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ABSTRACT
The skew-probit link function is one of the popular choices for mod-
elling the success probability of a binary variable with regard to
covariates. This link deviates from the probit link function in terms
of a flexible skewness parameter. For this flexible link, the identifia-
bility of the parameters is investigated. Next, to reduce the bias of the
maximum likelihood estimator of the skew-probitmodelwepropose
to use the penalized likelihood approach. We consider three differ-
ent penalty functions, and compare them via extensive simulation
studies. Based on the simulation results wemake some practical rec-
ommendations. For the illustrationpurpose,weanalyse a real dataset
on heart-disease.
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1. Introduction

Logistic or probit model is widely used for modelling the success probability of a binary
variable in terms of covariates. Let Y and X be the binary response variable and a vec-
tor of covariates, then under the logistic model pr(Y = 1|X) = H(γ TZ) with H(u) =
exp(u)/{1 + exp(u)}, and under the probit model pr(Y = 1|X) = �(γ TZ) with �(u)
being the cumulative distribution function (CDF) of the standard normal distribution, and
Z = (1,XT)T. Both link functions,H and�, are considered to be symmetric link functions
as they approach to zero and one at the same rate. For a flexible regression model, practi-
tionersmay wish to use an asymmetric link that accommodates different convergence rates
towards zero and one. Failure to fit a flexible model to the data may result in biased esti-
mates of regression parameters, odds ratios, or risk differences. Towards that goal, Chen
et al. [1] introduced a class of asymmetric link functions formodelling binary data and dis-
cussed a Bayesian inference in that context. A special case of their link is the skew-probit
link, where the success probability of the binary response is modelled via the cumulative
distribution function (CDF) of the standard skew-normal distribution. In this paper, we
consider the skew probit link function that is used to model the success probability of Y
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2 D. LEE AND S. SINHA

given X as

pr(Y = 1|X) = F(η, δ) =
∫ η

−∞
2φ(u)�(δu)du, (1)

where η = ZTβ = β0 + XTβ1 with β = (β0,βT
1 )T, and φ(u) = d�(u)/du. Note that the

integrand in (1) represents the density of the standard skew-normal distribution with the
skewness parameter δ, that is denoted by Skew-Normal(ξ = 0,ω = 1, δ). To be clearer, the
probability density function of Skew-Normal(ξ ,ω, δ) is 2ω−1φ{ω−1(z − ξ)}�{δω−1(z −
ξ)}. In Equation (1), F denotes the CDF of Skew-Normal(ξ = 0,ω = 1, δ).

The skew-normal distribution and its properties are well studied in the literature [2–4].
Nowwe point out some differences of the papers that used the skew-probit link function or
its variations. Chen et al. [1] considered the CDF of Skew-Normal(0, 1 + δ2,−δ) to model
the success probability of binary Y. On the other hand, Bazán et al. [5] used the CDF of
Skew-Normal(0, 1, δ) to model the success probability in the context of item response the-
ory. Bazán et al. [6] considered a unified skew-probit link function that yields the link
functions of Chen et al. [1] and Bazán et al. [5] as special cases. Stingo et al. [7] considered
an extended family of skew-probit link functions that contains Equation (1) as a special
case. Bazán et al. [8] introduced two classes of asymmetrical link functions. One class is
based on the CDF of the power-normal distribution that has the density function f1(s) =
λ[�(s)]λ−1φ(s), and this link becomes our skew-probit link (1) with δ = 1 when λ = 2.
The other class is based on the CDF of the reciprocal power-normal distribution with
the density function f2(s) = λ[�(−s)]λ−1φ(−s), and this link becomes our skew-probit
link (1) with δ = −1 when λ = 2. Kim et al. [9] proposed a generalized t-link function to
model binary response variables, and when their parameters ν1 = ν2 = ν → ∞ their link
function reduces to the CDF of Skew-Normal(0, 1 + δ2,−δ).

In this paper, we address two important issues, identifiability of the model parameters
and the bias of the maximum likelihood estimator (MLE) of θ = (βT , δ)T of model (1). A
clear knowledge on the identifiability of parameters is necessary for proposing anymethod
of estimation. Secondly, biased estimates may lead to incorrect inference regarding the
model parameters, the association between the response and covariates and the marginal
effect of the covariate. Although these issues are important for model formulations and
deciding on the appropriate method of analysis, to the best of our knowledge, these issues
have not been investigated till date.

Nowwe brieflymention some existing literature on these issues. Genton and Zhang [10]
investigated identifiability for some non-Gaussian spatial random fields that include mul-
tivariate skew-normal distributions. Castro et al. [11] studied parameter identifiability for
multivariate skew-normal distributions. Otiniano et al. [12] investigated parameter iden-
tifiability for a finite mixture of skew-normal distributions and a finite mixture of skew-t
distributions. Although these approaches considered the important case of a continuous
response variable, parameter identifiability has not been investigated for a binary response
variable that follows the skew-probit link.

The bias in theMLE of the skew-normal model where the response Y is continuous and
follows Skew-Normal(μ,ω, δ), is a well-researched topic. Following Firth [13]’s general
recommendation to reducing finite sample bias, Sartori [14] proposed to estimate the skew-
ness parameter δ of the Skew-Normal(μ = 0,ω = 1, δ) model by maximizing the penal-
ized log-likelihood, � + 0.5log{determinant(I)}, where � stands for the log-likelihood
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while I stands for the Fisher information matrix. Sartori [14] also considered estimation
of δ in the presence of unknown μ and ω, where only δ was estimated by maximiz-
ing a penalized profiled log-likelihood function and the other parameters were estimated
by maximizing the likelihood function for a given δ. Later on, Azzalini and Arellano-
Valle [15] applied the penalized likelihood idea in the general case of three-parameter
Skew Normal(μ,ω, δ) model, where all three parameters were estimated by maximizing
the penalized log-likelihood function. To reduce the finite sample bias, researchers consid-
ered Bayesian inference of the skew-normal model under various priors including default
and proper priors [16,17].

In this paper, we are considering model (1) for a binary response variable Y. Hence,
our model is distinct from the models of the papers discussed in the previous two para-
graphs where the response Y was considered to be a continuous variable. Furthermore,
we are considering the issue in the presence of a regressor variable X that no one has
considered before even when a continuous Y followed a skew-normal distribution. As a
general strategy to reduce the first order bias in the MLE of β and δ, one may consider
the bootstrap bias correction approach or the bias correction approach of Cox and Snell
[18]. These two approaches require theMLE to be finite that may not happen in small sam-
ples. Therefore, as an alternative, we consider estimation of the parameters by maximizing
a penalized likelihood function. In this penalized likelihood method, first we apply Firth
[13]’s method to prevent the bias where the likelihood function is penalized by the Jeffrey’s
prior. Additionally, we consider two more penalization approaches one by using the gen-
eralized information matrix prior [19] and two by using the Cauchy prior [20]. Finally, all
these methods are compared through extensive simulation studies.

Instead of maximizing an objective function to estimate parameters, one may use a
Bayesian approach by specifying a prior distribution for each of the parameters. For
instance, Bazán et al. [6] proposed a Bayesian inference for fitting skewed link functions for
binary regression, and incorporation of any prior knowledge on parameters is quite useful
to reduce bias especially for small tomoderate sample sizes.Wewould like to point out that
there is a close connection between the penalized methods we consider and the Bayesian
inference. In the penalized likelihood method, first we multiply the likelihood function by
the Jeffrey’s prior [13], generalized Jeffrey’s prior [19] or the Cauchy prior [20], and thenwe
maximize the resultant likelihood. These estimators can be viewed as the mode of the pos-
terior distribution of the parameters (the so-called MAP estimator). Also, the penalized
estimator with Jeffrey’s prior can be seen as an objective Bayes estimator as it is derived
under the Jeffrey’s prior, a well-known objective prior [21].

This research was partly motivated by a dataset on heart-disease [22], where the
interest is in finding association between the occurrence of artery blockage and sev-
eral clinical variables. A standard probit analysis of this data indicates a lack-of-fit at
the 5% level of significance and that led us to consider the skew-probit model. How-
ever, for this skew-probit model, the maximum likelihood estimation (MLE) and Bayesian
estimation with flexible prior on the regression parameters and the skewness parame-
ter led to somewhat different parameter estimates. The estimate (95% CI) of δ under
the MLE was 1.54(−0.35, 3.43), while the posterior means (95% credible interval) for δ

were 0.18(−0.85, 1.59) and 0.54(0.02, 1.93) for the Bayesian method with uniform(−5, 5)
prior and uniform(0, 5) prior on δ, respectively, and normal(0, 52) prior on all regression
parameters. These differences in the results indicate that an objective method is needed to
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estimate themodel parameters. In Section 5we analyse this dataset using differentmethods
and compare their results.

Before concluding this section we would like to highlight the novelties of this paper. To
the best of our knowledge, this is the first paper that investigates parameter identifiability
and the bias in the MLE of the binary model with the skew-probit link function. To reduce
finite sample bias, we apply general bias reduction strategies to this particular problem, and
compare and assess the effectiveness of the approaches through simulation studies.

2. Parameter identifiability

In general, model parameters are identifiable if the parameter values uniquely identify the
underlying probability model. Now, following Rothenberg [23]’s general concept of iden-
tifiability, we present a formal definition of identifiability in our context of the skew-probit
model.
Identifiability. The parameter set θ = (βT , δ)T is said to be identifiable if F(ZTβ , δ) =
F(ZTβ ′, δ′) for every Z implies (β ′, δ′) = (β , δ). A parameter set θ is said to be locally
identifiable if within a neighbourhoodN there does not exist a (β ′, δ′) ∈ N \{(β , δ)} such
that F(ZTβ , δ) = F(ZTβ ′, δ′) for every Z. A necessary and sufficient condition for local
identifiability is the non-singularity of the Fisher informationmatrix [23]. Now, we investi-
gate identifiability of three different cases, no covariate, a binary covariate and a continuous
covariate, and these cases are presented in the following propositions. Based on these inves-
tigations, we conclude that the model parameters are not globally identifiable, however, for
a continuous X and when δ �= 0 the parameters are identifiable.

Proposition 2.1: In the absence of any covariate, the intercept β0 and the skew-
ness parameter δ are not identifiable in the skew-probit model pr(Y = 1) = F(β0, δ) =∫ β0
−∞ 2φ(u)�(δu)du. In other words, for a given value of (β0, δ), there exist β ′

0 �= β0 and
δ′ �= δ such that F(β0, δ) = F(β ′

0, δ
′).

Heuristic proof: In the absence of any covariate, the intercept β0 and the skewness
parameter δ are not identifiable in the skew-probit model pr(Y = 1) = F(β0, δ) =∫ β0
−∞ 2φ(u)�(δu)du. In other words, for a given value of (β0, δ) we can find another

(β ′
0, δ

′) such that F(β0, δ) = F(β ′
0, δ

′). This fact is illustrated in Figure 1. This figure
contains two CDFs for Skew-Normal(μ = 0,ω = 1, δ) and Skew-Normal(μ = 0,ω =
1, δ′) distributions. At the abscissa β0, the height of the dotted vertical line up to the
CDF for the Skew-Normal(μ = 0,ω = 1, δ) distribution is F(β0, δ). For the same value
of the CDF, F(β0, δ), there is another β ′

0 and δ′, such that F(β0, δ) = F(β ′
0, δ

′). Par-
ticularly, the abscissa of the point where the horizontal line at F(β0, δ) hits the CDF
for the Skew-Normal(μ = 0,ω = 1, δ′) distribution is β ′

0. This signifies that the CDF
of the Skew-Normal(μ = 0,ω = 1, δ′) distribution at β ′

0 is the same as F(β0, δ). If �

stands for the log-likelihood, then analytical calculations show that E(∂2�/∂β0∂β0) =
−4φ2(β0)�

2(β0δ)/F(β0, δ){1 − F(β0, δ)}, E(∂2�/∂δ∂δ) = − exp{−β2
0 (1 + δ2)}/π2(1 +

δ2)2F(β0, δ){1 − F(β0, δ)}, E(∂2�/∂β0∂δ) = 2φ(β0)�(β0δ) exp{−β2
0 (1 + δ2)/2}/π(1 +

δ2)F(β0, δ){1 − F(β0, δ)}, and the determinant of the Fisher information matrix
E(∂2�/∂β0∂β0)E(∂2�/∂δ∂δ) − E2(∂2�/∂β0∂δ) = 0.

�
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Figure 1. Illustration of parameter identifiability in the skew-probit model.

Analytical proof: Now, suppose that (U1,U2)
T ∼ BVN(μ, �), where μ = (0, 0)T

and � =
(

1 −λ

−λ 1

)
, where λ = λ(δ) = δ/

√
1 + δ2. Then following the marginal-

conditional factorization approach [5,24] the CDF of the bivariate normal variable can be
written as

2�2((η, 0)T;μ,�) = 2
∫ η

−∞

∫ 0

−∞
fU1(u)fU2|U1(v|u)dvdu

= 2
∫ η

−∞
φ(u)

∫ 0

−∞
1√

1 − λ2
φ

(
v + λu√
1 − λ2

)
dvdu

= 2
∫ η

−∞
φ(u)�

(
λu√
1 − λ2

)
du =

∫ η

−∞
2φ(u)�(δu)du. (2)

Equation (2) shows the equivalence between the CDF of the bivariate normal variable and
the skew-probit link. Because of this equivalence, when λ = δ/

√
1 + δ2, the identifiability

of (β0,β1, λ)T of the CDF of the bivariate normal variable is the same as the identifiability
of (β0,β1, δ)T of the skew-probit link function given in Equation (1).

In the no covariate case, for showing non-identifiability of η = β0 and λ, we have to
show that for a given (η, λ) where λ �= 0, we can find (η∗, λ∗) �= (η, λ) such that

2
∫ η∗

−∞
φ(u)�

(
λ∗u√
1 − λ∗2

)
du = 2

∫ η

−∞
φ(u)�

(
λu√
1 − λ2

)
du. (3)

Note that for an arbitrary choice of λ∗ ∈ (−1, 1), the left-hand side (LHS) of Equation (3) is
a continuous and increasing function in η∗, and the LHS→ 0 and 1 as η∗ → −∞ and∞,
respectively. On the other hand, for given (η, λ) the right-hand side (RHS) of Equation (3)
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is a known fraction r. Therefore, for an arbitrary choice of λ∗, Equation (3) yields a unique
solution for η∗ that depends on λ∗ and r. Although it is difficult or impossible to get a
closed form solution, η∗ can be easily obtained numerically for an arbitrary choice of λ∗
and known r. �

Proposition 2.2: In the presence of a binary covariate X, parameters (β0,β1, δ) of the skew-
probit model pr(Y = 1|X) = F(β0 + β1X, δ) are not identifiable. In other words, for a given
value of (β0,β1, δ), there exist (β ′

0,β
′
1, δ

′) �= (β0,β1, δ) such that F(β0 + β1X, δ) = F(β ′
0 +

β1X, δ′) for all X=0,1.

Heuristic proof: Now suppose that there is a binary covariate X, and the model is pr(Y =
1|X) = F(β0 + β1X, δ). If the parameter (β0,β1, δ) is non-identifiable, then we can find
a (β ′

0,β
′
1, δ

′) �= (β0,β1, δ), such that F(β0 + β1X, δ) = F(β ′
0 + β ′

1X, δ
′) for every X. Now

consider the two probabilities, pr(Y = 1|X = 1) = F(β0 + β1, δ) and pr(Y = 1|X = 0) =
F(β0, δ). From the discussion in the previous paragraph, we know that for a given (β0, δ)
we can find a (β ′

0, δ
′) �= (β0, δ) such that F(β0, δ) = F(β ′

0, δ
′). Now, it turns out that given

these two sets, (β0, δ) and (β ′
0, δ

′), for every β1 we can find a β ′
1, such that F(β0 + β1, δ) =

F(β ′
0 + β ′

1, δ
′). In Figure 1, at the abscissa (β0 + β1) the height of the dotted vertical line up

to the CDF for the Skew-Normal(μ = 0,ω = 1, δ) distribution is F(β0 + β1, δ). Now, the
abscissa of the intersection point of the horizontal line at F(β0 + β1, δ) with the CDF for
the Skew-Normal(μ = 0,ω = 1, δ′) distribution is β ′

0 + β ′
1. That means, F(β0 + β1, δ) =

F(β ′
0 + β ′

1, δ
′). Hence, the model parameters are not identifiable. Using similar arguments

we conclude that for a categorical covariateX, themodel parameters of a skew-probitmodel
are not identifiable. �

Analytical proof: Due to relation (2), identifiability of (β0,β1, δ) and (β0,β1, λ) are equiv-
alent.We show that for a binary covariateX,β0,β1, λ are not identifiable.Model parameters
are not identifiable when for every given (β0,β1, λ) we can find (β∗

0 ,β
∗
1 , λ

∗) such that

2
∫ β∗

0+β∗
1X

−∞
φ(u)�

(
λ∗u√
1 − λ∗2

)
du. = 2

∫ β0+β1X

−∞
φ(u)�

(
λu√
1 − λ2

)
du (4)

for every X. Using X=0 and X=1 in (4) we obtain

2
∫ β∗

0

−∞
φ(u)�

(
λ∗u√
1 − λ∗2

)
du = 2

∫ β0

−∞
φ(u)�

(
λu√
1 − λ2

)
du (5)

and

2
∫ β∗

0+β∗
1

−∞
φ(u)�

(
λ∗u√
1 − λ∗2

)
du. = 2

∫ β0+β1

−∞
φ(u)�

(
λu√
1 − λ2

)
du. (6)

Like the analytical proof of Proposition 2.1, for given (β0, λ) and an arbitrary choice of
λ∗, Equation (5) yields a unique solution for β∗

0 that is a function of (β0, λ) and λ∗. Next
consider Equation (6) whose RHS is a known fraction. After plugging in the solution
of β∗

0 = β∗
0 (β0, λ, λ∗) into (6) we obtain a non-linear equation in β∗

1 that is continuous,
bounded and increasing. Importantly, the LHS of (6) converges to 0 or 1 as β∗

1 con-
verges to −∞ or ∞, respectively. Hence, (6) produces a unique solution for β∗

1 for given
β0,β1, λ,β∗

0 , λ
∗. �
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Proposition 2.3: In the presence of a continuous covariate X, parameters (β0,β1, δ) of the
skew-probit model pr(Y = 1|X) = F(β0 + β1X, δ) are identifiable. In other words, for a
given value of (β0,β1, δ), there does not exist another (β ′

0,β
′
1, δ

′) �= (β0,β1, δ) such that
F(β0 + β1X, δ) = F(β ′

0 + β1X, δ′) for all X.

Proof: We assume that β1 is non-zero, otherwise it will be the same as the case
where there is no covariate. First, we show that for a fixed δ, (β0,β1) is identifiable.
That is, F(β0 + β1X, δ) = F(β ′

0 + β ′
1X, δ) for all X implies (β0,β1) = (β ′

0,β
′
1). Note that∫ β0+β1X

−∞ 2φ(u)�(δu)du = ∫ β ′
0+β ′

1X−∞ 2φ(u)�(δu)du implies β0 + β1X = β ′
0 + β ′

1X for all
X. Therefore, β0 = β ′

0 and β1 = β ′
1. Thus, if δ is fully specified, the remaining parameters

are identifiable. However, identifiability of all three parameters (β0,β1, δ) is nontrivial and
somewhat tricky, and this is what we consider next.

Suppose that θ = (β0,β1, δ)T involved in the skew-probit model is not identifiable. In
the following discussion we shall be using the fact that for a fixed δ, F(·, δ) is a strictly
increasing function so that its inverse function, denoted by F−1

δ (·), exists. If the parameters
are not identifiable, then there exists a θ ′ = (β ′

0,β
′
1, δ

′) �= θ , where δ′ �= δ such that

F(β0 + β1X, δ) = F(β ′
0 + β ′

1X, δ
′) for all X, (7)

and particularly for X=0, non-identifiability implies

F(β0, δ) = F(β ′
0, δ

′). (8)

Now, using the inverse operation on (8) and (7) we obtain

F−1
δ {F(β0, δ)} = β0 = F−1

δ {F(β ′
0, δ

′)}, (9)

β0 + β1X = F−1
δ {F(β ′

0 + β ′
1X, δ

′)}. (10)

Subtracting (9) from (10) we obtain

β1X = F−1
δ {F(β ′

0 + β ′
1X, δ

′)} − F−1
δ {F(β ′

0, δ
′)} (11)

for X �= 0. Differentiating both sides of Equation (11) with respect to X we get

β1 = φ(β ′
0 + β ′

1X)�{δ′(β ′
0 + β ′

1X)}β ′
1

φ[F−1
δ {F(β ′

0 + β ′
1X, δ′)}]�[δF−1

δ {F(β ′
0 + β ′

1X, δ′)}] . (12)

Since δ′ �= δ, F−1
δ {F(β ′

0 + β ′
1X, δ

′)} �= β ′
0 + β ′

1X for allX, whichmeans that the right-hand
side of (12) is a non-linear function of X while the left-hand side is a constant. Therefore,
our assumption that θ is not identifiable is wrong and it completes the proof.

To investigate this matter little further, we provide the following proof to show that for
a continuous X and for any given (β0,β1, δ), where β1 �= 0 is fixed and δ �= 0, there does
not exist another (β ′

0,β1, δ′) such that F(β0 + β1X, δ) = F(β ′
0 + β1X, δ′) for all X.



8 D. LEE AND S. SINHA

Suppose that for a fixed β1 �= 0 and δ �= 0, there exist β ′
0 �= β0 and δ′ �= δ such that

F(β0 + β1X, δ) = F(β ′
0 + β1X, δ′) (13)

for all X. Taking derivative of (13) with respect to X, we obtain

φ(β0 + β1X)�{δ(β0 + β1X)} = φ(β ′
0 + β1X)�{δ′(β ′

0 + β1X)}. (14)

Plugging in X = −β0/β1 and −β ′
0/β1 in (14), we obtain

φ(0)�(0) = φ(β ′
0 − β0)�{δ′(β ′

0 − β0)}, and

φ(0)�(0) = φ(β0 − β ′
0)�{δ(β0 − β ′

0)}. (15)

Relations in (15) together imply �{δ′(β ′
0 − β0)} = �{δ(β0 − β ′

0)} which implies

δ(β0 − β ′
0) = δ′(β ′

0 − β0). (16)

Equation (16) holds if either 1) β ′
0 = β0 or 2) δ′ = −δ. Suppose that 1) β ′

0 = β0 holds.
Then from (14), we obtain φ(β0)�(δβ0) = φ(β0)�(δ′β0)whenX=0, this implies δ = δ′.
Hence (β ′

0,β1, δ′) = (β0,β1, δ). Next, suppose that 2) δ′ = −δ holds. Then from (14), we
obtain

φ(β0 + β1X)

φ(β ′
0 + β1X)

= �{−δ(β ′
0 + β1X)}

�{δ(β0 + β1X)} (17)

for all X. Without loss of generality assume that δ > 0. Define X = {X : X >

max(−β0/β1,−β ′
0/β1)}. Now, for any X ∈ X the right-hand side of (17) lies in (0, 1)

while the left-hand side of (17) is not guaranteed to lie in (0, 1). Hence we obtain a
contradiction. �

3. Bias reduction

3.1. Maximum likelihood and bootstrap

Suppose that the observed dataD = (D1, . . . ,Dn) with Di = (Yi,Xi), i = 1, . . . , n are col-
lected from n subjects that are randomly drawn from the underlying population. At least
one component of the covariate vector is assumed to be continuous. We want to fit the
regression model 1 to the data. The logarithm of the likelihood is

� =
n∑

i=1
Yilog{F(ηi, δ)} + (1 − Yi)log{1 − F(ηi, δ)},

where ηi = ZT
i β and Zi = (1,XT

i )T. The maximum likelihood estimators (MLE) of β and
δ are obtained by solving ∂�/∂θ = (∂�/∂βT , ∂�/∂δ)T = 0, where

∂�

∂β
= 2

n∑
i=1

{
Yi

F(ηi, δ)
− (1 − Yi)

1 − F(ηi, δ)

}
φ(ηi)�(δηi)Zi,

∂�

∂δ
=

n∑
i=1

{
− Yi

F(ηi, δ)
+ (1 − Yi)

1 − F(ηi, δ)

}
exp{−η2i (1 + δ2)/2}

π(1 + δ2)
.

In principle, the parameter estimates can be obtained by solving the above equations using
the scoring method. Let θ (t) be the parameter value at the tth iteration of the scoring
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method. Then at the (t + 1)th iteration we obtain

θ (t+1) = θ (t) + I−1(θ (t))

(
∂�

∂θ

)
θ=θ (t)

,

where the information matrix I(θ) = −E(∂2�/∂θ∂θT) with

E
(

∂2�

∂ββT

)
= −4

n∑
i=1

φ2(ηi)�
2(δηi)

F(ηi, δ){1 − F(ηi, δ)}ZiZT
i ,

E
(

∂2�

∂δ2

)
= −

n∑
i=1

exp{−η2i (1 + δ2)}
π2(1 + δ2)2F(ηi, δ){1 − F(ηi, δ)} ,

E
(

∂2�

∂δ∂β

)
= 2

n∑
i=1

φ(ηi)�(δηi) exp{−η2i (1 + δ2)/2}
π(1 + δ2)F(ηi, δ){1 − F(ηi, δ)} Zi.

We note that the information matrix can be written as I(θ) = W(θ)TA(θ)W(θ),
where A(θ) = diag[F(ηi, δ){1 − F(ηi, δ)}]−1, W(θ)T = [W1(θ), . . . ,Wn(θ)], WT

i (θ) =
[2φ(ηi)�(δηi)ZT

i ,− exp{ηi = ZT
i βWT

i (θ)ZiW(θ)θ (t+1) = {W(θ (t))T A(θ (t))W(θ (t))}−1

W(θ (t))T A(θ (t))Y∗(θ (t)) Y∗(θ (t)) = W(θ (t)) θ (t) + {Y − μ(θ (t))}, Y = (Y1, . . . , Yn)
T,

μ(θ (t)) = (F(η
(t)
1 , δ(t)), . . . , F(η

(t)
n , �(t)))Tη

(t)
i = ZT

i β(t).
For larger values of δ, the curvature E(−∂2�/∂δ2) tends to be small, resulting in highly

biased MLE of δ. Additionally, if there is no covariate, and the model for Y is pr(Y = 1) =
2
∫ 0
−∞ φ(u)�(δu)du that involves with only one parameter δ, the probability that theMLE

of δ diverges to +∞ or −∞ is pn(δ) = pr(Y1 = · · · = Yn = 0) + pr(Y1 = · · · = Yn =
1) = {π + 2 tan−1(δ)/(2π)}n + {π − 2 tan−1(δ)/(2π)}n. Although this probability goes
to zero as n → ∞, this may not be negligible for a moderate value of n. This pn(δ) is also
the probability of diverging MLE of δ when a continuous response follows skew-normal
(μ = 0,ω = 1, δ) [15].

In order to reduce the finite sample bias of theMLE that is of the orderO(n−1), we con-
sider the following strategies. First, we apply the bootstrapmethod to reduce the bias of the
MLE. Suppose that b(̂θMLE) denotes the bias of θ̂MLE, the MLE of θ . Based on B bootstrap
samples, we estimate b(̂θMLE), and denote this estimator of bias by b̂boot(̂θMLE). The bias
corrected estimator is then defined as θ̂MLE − b̂boot(̂θMLE). This approach is referred to as
method B.

3.2. Penalizedmaximum likelihood

Next, we propose to estimate the parameters by maximizing a penalized likelihood,

�p = � + M(θ),

whereM(θ) is the penalty function. The estimator obtained by maximizing �p can be seen
as the posterior mode where the prior distribution π(θ) ∝ exp{M(θ)}. Unlike the other
bias correction approaches that require the estimator to be finite, this approach does not
require the MLE to be finite. Rather penalization helps to add a curvature in a otherwise
flat likelihood surface, and thereby the penalized likelihood method prevents the estimate
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to be infinite or unrealistically large and also reduces finite sample bias. Following the
general strategy of Firth [13], we replaceM(θ) by 0.5log[det{I(θ)}], where det stands for
matrix determinant. Thus, the maximum penalized likelihood estimator, denoted by θ̂pj,
is obtained by solving

∂�p

∂β
= 2

n∑
i=1

{
Yi

F(ηi, δ)
− (1 − Yi)

1 − F(ηi, δ)

}
φ(ηi)�(δηi)Zi + 1

2
trace

{
I−1(θ)

∂I(θ)

∂β

}
= 0,

∂�p

∂δ
=

n∑
i=1

{
− Yi

F(ηi, δ)
+ (1 − Yi)

1 − F(ηi, δ)

}
exp{−η2i (1 + δ2)/2}

π(1 + δ2)

+ 1
2
trace

{
I−1(θ)

∂I(θ)

∂δ

}
= 0.

This approach is referred to as method J. This estimator can be seen as the posterior mode
when the Jeffrey’s prior is used on the parameters as eM(θ) = det{I(θ)}1/2. Although this
approach of bias reduction has been extensively used in various contexts including when a
continuous response follows skew-normal (μ = 0,ω = 1, δ) [15], the approach has never
been applied to the case where the binary response variable Y is modelled via the skew-
probit link.

Next, we consider a generalization of the Jeffrey’s prior [19], where the prior
πGI(θ) ∝ |det{I(θ)}|1/2 exp{−(θ − θ0)

TI(θ)(θ − θ0)/2c0}. For a large c0, πGI(θ) con-
verges |det{I(θ)}|1/2, that is Jeffery’s prior. Gupta and Ibrahim [19] showed that under
a logistic model, πGI has lower mass around the centre and heavier tail than the normal
distribution resulting in a relatively non-informative prior. Adopting their prior distribu-
tion with c0 = 1 and θ0 = 1, and settingM(θ) = log{πGI(θ)} in our penalized likelihood
�p, we obtain the following estimating equations to estimate (βT , δ)T:

∂�p

∂β
= 2

n∑
i=1

{
Yi

F(ηi, δ)
− (1 − Yi)

1 − F(ηi, δ)

}
φ(ηi)�(δηi)Zi + 1

2
trace

{
I−1(θ)

∂I(θ)

∂β

}

− 1
2

∂θTI(θ)θ

∂β
= 0,

∂�p

∂δ
=

n∑
i=1

{
− Yi

F(ηi, δ)
+ (1 − Yi)

1 − F(ηi, δ)

}
exp{−η2i (1 + δ2)/2}

π(1 + δ2)
+ 1

2
trace

{
I−1(θ)

∂I(θ)

∂δ

}

− 1
2

∂θTI(θ)θ

∂δ
= 0.

This method is referred to as method G.
Gelman et al. [20] pointed out use of Jeffrey’s prior distribution might produce unre-

liable computation and be difficult to interpret in the Bayesian context. To avoid these
potential issues, they proposed weakly informative Cauchy distribution prior for estimat-
ing logistic model parameters which results in stable and regularized estimates. Adopt-
ing their recommendation in our setup we consider eM(θ) = �k{π(1 + θ2k /2.52)}−1, i.e.
M(θ) = −∑k log(1 + θ2k /2.52). This implies independent Cauchy(0, 2.5) prior for each
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component of θ . Corresponding estimators are obtained by solving

∂�p

∂β
= 2

n∑
i=1

{
Yi

F(ηi, δ)
− (1 − Yi)

1 − F(ηi, δ)

}
φ(ηi)�(δηi)Zi

− 1TDiag

(
2β0

2.52 + β2
0
,

2β1

2.52 + β2
1
, . . . ,

2βq

2.52 + β2
q

)
= 0,

∂�p

∂δ
=

n∑
i=1

{
− Yi

F(ηi, δ)
+ (1 − Yi)

1 − F(ηi, δ)

}
exp{−η2i (1 + δ2)/2}

π(1 + δ2)
− 2δ

2.52 + δ2
= 0,

where q is the number of covariates. This approach is referred to as method C.
Penalized estimators are obtained by solving themodified score equation (∂�p/∂θ) = 0.

Note that the penalty function M(θ) is a Op(1) order term while the log-likelihood � is
Op(n) order term. Therefore, the asymptotic standard error calculation using the Fisher
information matrix is still valid. That is, under certain regularity conditions, we may
apply the standard likelihood theory to test hypotheses regarding parameters. However,
the expected information matrix is singular when δ = 0. Therefore, one can use Fisher’s
information matrix for statistical inference as long as δ �= 0. Alternative parametrization
(Pearson’s skewness parameter) is required to handle δ = 0 case [25, p.66].

We consider two other penalized estimators. First, where the Jeffrey’s prior for δ is con-
structed assuming β0 = 0 and β1 = 0, and the logarithm of the prior density is used as
the penalty functionM(θ). Second, we takeM(θ) to be the logarithm of the density func-
tion of the t distribution with degrees of freedom 2, location 0 and scale parameter 0.5 on
the skewness parameter δ. This t density for δ arises due to a non-informative prior on κ

when a standard skew-normal variable U with the skewness parameter δ is expressed as
U = √

1 − κ2Z + κZ∗, with Z ∼ Normal(0, 1), and Z∗ follows a half-normal density with
the density function f (Z∗) = 2(2π)−1/2 exp{−(Z∗)2/2}, Z∗ > 0 [26]. However, in our ini-
tial numerical studies the performance of these penalized estimators is much worse than
the other penalized estimators, so we have omitted them from further consideration.

4. Simulation study

Design: We simulated datasets of different sizes, n=200, 500, 1000, 2000 and 5000. We
considered cases with a scalar covariate X1 (scenarios 1−12) and cases with multiple
covariates, X1 and X2 (scenarios 13−16), and for each dataset the response Y was a binary
variable. We set β1 = 1, β2 = −0.7, δ = 4 or 8 and defined pm = pr(Y = 1) = ∫

pr(Y =
1|x)g(x)dx as the marginal success probability. Depending on δ, pm and the distribu-
tion of X1 and X2, β0 was determined. Given X1 (or X1 and X2), Y was generated using
the Bernoulli distribution with success probability pr(Y = 1|X) = F(β0 + β1X1, δ) (or
F(β0 + β1X1 + β2X2, δ)). The simulation scenarios are listed below while a summary of
the simulation design is presented in Table 1. In all scenarios, the variance of each covari-
ate X1,X2 remains the same, and we considered small (12%) and moderate (40%) values
for pm. Importantly, we have used three different distributions for the covariate, uniform
(U), normal (N), and a two-component mixture of normals. For the scalar and multiple
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Table 1. A summary of the simulation designs. Here pm = E{pr(Y = 1|X)} denotes the marginal suc-
cess probability of Y.

Scenario X1 X2 δ β0 pm

1 Uniform(−2, 2) NA 4 −0.87 12%
2 0.37 40%
3 8 −0.85 12%
4 0.38 40%
5 Normal(0, (

√
4/3)2) NA 4 −0.77 12%

6 0.42 40%
7 8 −0.73 12%
8 0.44 40%
9 0.5Normal(−1, (

√
1/3)2) NA 4 −0.85 12%

10 0.35 40%
11 +0.5Normal(1, (

√
1/3)2) 8 −0.82 12%

12 0.37 40%
13 Uniform(−2, 2) Normal(0, (

√
4/3)2) 4 −1.09 12%

14 0.34 40%
15 8 −1.07 12%
16 0.36 40%

covariate cases we estimated θ = (β0,β1, δ)T and θ = (β0,β1,β2, δ)T, respectively, using
the five methods (N, B, J, G, C) discussed in the previous section.

(S1) X1 ∼ U(−2, 2), β1 = 1, δ = 4, β0 = −0.87, pm = 12%;
(S2) X1 ∼ U(−2, 2), β1 = 1, δ = 4, β0 = 0.37, pm = 40%;
(S3) X1 ∼ U(−2, 2), β1 = 1, δ = 8, β0 = −0.85, pm = 12%;
(S4) X1 ∼ U(−2, 2), β1 = 1, δ = 8, β0 = 0.38, pm = 40%;
(S5) X1 ∼ N(0, (

√
4/3)2), β1 = 1, δ = 4, β0 = −0.77, pm = 12%;

(S6) X1 ∼ N(0, (
√
4/3)2), β1 = 1, δ = 4, β0 = 0.42, pm = 40%;

(S7) X1 ∼ N(0, (
√
4/3)2), β1 = 1, δ = 8, β0 = −0.73, pm = 12%;

(S8) X1 ∼ N(0, (
√
4/3)2), β1 = 1, δ = 8, β0 = 0.44, pm = 40%;

(S9) X1 ∼ 0.5N(−1, (
√
1/3)2) + 0.5N(1, (

√
1/3)2), β1 = 1, δ = 4, β0 = −0.85, pm =

12%;
(S10) X1 ∼ 0.5N(−1, (

√
1/3)2) + 0.5N(1, (

√
1/3)2), β1 = 1, δ = 4, β0 = 0.35, pm =

40%;
(S11) X1 ∼ 0.5N(−1, (

√
1/3)2) + 0.5N(1, (

√
1/3)2), β1 = 1, δ = 8, β0 = −0.82, pm =

12%;
(S12) X1 ∼ 0.5N(−1, (

√
1/3)2) + 0.5N(1, (

√
1/3)2), β1 = 1, δ = 8, β0 = 0.37, pm =

40%;
(S13) X1 ∼ U(−2, 2),X2 ∼ N(0, (

√
4/3)2),β1 = 1,β2 = −0.7, δ = 4,β0 = −1.09, pm =

12%;
(S14) X1 ∼ U(−2, 2), X2 ∼ N(0, (

√
4/3)2), β1 = 1, β2 = −0.7, δ = 4, β0 = 0.34, pm =

40%;
(S15) X1 ∼ U(−2, 2),X2 ∼ N(0, (

√
4/3)2),β1 = 1,β2 = −0.7, δ = 8,β0 = −1.07, pm =

12%;
(S16) X1 ∼ U(−2, 2), X2 ∼ N(0, (

√
4/3)2), β1 = 1, β2 = −0.7, δ = 8, β0 = 0.36, pm =

40%;
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Implementation: For all penalized methods we set the initial value of β-parameter to
the probit regression estimates while the initial value of δ was set to 3. We also experi-
mented by setting the initial value of δ to random numbers generated from uniform(0, 10),
however, the parameter estimates do not change with the initial value as long as the ini-
tial value of δ has the same sign as of the true δ. However, as the sample size increases,
the sign of the initial value seems to have less impact on the final estimate. To obtain
estimates for all five methods, we used the R function ucminf in package ucminf that
makes use of the quasi-Newton optimization with BFGS updating for the inverse Hessian
matrix [27]. There was no convergence issue in using this optimization method. However,
one may face convergence issues in using the nlm function or the L-BFGS-B algorithm
used in optim, and a detailed comparison of different optimization algorithms is given in
Section S.2 of the supplementary materials. Particularly, in Table S.8 of the supplementary
materials we compare different algorithms in terms of the number of datasets associated
with non-convergent estimates. All simulations were conducted in a supermicro server
with 28 core Intel Xeon CPU E5-2680 v4 @ 2.40GHz and 64GB of 2400MHz DDR4
RAM.

Results: We present boxplots of estimates for each parameter (β0 ≡ intercept, slope(s),
δ ≡ skewness) with the empirical coverage probability for the 95% nominal level of signif-
icance. We note that the scales of the y-axis might be different so that a direct comparison
needs to be done with caution. All results are based on 1000 replications. The empirical
coverage probability was calculated using Wald-type confidence intervals, where the stan-
dard errors were calculated by inverting the Fisher information matrix. For the bootstrap
approach (method B), we have used 200 bootstrap samples. Performances of estimates for
scenarios 1–4 are presented in Figures 2–5, respectively. In addition, mean and standard
deviation of the computation time for scenarios 1–4 are provided in Table 2. Correspond-
ing figures and tables for scenarios 5–12 are given in Section S.1 of the supplementary
materials. We observed that the resulting figures and the pattern of computation times are
similar across the scenarios we consider.

Regarding the intercept and slope estimator, and considering all sample sizes, the per-
formance of method J is the best among these five approaches in terms of bias, variability
and coverage probability, and its bias and variability decrease with the sample size.

The performance of method G is poor as its bias does not decrease with the sample
size. The bias, variability and coverage probability of methods B and C are poor when
the sample size is small, while they get better as the sample size increases. Particularly,
for n=5000, method C performs as well as method J. To save space we present the bias
and standard deviation of estimators only for scenario 6 in the supplementary materials
(See Tables S.4–S.6). A similar comparative performance of bias and standard deviation is
observed for other scenarios.

For the skewness parameter (δ) estimation, again method J outperforms all methods
across all the scenarios. Under small sample sizes, boxplots corresponding to method N
do not fit in the extended y-axis scale. The bias of method C is larger than that of method
J for small sample sizes, but they become closer for larger sample sizes. On the contrary,
methods B and G seem unreliable for δ estimation.

Under the two most promising methods, J and C, coverage probabilities for the regres-
sion parameters get close to the nominal level formoderate sample size≥ 500.However, for
the skewness parameter, the coverage probability converges to the nominal level at a slower
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Figure 2. Simulation results basedon1000 replicationswhen X ∼ Uniform(−2, 2), δ = 4,β0 = −0.87,
β1 = 1 and pm = 12%. The numbers in the boxplots are the empirical coverage probabilities for the
nominal level 0.95basedon the standard error derived from the Fisher informationmatrix. Thehorizontal
line in each figure indicates the true value of the parameter. N: NaiveMLE, B: Bootstrap bias correction, J:
Penalized likelihood estimation with Jeffrey’s prior, G: Penalized likelihood estimation with generalized
information matrix, C: Penalized likelihood estimation with Cauchy distribution.

rate than that of the regression parameters. This rate seems to to be faster for δ = 4 than
δ = 8 across different sample sizes. Overall as the sample size increases, the performance
of methods N, J and C improves, and method C tends to perform as well as method J.
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Figure 3. Simulation results based on 1000 replications when X ∼ Uniform(−2, 2), δ = 4, β0 = 0.37,
β1 = 1 and pm = 40%. The numbers in the boxplots are the empirical coverage probabilities for the
nominal level 0.95basedon the standard error derived from the Fisher informationmatrix. Thehorizontal
line in each figure indicates the true value of the parameter. N: NaiveMLE, B: Bootstrap bias correction, J:
Penalized likelihood estimation with Jeffrey’s prior, G: Penalized likelihood estimation with generalized
information matrix, C: Penalized likelihood estimation with Cauchy distribution.

Following referees’ suggestions, in Figures 6–9 we present the simulation results for
scenarios 13–16 involving two covariates. Based on the operating characteristics of the
estimators, as before, method J is superior than any other method.
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Figure 4. Simulation results basedon1000 replicationswhen X ∼ Uniform(−2, 2), δ = 8,β0 = −0.85,
β1 = 1 and pm = 12%. The numbers in the boxplots are the empirical coverage probabilities for the
nominal level 0.95basedon the standard error derived from the Fisher informationmatrix. Thehorizontal
line in each figure indicates the true value of the parameter. N: NaiveMLE, B: Bootstrap bias correction, J:
Penalized likelihood estimation with Jeffrey’s prior, G: Penalized likelihood estimation with generalized
information matrix, C: Penalized likelihood estimation with Cauchy distribution.

With respect to the computation time, except some handful of scenarios method C is
the fastest across the scenarios (Table 2). The computation time of the best performing
method J is almost twice the computation of the fastest method C. Of course, method J is
faster than methods B and G, and it is usually faster than method N for n<5000.
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Figure 5. Simulation results based on 1000 replications when X ∼ Uniform(−2, 2), δ = 8, β0 = 0.38,
β1 = 1 and pm = 40%. The numbers in the boxplots are the empirical coverage probabilities for the
nominal level 0.95basedon the standard error derived from the Fisher informationmatrix. Thehorizontal
line in each figure indicates the true value of the parameter. N: NaiveMLE, B: Bootstrap bias correction, J:
Penalized likelihood estimation with Jeffrey’s prior, G: Penalized likelihood estimation with generalized
information matrix, C: Penalized likelihood estimation with Cauchy distribution.

In summary we can make the following conclusions. The maximum likelihood estima-
tor has a skewed distribution, especially for small to moderate sample sizes. In general,
the bootstrap bias corrected MLE (method B) does not show any better performance than
methodN.Rather, in some casesmethodBwasworse thanmethodN. Fromour simulation
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Table 2. This table contains the mean (standard deviation) of the computation time in seconds for
simulation scenarios 1–4 of Section 4.

Method

Scenario n N B J G C

1 200 4.021 802.474 3.236 3.189 1.346
(1.992) (164.685) (0.780) (1.418) (0.319)

500 8.373 1801.018 8.856 6.753 4.095
(4.850) (532.554) (1.958) (3.628) (0.766)

1000 13.338 3060.539 18.272 12.123 8.652
(7.766) (1015.910) (3.510) (6.782) (1.488)

2000 22.918 5195.306 39.436 22.026 18.951
(9.966) (1621.352) (6.580) (11.791) (3.199)

5000 52.876 10808.723 101.636 45.616 50.374
(6.457) (1403.345) (14.585) (18.034) (7.529)

2 200 2.875 630.499 1.541 2.125 0.721
(1.949) (173.924) (0.695) (0.626) (0.322)

500 5.459 1263.778 4.861 5.088 2.280
(4.376) (551.474) (1.983) (1.157) (0.912)

1000 8.089 1951.812 10.744 9.938 5.160
(6.320) (992.649) (3.787) (1.845) (1.850)

2000 13.119 2934.751 23.197 19.926 11.401
(6.712) (1208.295) (6.597) (3.440) (3.397)

5000 32.080 6313.242 62.780 48.839 31.165
(5.119) (890.488) (12.567) (8.993) (6.358)

3 200 4.364 847.642 3.189 3.283 1.413
(1.842) (144.126) (0.742) (1.334) (0.283)

500 10.608 2107.168 9.224 7.115 4.324
(4.982) (500.728) (1.753) (3.601) (0.797)

1000 18.903 3972.760 18.562 13.055 8.985
(9.967) (1118.155) (3.269) (7.124) (1.589)

2000 32.304 7283.712 40.877 22.564 19.873
(17.859) (2318.334) (6.666) (12.602) (3.150)

5000 64.590 14428.782 110.381 46.191 55.077
(26.485) (4144.437) (18.285) (16.888) (7.924)

4 200 3.545 704.645 1.850 2.209 0.826
(1.804) (146.620) (0.736) (0.661) (0.343)

500 8.466 1717.645 6.109 5.430 2.943
(4.571) (498.850) (1.637) (1.513) (0.840)

1000 14.916 3177.247 13.387 10.593 6.594
(9.376) (1120.031) (2.712) (2.542) (1.378)

2000 24.143 5603.115 28.390 21.097 13.961
(16.311) (2181.588) (5.270) (3.879) (2.519)

5000 43.449 10221.305 73.587 49.665 37.014
(22.715) (3669.447) (12.971) (9.169) (6.473)

Notes: N: naiveMLE, B: bootstrapbias correction, J: penalized likelihoodestimationwith jeffrey’s prior, G: penalized likelihood
estimation with generalized information matrix, C: penalized likelihood estimation with cauchy distribution.

studies, method J seems to be the best performingmethod for reducing bias and variability
of the MLE for all parameters regardless of the marginal success probability. In addition
to smaller bias, the regression parameter estimators in method J have a lot less variability
than any other method. Method C seems to be the next best method after method J. In
terms of the computational time method C beats method J.

Following a comment from a reviewer, we conducted a simulation study to assess the
performance of cross-validation statistics in choosing the best estimation method. We
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Figure 6. Simulation results based on 1000 replications when X1 ∼ Uniform(−2, 2), X2 ∼
Normal(0, (

√
4/3)2), δ = 4, β0 = −1.09, β1 = 1, β2 = −0.7 and pm = 12%. The numbers in

the boxplots are the empirical coverage probabilities for the nominal level 0.95 based on the standard
error derived from the Fisher information matrix. The horizontal line in each figure indicates the true
value of the parameter. N: Naive MLE, B: Bootstrap bias correction, J: Penalized likelihood estimation
with Jeffrey’s prior, G: Penalized likelihood estimation with generalized information matrix, C: Penalized
likelihood estimation with Cauchy distribution.
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Figure 7. Simulation results based on 1000 replications when X1 ∼ Uniform(−2, 2), X2 ∼
Normal(0, (

√
4/3)2), δ = 4, β0 = 0.34, β1 = 1, β2 = −0.7 and pm = 40%. The numbers in the

boxplots are the empirical coverage probabilities for the nominal level 0.95 based on the standard
error derived from the Fisher information matrix. The horizontal line in each figure indicates the true
value of the parameter. N: Naive MLE, B: Bootstrap bias correction, J: Penalized likelihood estimation
with Jeffrey’s prior, G: Penalized likelihood estimation with generalized information matrix, C: Penalized
likelihood estimation with Cauchy distribution.
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Figure 8. Simulation results based on 1000 replications when X1 ∼ Uniform(−2, 2), X2 ∼
Normal(0, (

√
4/3)2), δ = 8, β0 = −1.07, β1 = 1, β2 = −0.7 and pm = 12%. The numbers in

the boxplots are the empirical coverage probabilities for the nominal level 0.95 based on the standard
error derived from the Fisher information matrix. The horizontal line in each figure indicates the true
value of the parameter. N: Naive MLE, B: Bootstrap bias correction, J: Penalized likelihood estimation
with Jeffrey’s prior, G: Penalized likelihood estimation with generalized information matrix, C: Penalized
likelihood estimation with Cauchy distribution.
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Figure 9. Simulation results based on 1000 replications when X1 ∼ Uniform(−2, 2), X2 ∼
Normal(0, (

√
4/3)2), δ = 8, β0 = 0.36, β1 = 1, β2 = −0.7 and pm = 40%. The numbers in the

boxplots are the empirical coverage probabilities for the nominal level 0.95 based on the standard
error derived from the Fisher information matrix. The horizontal line in each figure indicates the true
value of the parameter. N: Naive MLE, B: Bootstrap bias correction, J: Penalized likelihood estimation
with Jeffrey’s prior, G: Penalized likelihood estimation with generalized information matrix, C: Penalized
likelihood estimation with Cauchy distribution.
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Table 3. The table containsmean,median, standarddeviation (SD) and robust standarddeviationbased
on the IQR (ISD) of the deviance and RSS statistics.

Method

n
Cross-validation

measure P N B J G C

300 Deviance Mean 307.490 418.045 3162.402 321.672 322.647 304.325
Median 306.927 357.303 2940.603 315.700 322.896 304.262
SD 24.195 242.636 1740.110 49.961 17.120 20.629
ISD 21.443 58.079 1515.310 26.272 16.349 21.281

RSS Mean 50.407 50.484 102.407 50.143 53.329 50.160
Median 50.485 50.554 101.032 50.222 53.425 50.187
SD 3.872 3.841 24.151 3.778 3.538 3.855
ISD 3.991 3.946 26.680 3.866 3.487 4.026

600 Deviance Mean 591.730 646.601 7753.755 595.498 637.807 589.779
Median 592.959 616.880 8126.433 594.830 639.159 590.650
SD 25.741 155.213 3453.938 31.172 22.139 26.076
ISD 24.225 42.726 2928.648 27.137 20.352 25.046

RSS Mean 98.037 97.909 230.725 97.695 105.482 97.712
Median 98.159 98.046 241.134 97.760 105.752 97.772
SD 5.036 5.039 51.762 4.981 4.670 5.024
ISD 4.815 4.755 57.809 4.753 4.310 4.855

Table 4. The number of times eachmethod is selected as the bestmethodbased on the cross-validation
criteria.

Method

n
Cross-validation

measure P N B J G C Total counts

300 Deviance 344 11 4 199 4 438 1000
RSS 202 82 3 469 1 243 1000

600 Deviance 353 11 3 172 0 461 1000
RSS 258 75 3 429 0 235 1000

considered two K-fold cross validation statistics [[28, Chapter 6.9], [29]]:

Deviance
def= −2

K∑
t=1

nt∑
i=1

[{yti log(π̂ t
i ) + (1 − yti)log(1 − π̂ t

i )}],

RSS
def=

K∑
t=1

nt∑
i=1

(yti − π̂ t
i )

2,

where K is the number of non-overlapping exhaustive subsets of a given dataset, nt is
the size of the tth subset, t = 1, . . . ,K, yti is the ith observation from the tth subset, π̂ t

i
is the estimated probability for the ith observation from the tth subset based on the esti-
mated coefficients using the data from the (K − 1) subsets excluding the tth subset. For
this assessment, we simulated datasets mimicking the real dataset with multiple covari-
ates, where the marginal success probability was 46%. We considered two different sample
sizes n=300 and n=600, while n=300 was close to the sample size 297 of the real dataset
analysed in this paper. For generating response variable Y, we used the skew-probit link
function and set the true values of the regression parametersβ and the skewness parameter
δ to the real data estimates obtained under method J (see Section 5).

Next, we fitted the skew-probit model to the simulated datasets using all five different
approaches, also we fitted the probit model to the simulated datasets. Under each of six
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different approaches, we calculated deviance and RSS using K=5 and nt = 60 for n=300
and nt = 120 for n=600, for all t = 1, . . . , 5.

In Table 3 we present the mean, median, standard deviation (SD) and robust standard
deviation based on the IQR (ISD) of the deviance and RSS statistics. Here ISD is defined as
(Q3 − Q1)/1.349, where Q1 and Q3 denote the first and the third quartile of the statistic
(Deviance or RSS) based on 1000 replications. Results indicate that based on the mean
or median value of deviance, the minimum occurs for method C. Based on the mean
value of RSS, for n = 300 the minimum occurs for method J. To get a better picture of
this simulation study in Table 4 we show how many times each approach possesses the
smallest statistics (deviance and RSS) out of the six competing approaches. Based on the
minimum RSS value, method J was selected maximum number of times for both sample
sizes.

5. Application to heart-disease data

For the illustration purpose, we analyse the heart-disease data from the Cleveland database
[22]. The dataset can be found in UCI database (http://archive.ics.uci.edu/ml/datasets/
Heart+Disease). The goal of this analysis is to fit a model that explains the association
between Y, the occurrence of a > 50% diameter narrowing in an angiography, and other
clinical and test variables. In our analysis we consider subjects who have complete obser-
vations without any missing values. With this definition we have a total of 297 subjects out
of 303 subjects in our analysis, and 137 (46.13%) of them experienced the primary event.
Among 13 available covariates, we choose the following 6 covariates which are statistically
significant at the 5% level from a probit model: gender (Gender), chest pain type (CP),
resting blood pressure (BP), the slope of the peak exercise ST segment (Slope), number
of major vessels coloured by flourosopy (CF), and thallium heart scan results (Thal). We
create relevant dummy variables for the categorical covariates, Gender = 1 for male and
0 for female; CPTA, CPAA and CPNA are dummies for chest pain types, typical angina,
atypical angina and non-anginal pain, respectively with asymptomatic being the reference;
SlopeU and SlopeD are dummies for upsloping and downsloping of ST segment with flat-
ness as the reference; and ThalF and ThalR are dummies for fixed detect and reversible
detect while normal is considered as the reference category for Thal. Here BP and CF are
continuous.

We analysed this data using the skew-probit model and estimate the model parameters
usingmethods N, B, J, G and C. In addition, we also fitted the probit model for comparison
purpose. For the analysis, we set initial values of β parameters to the probit regression esti-
mates. We took different initial values for δ with some positive and some negative values.
For each set of initial values, we obtained the parameter estimate using the ucminf func-
tion. The reported parameter estimates correspond to the minimum value of the negative
of the log-likelihood function. In Table 5 we provide the estimates and 95%Wald-type con-
fidence interval for each parameter based on the standard error calculated from the Fisher
information matrix (CI).

The 95%CI for δ based onmethod J indicates that δ is significantly different from0 at the
5% level (̂δ: 2.73 and 95%CI: 0.566, 4.893). On the other hand, we note that the 95%CIs for
δ based on the other approaches indicate δ is not statistically significant. Also we note that
parameter estimates of methods N and C are close to each other including the skewness
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Table 5. Results of the analysis of the heart-disease data.

Method

Covariate P N B J G C

δ Est − 1.540 0.954 2.730 0.139 1.468
CI − (−0.353, 3.433) (−2.833, 4.741) (0.566, 4.893) (−0.002, 0.279) (−0.166, 3.103)

Intercept Est −0.356 0.382 0.569 0.481 −0.305 0.364
CI (−0.816, 0.104) (−0.062, 0.827) (−0.569, 1.708) (0.191, 0.771) (−0.801, 0.190) (−0.073, 0.801)

Gender Est 0.815 0.608 0.515 0.501 1.101 0.597
CI (0.315, 1.315) (0.197, 1.018) (−0.107, 1.137) (0.197, 0.806) (0.507, 1.695) (0.200, 0.993)

CPTA Est −1.355 −0.985 −0.791 −0.794 −1.561 −0.959
CI (−2.055, −0.654) (−1.604, −0.366) (−1.643, 0.060) (−1.237, −0.350) (−2.306, −0.816) (−1.541, −0.378)

CPAA Est −0.917 −0.680 −0.597 −0.582 −0.604 −0.673
CI (−1.481, −0.353) (−1.132, −0.228) (−1.276, 0.083) (−0.905, −0.259) (−1.206, −0.003) (−1.115, −0.230)

CPNA Est −1.272 −0.911 −0.804 −0.728 −1.542 −0.904
CI (−1.754, −0.790) (−1.413, −0.409) (−1.630, 0.021) (−1.068, −0.389) (−2.113, −0.972) (−1.373, −0.435)

BP Est 1.959 1.420 1.167 1.154 2.148 1.316
CI (0.458, 3.459) (0.210, 2.631) (−0.391, 2.725) (0.212, 2.095) (0.573, 3.723) (0.177, 2.455)

SlopeU Est −0.963 −0.697 −0.604 −0.551 −1.206 −0.695
CI (−1.398, −0.528) (−1.114, −0.281) (−1.246, 0.039) (−0.854, −0.248) (−1.680, −0.731) (−1.089, −0.301)

SlopeD Est −0.230 −0.204 −0.184 −0.190 −0.379 −0.192
CI (−0.976, 0.515) (−0.775, 0.367) (−0.795, 0.428) (−0.665, 0.285) (−1.311, 0.554) (−0.760, 0.376)

CF Est 0.666 0.514 0.445 0.433 0.839 0.516
CI (0.416, 0.917) (0.283, 0.746) (0.041, 0.848) (0.259, 0.607) (0.595, 1.084) (0.295, 0.738)

ThalF Est 0.051 0.009 0.026 −0.029 −0.105 0.024
CI (−0.752, 0.855) (−0.602, 0.620) (−0.635, 0.686) (−0.546, 0.488) (−0.878, 0.668) (−0.582, 0.630)

ThalR Est 0.820 0.602 0.526 0.492 0.791 0.613
CI (0.383, 1.257) (0.210, 0.993) (−0.034, 1.086) (0.196, 0.788) (0.344, 1.237) (0.230, 0.995)

Notes: Est: estimate, CI: the wald confidence interval where standard errors are calculated by inverting the fisher information matrix, P:
probit model with MLE, N: skew-probit model with MLE, B: skew-probit model with bootstrap bias correction, J, G, C: skew-probit
model with jeffrey’s prior, generalized information matrix and cauchy prior penalization, respectively.

parameter δ. In terms of estimates for other covariates, male subjects have higher risk for
heart-disease than female subjects while any kind of chest pain is associated with a lower
probability of heart-disease compared to the asymptomatic pain. Also, based on method
J, BP, CF and ThatF turn out to be positively associated with the probability of Y =1.
Although, the statistical significance of regression parameters β (except the intercept) do
not change across methods P, N, J, G and C, method J yields narrower confidence intervals
compared to other methods.

In order to get a sense of which of the methods provides the best fit for this dataset, we
provide the deviance residual plot (Figure 10) and conduct a cross-validation study. Based
on the 1.5× IQR criteria we have identified the outlying residual values that are denoted by
the + notation in the residual plots. Two very competing approaches J and C show similar
residual plots. In method J we found six outlying residuals while in method C we found
eight outlying residuals including the 6 that were identified in method J. For the cross-
validation study we have used the deviance and RSS statistics described in the simulation
section with K=5. Table 6 contains the value of the two statistics for all these methods.
The results indicate that method J yields the minimum deviance statistic while method
C yields the minimum RSS statistic. However, we want to point out RSS values for meth-
ods C, J and P are quite close. Although, in light of the simulation results concerning the
cross-validation methods either method J or method C provides the best fit to the dataset,
considering a relatively small sample size and overall superior performance of method J in
the simulation study, we are more confident with the method J estimates.
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Figure 10. Deviance residuals for the real data analysis.

Table 6. Cross-validated goodness-of-fit statistic for the heart-disease data.

CV measure P N B J G C

Deviance 244.83 367.21 3901.25 233.72 303.24 243.32
RSS 35.54 35.17 122.50 35.19 39.89 35.04

6. Conclusion

We have investigated parameter identifiability and several bias reduction approaches for
theMLE of the skew-probit model for a binary response variable. The identifiability results
will guide researchers to craft their model more carefully for the skew-probit link function.
Several bias reduction strategies have been considered, and through simulation studies we
have compared the performance of different approaches. Overall, method J is the best per-
forming for small to large sample sizes, for small tomoderatemarginal success probabilities
of the response. The next competing method is method C whose performance becomes
similar to that of method J for a large sample size. Variability of the intercept and slope
parameter estimator under method J is always smaller than that of method C, and this dif-
ference is somewhat significant when the sample size is less than 1000. The variability of the
skewness parameter estimator is comparable between methods J and C. Simulation results
also indicate that even with the best performing approach, one needs moderate to large
sample size to estimate the skewness parameter of the skew-probit model reasonably well.
Finally, we have applied the proposed strategies to analyse a real dataset on heart-disease,
and the results show that methods with a proper bias correction provide a better fit than
the regular MLE. Overall this research and the simulation results will help to develop a
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unique and robust method of analyses for the skew-probit model. We believe that a similar
study can be done for other link functions [9,30].
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