 0.075 0.314 0.081 0.288 0.086
CP 0.629 0.942 0.98 0.963 0.965 0.967
MSE × 10 0.667 0.063 0.905 0.057 0.793 0.066
Median 0.276 0.072 0.532 0.101 0.478 0.102
MAD 0.098 0.049 0.196 0.049 0.172 0.054

β1 = 1 β2 = 0.1 β1 = 1 β2 = 0.1 β1 = 1 β2 = 0.1
Mean 0.574 0.041 1.132 0.098 1.038 0.105
Emp. SE 0.137 0.078 0.341 0.087 0.376 0.105
Est. SE 0.137 0.077 0.372 0.091 0.368 0.110
CP 0.141 0.874 0.984 0.958 0.925 0.958
MSE × 10 1.998 0.095 1.336 0.076 1.427 0.110
Median 0.570 0.038 1.102 0.099 0.978 0.102
MAD 0.092 0.051 0.223 0.054 0.223 0.064

UW ∼ σW Uniform(−1.8, 1.8)

Mean 0.261 0.071 0.537 0.097 0.489 0.098
Emp. SE 0.134 0.076 0.292 0.077 0.269 0.083
Est. SE 0.134 0.075 0.319 0.080 0.271 0.084
CP 0.559 0.937 0.974 0.959 0.951 0.956
MSE × 10 0.753 0.067 0.865 0.059 0.725 0.069
Median 0.259 0.069 0.525 0.098 0.471 0.099
MAD 0.049 0.089 0.189 0.053 0.171 0.056

β1 = 1 β2 = 0.1 β1 = 1 β2 = 0.1 β1 = 1 β2 = 0.1
Mean 0.552 0.044 1.141 0.101 1.027 0.103
Emp. SE 0.139 0.075 0.348 0.086 0.343 0.107
Est. SE 0.134 0.076 0.374 0.091 0.326 0.107
CP 0.105 0.897 0.973 0.956 0.938 0.958
MSE × 10 2.198 0.088 1.411 0.075 1.185 0.115
Median 0.551 0.043 1.103 0.098 0.988 0.102
MAD 0.097 0.053 0.223 0.058 0.215 0.067

Note: Here, Emp. SE, MAD, Est. SE, MSE, and CP denote empirical standard error, median absolute deviation, estimated standard
error, mean-squared error, and 95% coverage probability based on the Wald-type confidence intervals, respectively. Here, σ 2

W = 0.15 and
σ 2

T = 0.07.

T1 = X + UT1 and T2 = X + UT2, where UT1, UT2 ∼ Normal(0, σ 2
T ) with σ 2

T = 0.07. Note that
X were used only for data generation, and were no longer used in the analyses.

6.2. Method of analyses

We simulated R = 1000 matched case–control data sets and each data set was accompanied by
a calibration data set. Each data set was analysed by the (1) NV, (2) RC, and (3) the proposed
EE approach. In the RC approach, we fitted a linear regression model of the average of T1

and T2 on V , W , and Z based on the calibration data. The fitted regression was then used to
estimate the unobserved X in the matched study. In the EE approach, E(X|V , Z) was modelled
as a linear function of V and Z . However, for both scenarios it was a model misspecification as
the true regression of X was not a linear function of V . We present the mean, median, empirical
standard error (Emp. SE), estimated standard error (Est. SE) based on the asymptotic standard
error formula, 95% empirical coverage probabilities based on the Wald-type intervals, and the
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Table 3. Simulation results for the naive (NV), regression calibration (RC), and the EE approach.

NV RC EE

β1 = 0.5 β2 = 0.1 β1 = 0.5 β2 = 0.1 β1 = 0.5 β2 = 0.1

UW ∼ σW {Gamma(3,
√

3) − √
3}

Mean 0.270 0.075 0.532 0.103 0.496 0.101
Emp. SE 0.131 0.075 0.278 0.077 0.319 0.089
Est. SE 0.135 0.075 0.311 0.080 0.332 0.090
CP 0.600 0.939 0.972 0.957 0.931 0.963
MSE × 10 0.697 0.062 0.785 0.060 1.018 0.081
Median 0.271 0.073 0.519 0.102 0.456 0.102
MAD 0.088 0.049 0.181 0.051 0.172 0.052

β1 = 1 β2 = 0.1 β1 = 1 β2 = 0.1 β1 = 1 β2 = 0.1
Mean 0.561 0.041 1.105 0.098 0.935 0.097
Emp. SE 0.132 0.075 0.345 0.086 0.407 0.223
Est. SE 0.135 0.076 0.376 0.091 0.462 0.163
CP 0.089 0.878 0.973 0.96 0.891 0.971
MSE × 10 2.103 0.092 1.301 0.075 1.724 0.109
Median 0.563 0.043 1.068 0.102 0.842 0.103
MAD 0.088 0.049 0.208 0.057 0.217 0.069

β1 = 0.5 β2 = 0.1 β1 = 0.5 β2 = 0.1 β1 = 0.5 β2 = 0.1
UW ∼ RNormal(−0.38, 0.122) + (1 − R)Normal(0.38, 0.122)

Mean 0.278 0.072 0.571 0.099 0.510 0.098
Emp. SE 0.129 0.076 0.290 0.078 0.256 0.082
Est. SE 0.134 0.075 0.316 0.081 0.261 0.085
CP 0.279 0.992 0.973 1 0.96 0.961
MSE × 10 0.661 0.066 0.893 0.061 0.660 0.068
Median 0.279 0.069 0.558 0.099 0.491 0.098
MAD 0.092 0.052 0.199 0.055 0.177 0.057

β1 = 1 β2 = 0.1 β1 = 1 β2 = 0.1 β1 = 1 β2 = 0.1
Mean 0.561 0.041 1.146 0.095 1.035 0.094
Emp. SE 0.132 0.076 0.318 0.086 0.341 0.105
Est. SE 0.135 0.076 0.362 0.091 0.317 0.107
CP 0.094 0.875 0.978 0.962 0.942 0.954
MSE × 10 2.094 0.093 1.226 0.074 1.170 0.112
Median 0.559 0.039 1.117 0.097 0.992 0.096
MAD 0.085 0.052 0.213 0.058 0.203 0.066

Note: Here, Emp. SE, MAD, Est. SE, MSE, and CP denote empirical standard error, median absolute deviation, estimated standard
error, mean-squared error, and 95% coverage probability based on the Wald-type confidence intervals, respectively. Here, σ 2

W = 0.15 and
σ 2

T = 0.07, and R ∼ Bernoulli(0.5).

median absolute deviation (MAD = median1≤j≤R|β̂j − median1≤j≤R(β̂j)|). For the RC method,
we estimate standard error using 100 Bootstrap samples with replacement.

6.3. Summary of results

Tables 2–4 contain results for scenarios 1–6, and they can be summarised as follows. The naive
method performed poorly compared with the other methods in terms of bias of β̂1 and also of
β̂2. Overall the proposed method performs well in all the scenarios that we considered here. The
results indicate that the EE approach has significantly less bias than the naive and the RC approach,
especially when β1 = 1. Interestingly, for scenarios 1, 2, 4, and 6 with β1 = 0.5, the EE method
has somewhat less variance than the RC method. Overall the empirical standard errors for the RC
method are smaller than that for the EE method. All tables suggest that the asymptotic standard
error formula for the EE method works well. Based on 100 Bootstrap samples, the estimated
standard error for the RC method is somewhat higher than the empirical standard error. When UW
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14 S. Sinha

Table 4. Simulation results for the naive (NV), regression calibration (RC), and the EE approach.

NV RC EE

β1 = 0.5 β2 = 0.1 β1 = 0.5 β2 = 0.1 β1 = 0.5 β2 = 0.1

UW = U∗
W − E(U∗

W ), U∗
W ∼ RGamma(4.4, 6) + (1 − R)Gamma(1, 5)

Mean 0.280 0.072 0.559 0.101 0.517 0.100
Emp. SE 0.137 0.075 0.303 0.077 0.333 0.089
Est. SE 0.134 0.075 0.316 0.081 0.340 0.098
CP 0.611 0.931 0.967 0.955 0.946 0.963
MSE × 10 0.673 0.064 0.957 0.060 1.116 0.080
Median 0.277 0.075 0.541 0.102 0.478 0.104
MAD 0.093 0.049 0.197 0.051 0.176 0.055

β1 = 1 β2 = 0.1 β1 = 1 β2 = 0.1 β1 = 1 β2 = 0.1
Mean 0.563 0.047 1.122 0.102 0.942 0.111
Emp. SE 0.131 0.078 0.343 0.091 0.400 0.127
Est. SE 0.135 0.076 0.373 0.091 0.437 0.144
CP 0.106 0.891 0.974 0.954 0.910 0.966
MSE × 10 2.086 0.089 1.327 0.082 1.634 0.164
Median 0.556 0.047 1.086 0.106 0.948 0.107
MAD 0.085 0.052 0.202 3 0.059 0.211 0.072

β1 = 0.5 β2 = 0.1 β1 = 0.5 β2 = 0.1 β1 = 0.5 β2 = 0.1
UW = RNormal(−0.16, 0.482) + (1 − R)Gamma(0.8, 5)

Mean 0.274 0.069 0.560 0.096 0.510 0.094
Emp. SE 0.136 0.079 0.310 0.082 0.308 0.087
Est. SE 0.135 0.075 0.336 0.081 0.321 0.090
CP 0.619 0.914 0.974 0.950 0.949 0.952
MSE × 10 1.967 0.102 1.673 0.085 1.733 0.148
Median 0.275 0.068 0.541 0.092 0.481 0.092
MAD 0.089 0.054 0.186 0.058 0.164 0.058

β1 = 1 β2 = 0.1 β1 = 1 β2 = 0.1 β1 = 1 β2 = 0.1
Mean 0.565 0.045 1.158 0.102 1.029 0.101
Emp. SE 0.136 0.078 0.384 0.093 0.433 0.121
Est. SE 0.137 0.076 0.411 0.092 0.452 0.127
CP 0.123 0.886 0.981 0.962 0.917 0.952
MSE × 10 2.078 0.090 1.725 0.088 1.882 0.145
Median 0.561 0.045 1.105 0.103 0.965 0.107
MAD 0.092 0.056 0.221 0.066 0.220 0.077

Note: Here, Emp. SE, MAD, Est. SE, MSE, and CP denote empirical standard error, median absolute deviation, estimated standard
error, mean-squared error, and 95% coverage probability based on the Wald-type confidence intervals, respectively. Here, σ 2

W = 0.15 and
σ 2

T = 0.07, and R ∼ Bernoulli(0.5).

follows a gamma distribution (scenario 2) and the true β1 = 1, the bias in β̂1 due to the EE method
is somewhat larger than that of the other scenarios. However, further numerical investigation
reveals that this bias is due to small sample size of the calibration data because the mean, median,
empirical standard error, and estimated standard error of β̂1 due to the RC and the EE methods
are 1.079, 1.078, 0.270, 0.279, and 0.997, 0.943, 0.337, 0.329, respectively when m = 500, and
1.073, 1.075, 0.261, 0.269, and 1.016, 0.979, 0.332, 0.321, respectively for m = 1000. Finally,
we want to point out that simulation results validate the two aspects of the asymptotic results, the
asymptotic normal distribution, and the asymptotic standard error expression (Bosley 1996). The
first aspect is validated through the fact that Wald-type 95% coverage probabilities are reasonably
close to 0.95. The second aspect is validated through the fact that the estimated standard error
measured via the asymptotic formula is close to the empirical standard error. We found that as
both n and m increase keeping n/m fixed, the asymptotic and the empirical standard errors get
close (results are not presented here) (Figure 3).
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Figure 3. The first two rows contain the distribution of UW under six different scenarios, and the last row contains the
three non-normal distributions of UT . In all cases E(UW ) = E(UT ) = 0, var(UW ) = 0.15, and var(UT ) = 0.07.

6.4. Robustness study towards the normality assumption of UT:

For assessing the performance of the EE approach when the normality assumption is violated
for UT we considered scenario 1 with β1 = 1. But for the calibration data UT is simulated
from three non-normal distributions: (a) σT Uniform(−1.75, 1.75), (b) σT {Gamma(1, 1) − 1},
and (c) (σT/0.26){RNormal(0.2, 0.22) + (1 − R)Normal(−0.2, 0.22)} with R ∼ Bernoulli(0.5).
However, we analysed the simulated data sets under the normal distribution assumption of UT .
The results presented in Table 5 indicate that the EE method works reasonably well without any
visible impact of model misspecification, and in all these cases the RC method shows high bias
in the estimates of β1.

7. Discussion

We have proposed an EE approach for handling errors-in-covariates in matched case–control stud-
ies. In particular, here we handle the additive measurement errors. The proposed method produces
consistent and asymptotically normally distributed estimator without the knowledge of the distri-
bution of the unobserved true covariates. One of the main advantages of the proposed approach
is that the method can handle different types of error distributions, symmetric or asymmetric. Of
course the method requires that the MGF of the errors exists. The simulation study indicates the
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16 S. Sinha

Table 5. Simulation results for the naive (NV), regression calibration (RC), and the EE approach.

NV RC EE

β1 = 1 β2 = 0.1 β1 = 1 β2 = 0.1 β1 = 1 β2 = 0.1

UT ∼ σT Uniform(−1.75, 1.75)

Mean 0.574 0.040 1.140 0.099 1.032 0.100
Emp. SE 0.144 0.077 0.359 0.088 0.403 0.117
Est. SE 0.137 0.076 0.369 0.091 0.407 0.116
CP 0.134 0.876 0.97 0.962 0.917 0.959
MSE × 10 2.025 0.096 1.489 0.077 1.631 0.125
Median 0.571 0.039 1.086 0.099 0.967 0.101
MAD 0.093 0.051 0.211 0.056 0.218 0.064

UT ∼ σT {Gamma(1, 1) − 1}
Mean 0.584 0.038 1.155 0.096 1.026 0.102
Emp. SE 0.142 0.078 0.356 0.092 0.366 0.113
Est. SE 0.137 0.076 0.371 0.091 0.386 0.118
CP 0.167 0.868 0.972 0.954 0.928 0.965
MSE × 10 1.935 0.100 1.507 0.085 1.348 0.129
Median 0.580 0.035 1.116 0.095 0.962 0.103
MAD 0.094 0.055 0.221 0.061 0.204 0.072

UT ∼ (σT /0.26){RNormal(0.2, 0.22) + (1 − R)Normal(−0.2, 0.22)}
Mean 0.573 0.039 1.135 0.097 1.038 0.102
Emp. SE 0.141 0.076 0.351 0.088 0.389 0.110
Est. SE 0.137 0.076 0.370 0.091 0.378 0.112
CP 0.139 0.866 0.968 0.95 0.929 0.959
MSE × 10 2.002 0.094 1.416 0.079 1.529 0.121
Median 0.576 0.042 1.108 0.100 0.968 0.100
MAD 0.094 0.051 0.216 0.056 0.218 0.068

Note: Here, Emp. SE, MAD, Est. SE, MSE, and CP denote empirical standard error, median absolute deviation, estimated standard error,
mean-squared error, and 95% coverage probability based on the Wald-type confidence intervals, respectively. Here, UW ∼ Normal(0, σ 2

W ),
σ 2

W = 0.15, and σ 2
T = 0.07, and R ∼ Bernoulli(0.5).

advantage of the proposed method over the naive and the RC approach. For estimating parameters
using the naive and the RC method, we used clogit function of the R package Survival.
For the EE method, we used the Newton–Raphson algorithm using R and Fortran, and the
computer code is available from the author upon request.

Some limitations of the method are as follows. In principle, the EEs can produce multiple roots.
Although, this method can handle any type of error distribution, the method requires the existence
of the MGF of the errors. We also assume that the unbiased surrogate variables observed only in
the calibration data follow a normal distribution conditional on X. The proposed approach does
not work well when X and W are weakly associated. Although not considered in this paper, the
multiplicative structure of errors may arise in observational studies, and development of a flexible
method for handling multiplicative errors-in-covariates is a part of our future research.
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Appendix

Before we describe the asymptotic properties of the proposed estimator, we write the sufficient regularity conditions.
Assume that for each β in an open ball of the Euclidean space

C.1 each component of E{Si,newST
i,new} is finite,

C.2 A = E(∂Si,new/∂β) exists and is non-singular,
C.3 {∂2Si,new/∂β∂βT} exists for every data and each entry of this matrix is bounded by a measurable and integrable

function, i.e. |∂2Si,new/∂βk∂β
′
k | ≤ �kk′ , where �kk′ is a measurable and integrable function,

C.4 F = E{∂Sl,calib/∂θ} exists and is non-singular,
C.5 {∂2Si,calib/∂θ∂θT} exists for every data and each entry of this matrix is bounded by a measurable and integrable

function of the calibration data,
C.6 the MGF MW (t) exists and is positive at t = �−1

1 β1.

Lemma A.1 For known θ and β,

√
m{ψ̂(β, θ , �̂T ) − ψ(β, θ)} = m−1/2

m∑
i=1

a(Dcalib
i ) + op(1),
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where

a(Dcalib
i ) ≡

{
MK

T

(
−β1

K

)
MW (β1�

−1
1 )

}−1

exp(�−1
1 β1W∗

i )

(
�−1

1 W∗
i − �T

β1

K
− ψ(β, θ)

)

−
⎧⎨
⎩ 1

K − 1

K∑
j=1

(Tlj − T̄l)(Tlj − T̄l)
T − �T

⎫⎬
⎭ β1

K
.

Proof Using the Taylor series expansion
√

m{ψ̂(β, θ , �̂T ) − ψ} = √
m{ψ̂(β, θ , �T ) − ψ} + √

m(�̂T − �T ){∂ψ̂(β, θ ,
�T )/∂�T } + op(1), where {∂ψ̂(β, θ , �T )/∂�T } = −β1/K , and

√
m(�̂T − �T ) = 1√

m

m∑
l=1

⎧⎨
⎩ 1

K − 1

K∑
j=1

(Tlj − T̄l)(Tlj − T̄l)
T − �T

⎫⎬
⎭ .

Now consider the first term of the Taylor expansion. Let dPm(·) = m−1 ∑m
i=1 I(·), and P be the corresponding population

distribution. Then ψ̂(β, θ , �T ) can be written as
∫
(�−1W∗ − �T β1/2) exp(β1�

−1
1 W∗) dPm/

∫
exp(β1�

−1
1 W∗) dPm.

Now the Lemma follows from the Hadamard differentiation (van der Vaart 1998) of the function
∫
(�−1W∗ −

�T β1/2) exp(β1�
−1
1 W∗) dP/

∫
exp(β1�

−1
1 W∗) dP. �

Lemma A.2 The
√

m-consistent estimator of θ can be expressed as
√

m(θ̂ − θ) = m−1/2F−1(θ)
∑m

l=1 Sl,calib(θ) + op(1),
where F(θ) = E{Fl(θ)} with

Sl,calib(θ) =

⎡
⎢⎢⎢⎢⎢⎣

(Wl − bT
l θ) ⊗ 1

(Wl − bT
l θ) ⊗ T̄l + 1

K(K − 1)m

K∑
j=1

(Tlj − T̄l)(Tlj − T̄l)
T�1

(Wl − bT
l θ) ⊗ Zl

(Wl − bT
l θ) ⊗ Vl

⎤
⎥⎥⎥⎥⎥⎦ ,

Fl(θ) =

⎡
⎢⎢⎢⎢⎢⎣

bT
l ⊗ 1

bT
l ⊗ T̄l +

⎛
⎝0,

1

K(K − 1)

K∑
j=1

(Tlj − T̄l)(Tlj − T̄l)
T, 0, 0

⎞
⎠

bT
l ⊗ Zl

bT
l ⊗ Vl

⎤
⎥⎥⎥⎥⎥⎦ ,

and bT
l = [Ip : Ip ⊗ T̄l : Ip ⊗ ZT

l : Ip ⊗ VT
l ], and ⊗ denotes the Kronecker product. The proof of this result easily follows

from the EEs given in Section 3.2.

Proof of Proposition 1 It can be easily shown that due to the law of large number (1/n)Snew(β, θ̂ , γ̂ ψ̂(β, θ̂ , �̂T )) → 0
in probability. The key fact for this purpose is the unbiasedness of Snew(β, θ , γ , ψ(β, θ)). Under the conditions listed
above, the consistency of the estimators now follows from straightforward application of Foutz (1977, Theorem 2).

Before we derive the asymptotic distribution of the estimator, we introduce few other notations. Now, using the Taylor
series expansion we write

√
n(β̂n − β) = A−1

√
n

n∑
i=1

Si,new(β, θ̂ , γ̂ , ψ̂(β, θ̂ , �̂T )) + op(1)

d= A−1

[
1√
n

n∑
i=1

Si,new(β, θ , γ , ψ(β, θ)) + 1

n

n∑
i=1

∂

∂θ
Si,new(β, θ , γ , ψ̂(β, θ , �T ))

√
n√
m

√
m(θ̂ − θ)

+ 1

n

n∑
i=1

∂

∂γ
Si,new(β, θ , γ , ψ̂(β, θ , �T ))

√
n√
m

√
m(γ̂ − γ )

+ 1

n

n∑
i=1

∂

∂ψ
Si,new(β, θ , γ , ψ(β, θ))

√
n√
m

√
m{ψ̂(β, θ , �̂T ) − ψ(β, θ)}

]
+ op(1).
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Since E{∂Si,new(β, θ , γψ(β, θ))/∂γ } = 0, and using Lemmas A.1 and A.2, we can write

√
n(β̂n − β)

d= A−1

√
n

n∑
i=1

Si,new(β, θ , γ , ψ(β, θ)) + ρA−1
{

A2√
m

F−1(θ)

m∑
l=1

Sl,calib(θ)

+ A3√
m

m∑
l=1

a(Dcalib
l )

}
+ op(1). (A1)

Observe that the first term is independent of the second and third terms on the right-hand side of Equation (A1) as the
calibration data are drawn independently of the main data from the population. Now, using the Central Limit Theorem, these
two terms asymptotically follow normal distribution. Hence, asymptotically

√
n(β̂n − β) follows a normal distribution

with mean zero and variance

A−1[var{S1,new(β, θ , γ , ψ(β, θ))} + ρ2var{A2F−1S1,calib(θ) + A3a(Dcalib
1 )}]A−T.

Note that when m is very large compared with n, the contribution of the second term to the variance of β̂n is negligible. �
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