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Case control study

In a case-control study design two groups of subjects, one with the disease (or a
health outcome) and the other without the disease are included. Exposure
information are collected from these subjects. The subjects with the disease are
referred to as cases while the subjects without the disease are referred to as
controls.

The cases and controls are not selected randomly from the underlying population.
Rather, case subjects are, generally, randomly selected from the population of
diseased people and controls are randomly selected from the population of
disease-free people. Importantly, the sampling must not depend on subjects’
exposure status.

The purpose of the case-control study is to find the connection/association/effect
of exposure on the disease.
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Advantages/disadvantages

The design is highly efficient, it can be done in a much shorter time period (less
costly) compared to a similar cohort study.

The design can be used to study rare and common diseases.

If an exposure is rare in the population, then whether we use a case-control or
cohort study, both designs need a large sample size. However, if the exposure is
strongly associated with the disease, then a case-control study will be much more
efficient than a cohort study.

In a case-control design, cases and controls must be comparable, otherwise results
are biased.

Since the exposure information is collected retrospectively, the measurements are
subject to recall bias that may lead to bias results.
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Case control study

Suppose that we have a case-control data with a scalar dichotomous exposure
variable, call it X . Let Y be the disease variable taking on zero and one for control
and case subjects, respectively.

The data can then be summarized as follows:

Unexposed Exposed
(X = 0) (X = 1)

Control a b n0
Case c d n1

n0 : total number of controls
n1 : total number of cases

Samiran Sinha (TAMU) Case-Control Studies December 1, 2021 4 / 38



Case control study

Two common measures of associations: relative risk (RR) and odds ratio (OR)

RR = pr(Y = 1|X = 1)/pr(Y = 1|X = 0), a ratio of the risk of the disease from
exposed to unexposed, generally RR is not estimable from case-control data

OR =
Odds of the disease among exposed

Odds of the disease among unexposed

=
Odds of exposure among disease

Odds of the exposure among non-disease

Fortunately, OR is estimable from a case-control data, and its estimator is

ÔR =
ad

bc
.
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Case control study

When the exposure and disease are independent, RR = 1 and OR = 1.

In the presence of dependence, RR ̸= 1 and OR ̸= 1.

Thus, testing of independence is equivalent to test OR = 1 or log(OR) = 0.

OR > 1 : Odds of the disease is greater in the exposed group than in the
unexposed group, exposure is a risk factor

OR < 1 : Odds of the disease is less in the exposed group than in the unexposed
group, exposure is a protective factor
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Case control study, a toy example

A dataset on average daily consumption of alcohol and oesophageal cancer 1

0-79 g 80+ g
(X = 0) (X = 1)

Control 666 109 775
Case 104 96 200

ÔR = 666× 96/104× 109 = 5.64

The standard error of ̂log-OR is
√
666−1 + 109−1 + 104−1 + 96−1 = 0.17.

The 95% large sample CI of the OR is exp{log(5.64)± 1.96× 0.17} = (3.99, 7.92).

1Statistical Methods in Cancer Research by Breslow and Day, 1980, p. 123.
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R code

Code
# Uploading the necessary package

library(epitools)

# Entering the data

data=array(c(666, 104, 109, 96), dim=c(2, 2),

dimnames=list(y=c(0, 1), x=c(0, 1)))

> data

x

y 0 1

0 666 109

1 104 96
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R code

Code
> oddsratio(data)

$data

x

y 0 1 Total

0 666 109 775

1 104 96 200

Total 770 205 975

$measure

odds ratio with 95% C.I.

y estimate lower upper

0 1.000000 NA NA

1 5.624773 3.992007 7.947159

$p.value

two-sided

y midp.exact fisher.exact chi.square

0 NA NA NA

1 0 1.079486e-22 8.614569e-26

$correction

[1] FALSE
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Interpretation

The odds of the disease (or cancer) among the exposed group is 5.64 times that of
among the unexposed group.

If we know, the disease is rare (less than 1% in the population), then the odds
ratio can be interpreted as the relative risk. Then we can say, the risk of the
disease among exposed group is 5.64 times that among the unexposed group.

We do not claim that (3.99, 7.92) includes the true OR with 0.95 probability.
Rather, in repeated sampling from the underlying population and computation of
the 95% CI, about 95% of the intervals include the true OR. However, we do not
know if (3.99, 7.92) includes the true OR nor we can associate any probability with
this interval. Just say that we are 95% confident that the true odds ratio is in
(3.99, 7.92).
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The above example indicates the risk of the esophageal cancer among exposed
group is 5.64 times that among the unexposed group.

Let’s look at this more closely. Let pr(Y = 1|X = 1) = 0.00056 and
pr(Y = 1|X = 0) = 0.0001, and the relative risk in this case 5.6. In another
situation, pr(Y = 1|X = 1) = 0.28 and pr(Y = 1|X = 0) = 0.05, this also results
in the relative risk of 5.6. In one case, the expected number of cancer cases
increases from from 1 to 5.6 when 10,000 unexposed cases all become exposed. In
the second case, the expected number of increase is from 5 to 28 when 100
unexposed subjects all become exposed.

Obviously, assuming that the risk is a causal, the second case is more of a public
health concern than the first case.

However, only the relative risk is not able to shade light on this entire situation–
particularly, it does not tell us the gravity of the problem in the view of public
health.

Samiran Sinha (TAMU) Case-Control Studies December 1, 2021 11 / 38



An alternative measure

Population attributable risk (PAR) measures how much of the disease in the
population is caused by the risk factor. PAR is measured as the excess rate of disease
in the total study population of exposed and unexposed individuals compared to the
population of unexposed individuals, and is formulated as

PAR =
Risk of the disease in total population− Risk of the disease among the unexposed

Risk of the disease in total population
.

In terms of notations,

PAR =
pr(Y = 1)− pr(Y = 1|X = 0)

pr(Y = 1)
.
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It can also be expressed as

PAR =
Pe(R − 1)

Pe(R − 1) + 1
,

where Pe stands for the proportion of population exposed and R stands for the
relative risk of the disease from exposed to unexposed.

For the esophageal cancer, we may assume that 1) the control population is very
similar to the general population, and 2) controls are sampled randomly from the
populations. Then Pe can be estimated by the proportion of exposed in the control

sample, 0.14. Thus, P̂AR = 0.14(5.6− 1)/{0.14(5.6− 1) + 1} = 0.39.

Thus, about 39% of the disease in the general population is caused by the
exposure (average daily alcohol consumption 80+ g).
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Although simple, the analysis of a 2× 2 table is a over simplification, and may risk
a confounding bias. For our toy example, the age effect likely be confounded in the
disease-exposure association.

Suppose now that the data are stratified for different age groups. It is presented in
the next slide.
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Several 2× 2 tables

0-79 g 80+ g

Age (X = 0) (X = 1) ÔR

25-34 Control 106 9 ∞
Case 0 1

35-44 Control 164 26 5.05
Case 5 4

45-54 Control 138 29 5.67
Case 21 25

55-64 Control 139 27 6.36
Case 34 42

65-74 Control 88 18 2.58
Case 36 19

75+ Control 31 0 ∞
Case 8 5
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Questions to ask ourselves

It is clear that the estimated conditional odds ratios are changing. Are the
underlying true conditional odds ratios different?

To check this, test the homogeneity of odds ratios (Breslow-Day test). Let θk be
the conditional odds ratio for age group k.

Set H0 : θ1 = · · · = θ6 versus Ha : at least one of θk ’s is different from the rest.
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R code

Code
# Uploading the necessary package

library(DescTools)

# Data input

data2=array(c(106, 0, 9, 1, 164, 5, 26, 4, 138, 21, 29, 25, 139, 34, 27,

42, 88, 36, 18, 19, 31, 8, 0, 5), dim=c(2, 2, 6), dimnames=list(y=c(0, 1),

x=c(0, 1), age=c("25-34", "35-44", "45-54", "55-64", "65-74", "75+")))

BreslowDayTest(data2)

Breslow-Day test on Homogeneity of Odds Ratios

data: data2

X-squared = 9.3234, df = 5, p-value = 0.09684
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Breslow-Day test result

Since the p-value is large, we fail to reject H0 at the 5% level, and conclude that
there is not enough evidence that the underlying conditional odds ratios are
different (seems contradictory, isn’t it?).

Important point is that if cell frequencies are small, then Breslow-Day (BD) test is
not very reliable. Then one should fit a logistic regression model and then carry
out the test.

Since BD test was non-significant at the 5% level, we now aim to estimate that
common conditional odds ratio. This odds ratio is adjusted for age.
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Common odds ratio adjusted for the confounding variable

Mantel-Haenszel estimate:

θ̂mh =

∑
i aidi/Ni∑
i bici/Ni

+: It is not affected by zero cell frequencies

−: The standard calculation is very tedious

Next slide we show how to obtain the MH estimate and conduct the hypothesis
test of conditional independence of the disease and the exposure.
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R code

Code
# Uploading the necessary package

library(stats)

mantelhaen.test(data2)

Mantel-Haenszel chi-squared test with continuity correction

data: data2

Mantel-Haenszel X-squared = 83.215, df = 1, p-value < 2.2e-16

alternative hypothesis: true common odds ratio is not equal to 1

95 percent confidence interval:

3.562131 7.467743

sample estimates:

common odds ratio

5.157623
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MH test results

The age adjusted conditional odds ratio is 5.2 with a 95% CI (3.6, 7.5).

With the p-value smaller than 0.05, we reject H0, and conclude that there is a
strong conditional association between the disease and heavy alcohol consumption.
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Some comments2

When the conditional odds ratios are the same across the strata, and they are
equal to the crude odds ratio, the potential confounding variables do not have any
confounding effect.

When the conditional odds ratios are the same across the strata, and they are not

equal to the crude odds ratio, the potential confounding variables carry

confounding effect.

If the common conditional odds ratio is larger than the crude odds
ratio, the confounder is termed as negative confounder.
If the common conditional odds ratio is smaller than the crude odds
ratio, the confounder is termed as positive confounder.

When the conditional odds ratios are not the same across the strata, we call the
confounder as an effect modifier.

2M.C. Costanza, Matching, Preventive Medicine. 1995; 24:425–433.
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Logistic regression

Why?

For very small cell frequencies, BD test for testing homogeneity of odds ratio is not
reliable.

The number of confounding variables may not be a scalar or categorical variable.
In the presence of a large number of confounding variables, MH method or BD
test is not practical.

These issues can be overcome by fitting a logistic model. Of course, it requires some
parametric model assumptions.
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Logistic regression

High level of daily alcohol consumption: X = 1, not high level of alcohol
consumption: X = 0

Age: confounding variable (Z), treat it as a numeric with Z = 1 for age 25-34,
Z = 2 for age 35-44 etc.

Model π, the probability of Y = 1 given X and Z :

logit(π) = α0 + α1X + α2Z + α3XZ

In the above model the age effect is assumed to be linear (a parametric
assumption).
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If the interaction term α3 is zero, then the conditional odds ratios are
homogeneous. So, test of homogeneity can be done by testing H0 : α3 = 0 versus
Ha : α3 ̸= 0.

If the above test is statistically significant, then it is meaningless to estimate the
age adjusted common odds ratio (because there is no such common odds ratio).
Rather, we should report the conditional odds ratio for each age group. Also, the
confounding variable is termed as an effect modifier.
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If the above test is statistically non-significant, then we can report the age
adjusted common odds ratio, exp(α1).

We can make statistical inference on this conditional odds ratio.

The logistic model can include many confounders.

Samiran Sinha (TAMU) Case-Control Studies December 1, 2021 26 / 38



R code

Code
# Preparation of the data in the desirable format

mydata=as.data.frame.table(data2)

disease= mydata$Freq[seq(2, 24, 2)]

total=mydata$Freq[seq(1, 24, 2)]+ mydata$Freq[seq(2, 24, 2)]

exposure= mydata$x[seq(2, 24, 2)]

age= as.numeric(mydata$age[seq(2, 24, 2)])

# Invoking the GLM function to fit the logistic model

out=glm(disease/total~exposure+age+exposure*age, family=binomial,

weight=total)

summary(out)
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R code

Code
Deviance Residuals:

Min 1Q Median 3Q Max

-2.58762 -1.72026 0.08124 1.19703 1.49961

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -4.09127 0.36114 -11.329 < 2e-16 ***

exposure1 1.75105 0.63839 2.743 0.00609 **

age 0.61368 0.08531 7.193 6.32e-13 ***

exposure1:age 0.00779 0.16424 0.047 0.96217

---

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 211.608 on 11 degrees of freedom

Residual deviance: 31.929 on 8 degrees of freedom

AIC: 80.257
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Logistic regression

The interaction term is statistically non-significant at the 5% level.

The age adjusted common odds ratio estimate of the disease-exposure association
is exp(1.75) = 5.75 with a 95% CI exp(1.75± 1.96× 0.64) = (1.64, 20.17).

Why does this OR estimate differ from the MH estimate?

For a case-control data, the intercept term has no useful interpretation.

For any given exposure group, the odds ratio of the disease for 10 years increase in
age is exp(0.61) = 1.84. In other words, for any given exposure group, the odds of
the disease increases by 84% for 10 years increase in age.
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Further control on confounding

As a strategy to control confounding, often matched data are analyzed. Matching
can be introduced at the design stage or at the data analysis stage. In essence, for
every case, a number of controls are chosen/included in the study by matching the
values of a set of potential confounding variables.

If the matching is introduced at the design stage, then we can keep a constant
ratio of cases to controls in each stratum defined by the matching variables. If the
matching is done before the analysis (not at the data collection stage), then there
is a possibility of imbalance in the ratio of cases to controls across the strata.

Two basic objectives of matching: better control of the confounding effect and
increase the efficiency of measuring the strength of the association

For the analysis of matched case-control data, conditional logistic regression
method is used.
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A toy example of matched data 3

Code
library(epiDisplay)

data(VC1to6)

> head(VC1to6)

matset case smoking rubber alcohol

1 1 1 1 0 0

2 1 0 1 0 0

3 2 1 1 0 1

4 2 0 1 1 0

5 3 1 1 1 0

6 3 0 1 1 0

Matching variables: age, sex, neighborhood

rubber: worked in the rubber industry
3Chongsuvivatwong, V. 1990 A case-control study of esophageal cancer in Southern

Thailand. J Gastro Hep 5:391–394.
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R code for the conditional logistic analysis

Code
library(survival)

out5=clogit(case~smoking+rubber+alcohol+strata(matset), data=VC1to6)

> summary(out5)

Call:

coxph(formula = Surv(rep(1, 119L), case) ~ smoking + rubber +

alcohol + strata(matset), data = VC1to6, method = "exact")

n= 119, number of events= 26

exp(coef) exp(-coef) lower .95 upper .95

smoking 1.5523 0.6442 0.4375 5.508

rubber 0.6331 1.5797 0.1780 2.251

alcohol 5.2951 0.1889 1.6490 17.003

Concordance= 0.688 (se = 0.065 )

Likelihood ratio test= 12 on 3 df, p=0.007

Wald test = 9.18 on 3 df, p=0.03

Score (logrank) test = 11.24 on 3 df, p=0.01
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Further control on confounding

After adjusting the effect for the confounding variables (age, sex, neighborhood),
and other risk factors, smoking and rubber, the odds ratio of association between
cancer and alcohol is 5.3.

Note that smoking and rubber are not confounding variable, they are just potential
co-risk factors. The data were also analyzed by including alcohol × smoking

and alcohol × rubber interaction terms, and both terms turned out statistically
non-significant. This indicates that they are not effect modifiers.
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Remarks

Researchers are worried that matching and conditional analysis does not reduce
the confounding bias always. Sometimes, matching may introduce bias.4

If all potential confounding variables are measured, then matched data can be used
to estimate the causal odds ratio of association.5

Observational studies need not be cohort or case-control studies. There are many
variations, and among them nested case-control study (case-controls are nested
within a cohort) is popular choice. It is efficient, and provides more information on
the disease etiology, such as the incidence rate of the disease with the
chronological age of the subjects and its association with the risk factors,
compared to a simple case-control study.6

4M.C. Costanza, Matching, Preventive Medicine. 1995; 24:425–433.
5Rose S, Laan MJ. Why match? Investigating matched case-control study designs

with causal effect estimation. Int J Biostat. 2009;5(1):1
6V.L. Ernster, Nested Case-Control Studies, Preventive Medicine. 1994; 23:587–590.
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Thank you!
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