Soft-constrained Schrödinger Bridge Presenter: Quan Zhou Department of Statistics Texas A&M University

Joint work with Jhanvi Garg and Xianyang Zhang

The research presented in this talk is supported by NSF DMS-2245591, DMS-2311307.

Let $X = (X_t)_{0 \le t \le T}$ be a diffusion process with $\mathcal{L}aw(X_0) = \mu_0$.

Given $\mu_T \neq \mathcal{L}aw(X_T)$, how to "optimally" modify the dynamics of X so that its distribution at time T coincides with μ_T ?

Let μ_0, μ_T be two probability distributions on \mathbb{R}^d . Let $X = (X_t)_{0 \le t \le T}$ denote a weak solution to the stochastic differential equation (SDE)

$$X_0 = \xi,$$

$$dX_t = b(X_t, t)dt + \sigma dW_t,$$

for $t \in [0,T]$, where $b \colon \mathbb{R}^d \times [0,T] \to \mathbb{R}^d$, $\sigma \in (0,\infty)$, and $\xi \sim \mu_0$ is independent of the Wiener process W.

Given a control $u = (u_t)_{0 \leq t \leq T}$, define the controlled process X^u by

$$X_0^u = \xi,$$

$$dX_t^u = [b(X_t^u, t) + u_t] dt + \sigma dW_t.$$

Let $\ensuremath{\mathcal{U}}$ denote the set of admissible controls, and

$$\mathcal{U}_0 = \{ u \in \mathcal{U} \colon \mathcal{L}aw(X_T^u) = \mu_T \}.$$

Schrödinger Bridge (SB) Problem

Find $V = \inf_{u \in \mathcal{U}_0} J(u)$, where

$$J(u) = \mathsf{E} \int_0^T \frac{\|u_t\|^2}{2\sigma^2} \mathrm{d}t,$$

and find the optimal control u^* such that $J(u^*) = V$.

Let $\ensuremath{\mathcal{U}}$ denote the set of admissible controls, and

$$\mathcal{U}_0 = \{ u \in \mathcal{U} \colon \mathcal{L}aw(X_T^u) = \mu_T \}.$$

Schrödinger Bridge (SB) Problem

Find $V = \inf_{u \in \mathcal{U}_0} J(u)$, where

$$J(u) = \mathsf{E} \int_0^T \frac{\|u_t\|^2}{2\sigma^2} \mathrm{d}t = \mathcal{D}_{\mathrm{KL}}(\mathsf{P}_X^u, \mathsf{P}_X),$$

and find the optimal control u^* such that $J(u^*) = V$.

 $\mathcal{D}_{KL}(\nu,\mu) = \int \log(\frac{d\nu}{d\mu}) d\nu$ denotes the Kullback-Leibler divergence.

Many existing score-based generative modeling methods are essentially numerical approximations to the solution of SB problem.

- Denoising diffusion probabilistic models of [18, 21]
- Two-stage Schrödinger bridge algorithm of [22]
- Diffusion Schrödinger bridge algorithm of [6]
- Time-series Schrödinger bridge algorithm of [16]

In these problems, μ_0 is some reference distribution (e.g. normal), and μ_T is the target distribution (e.g. distribution of the images in the CelebA data set). Note μ_T is unknown but we have samples from μ_T .

Solution to the SB Problem

Let p(x, t | y, s) denote the transition density of (uncontrolled process) X. Let f_0, f_T denote the Lebesgue densities of μ_0, μ_T respectively.

Theorem 3.2 of Dai Pra [5]

Suppose there exist integrable functions $\rho_0, \rho_T \ge 0$ such that

$$f_0(y) = \rho_0(y) \int p(x, T | y, 0) \rho_T(x) \, \mathrm{d}x,$$

$$f_T(x) = \rho_T(x) \int p(x, T | y, 0) \rho_0(y) \, \mathrm{d}y.$$

If $\int \frac{f_0}{\rho_0} d\mu_0 < \infty$ and $\mathcal{D}_{\mathrm{KL}}(\mu_T, \mathcal{L}aw(X_T)) < \infty$, then the optimal control for the SB problem is $u_t^* = u^*(X_t^{u^*}, t)$, where

$$u^*(x,t) = \sigma^2 \nabla_x \log \mathsf{E}[\rho_T(X_T) \,|\, X_t = x].$$

That is, under the optimal control $u^{\ast},$ the joint distribution of $(X_{0}^{u^{\ast}},X_{T}^{u^{\ast}})$ has density

$$\rho(y, x) = \rho_0(y) p(x, T \,|\, y, 0) \rho_T(x).$$

By matching the marginal distributions, one gets the Schrödinger system in the previous slide.

This is also a well studied problem in the statistical literature [8, 20].

Assume b = 0 for both examples, and let ϕ_{σ} be the density of $N(0, \sigma^2 I)$.

Example 1

If μ_0 is a Dirac measure at x_0 ,

$$\rho_T(x) = \frac{f_T(x)}{\phi_{\sigma\sqrt{T}}(x - x_0)}.$$

If f_T is known up to a normalizing constant (e.g. a posterior distribution in Bayesian statistics), one can use Monte Carlo sampling to approximate

$$u^*(x,t) = \sigma^2 \nabla_x \log \int \rho_T(y) \phi_{\sigma\sqrt{T-t}}(y-x) \mathrm{d}y.$$

See [17] for more sophisticated schemes.

Example 1 for SB

An example on \mathbb{R}^2 with T = 1, $\mu_0 = \delta_0$ and μ_T being a mixture of four normal distributions.

Example 2

Assume b = 0. If $f_0(x) = \int f_T(y) \phi_{\sigma\sqrt{T}}(x-y) dy$, then $\rho_T(x) = f_T(x)$, and

$$u^*(x,t) = \sigma^2 \nabla_x \log \int f_T(y) \phi_{\sigma\sqrt{T-t}}(x-y) \mathrm{d}y.$$

Example 2 for SB

Example 2

Assume b = 0. If $f_0(x) = \int f_T(y)\phi_{\sigma\sqrt{T}}(x-y)\mathrm{d}y$, then $\rho_T(x) = f_T(x)$,

$$u^*(x,t) = \sigma^2 \nabla_x \log \int f_T(y) \phi_{\sigma\sqrt{T-t}}(x-y) \mathrm{d}y.$$

This integral is the density of $Y + \sigma \sqrt{T - t}Z$, where $Y \sim \mu_T$ and $Z \sim N(0, I)$. The function

$$s(x,\sigma) = \nabla_x \log \int f_T(y) \phi_{\sigma\sqrt{T-t}}(x-y) dy$$

is called the *score*. If one has samples from μ_T , by adding Gaussian noise to these samples, one can train a neural network for approximating the score [19].

Example 2 (continued)

To numerically simulate the solution to the SB problem, one still needs samples from μ_0 with density $f_0(x) = \int f_T(y)\phi_{\sigma\sqrt{T}}(x-y)\mathrm{d}y$. Some possible solutions:

- If T is sufficiently large, one can assume μ_0 is approximately gaussian. This yields the denoising diffusion model sampling algorithm of [21].
- One can train another SB process such that the terminal distribution coincides with μ_0 . This is the approach taken in Wang et al. [22].
- Assuming the score $s(x, \sigma\sqrt{T})$ is available, one can run a Langevin diffusion targeting μ_0 for sufficiently many iterations.

Recall $\ensuremath{\mathcal{U}}$ denotes the set of admissible controls.

Soft-constrained Schrödinger Bridge (SSB) Problem

For $\beta > 0$, find $V = \inf_{u \in \mathcal{U}} J_{\beta}(u)$, where

$$J_{\beta}(u) = \beta \mathcal{D}_{\mathrm{KL}}(\mathcal{L}aw(X_T^u), \mu_T) + \mathsf{E} \int_0^T \frac{\|u_t\|^2}{2\sigma^2} \mathrm{d}t,$$

and find the optimal control u^* such that $J_\beta(u^*) = V$.

Solution to the SSB Problem

Let p(x, t | y, s) denote the transition density of (uncontrolled process) X. Let f_0, f_T denote the Lebesgue densities of μ_0, μ_T respectively.

Theorem 4 of Garg et al. [14]

Suppose there exist integrable functions $\rho_0, \rho_T \ge 0$ such that

$$f_0(y) = \rho_0(y) \int p(x, T \mid y, 0) \rho_T(x) \, \mathrm{d}x,$$

$$f_T(x) = \rho_T(x)^{(1+\beta)/\beta} \int p(x, T \mid y, 0) \rho_0(y) \, \mathrm{d}y.$$

If $\int \frac{f_0}{\rho_0} d\mu_0 < \infty$, then the optimal control for the SSB problem is $u_t^* = u^*(X_t^{u^*}, t)$, where

$$u^*(x,t) = \sigma^2 \nabla_x \log \mathsf{E}[\rho_T(X_T) \,|\, X_t = x].$$

• For SB, $\mathcal{L}aw(X_T^{u^*}) = \mu_T$ (with density f_T). For SSB, the density of $X_T^{u^*}$ is proportional to

$$f_T(x)^{\beta/(1+\beta)} \left(\int p(x,T | y,0) \rho_0(y) \,\mathrm{d}y\right)^{1/(1+\beta)}$$

So its law is a geometric mixture of μ_T and another distribution.

- For SB, the solution does not exist if $\mathcal{D}_{\mathrm{KL}}(\mu_T, \mathcal{L}aw(X_T)) = \infty$ (e.g. when μ_T is the Cauchy distribution and X is a Wiener process). For SSB, the solution always exists.
- As β → ∞, the solution of SSB converges to that of SB. (See Garg et al. [14] for precise statements.)

Example 1

If μ_0 is a Dirac measure at x_0 ,

$$\rho_T(x) = \left(\frac{f_T(x)}{p(x, T \mid x_0, 0)}\right)^{\beta/(1+\beta)}$$

If f_T is known up to a normalizing constant, Monte Carlo sampling can be used to simulate the resulting solution to the SSB problem.

 $\mathcal{L}aw(X_T^{u^*})$ has density proportional to

 $f_T(x)^{\beta/(1+\beta)} p(x,T \mid x_0,0)^{1/(1+\beta)}.$

Example 2 for SSB

Example 2

Assume b = 0. If

$$f_0(y) = c^{-1} \int \phi_{\sigma\sqrt{T}}(x-y) f_T(x)^{\frac{\beta}{1+\beta}} \mathrm{d}x,$$

where $c = \int f_T(x)^{\beta/(1+\beta)} \mathrm{d}x$ is the normalizing constant assumed to be finite. Then,

$$\rho_0(y) = c^{-(1+\beta)}, \ \rho_T(x) = c^\beta f_T(x)^{\beta/(1+\beta)}.$$

Hence,

$$u^*(x,t) = \sigma^2 \nabla_x \log \int f_T(y)^{\beta/(1+\beta)} \phi_{\sigma\sqrt{T-t}}(x-y) \mathrm{d}y.$$

Numerical Example for Normal Mixtures

Let the uncontrolled process X be such that $\mathcal{L}aw(X_T)=\mu_{\mathrm{ref}},$ where

$$\mu_{\rm ref} = 0.1 N((1,1), 0.05^2 I) + 0.2 N((-1,1), 0.05^2 I) + 0.3 N((1,-1), 0.05^2 I) + 0.4 N((-1,-1), 0.05^2 I).$$

Let our target terminal distribution be

$$\mu_{\rm obj} = 0.5 N((1.2, 0.8), 0.5^2 I) + 0.5 N((-1.5, -0.5), 0.5^2 I).$$

We solve the resulting SSB problem; that is, minimize

$$J_{\beta}(u) = \beta \mathcal{D}_{\mathrm{KL}}(\mathcal{L}aw(X_T^u), \mu_{\mathrm{obj}}) + \mathsf{E} \int_0^T \frac{\|u_t\|^2}{2\sigma^2} \mathrm{d}t.$$

Numerical Example for Normal Mixtures

SSB trajectories for normal mixture targets.

Suppose we have access to two data sets.

- $\mathcal{D}_{\mathrm{ref}}$: a large set of high-quality samples with distribution μ_{ref}
- $\mathcal{D}_{\mathrm{obj}}$: a small set of noisy samples with distribution μ_{obj}

Our objective is to generate realistic samples resembling those in \mathcal{D}_{obj} . We can use SSB as a regularization method to mitigate overfitting to \mathcal{D}_{obj} .

For simplicity, we set $X_0 = 0$ (i.e., $\mu_0 = \delta_0$), and we know that $\mathcal{L}aw(X_T^{u^*})$ has density proportional to

$$f_{\rm ref}(x)^{1/(1+\beta)} f_{\rm obj}(x)^{\beta/(1+\beta)}.$$

To simulate a diffusion process with terminal distribution being the geometric mixture, we need to learn the score

$$s(x,\tilde{\sigma}) = \nabla_x \log \int f_{\text{ref}}(x)^{1/(1+\beta)} f_{\text{obj}}(x)^{\beta/(1+\beta)} \phi_{\tilde{\sigma}}(x-y) dy.$$

Given only samples from μ_{ref} and μ_{obj} , we can combine the existing score matching algorithm with *importance sampling* to train a neural network for approximating $s(x, \tilde{\sigma})$; see Garg et al. [14] for details.

- $\mathcal{D}_{\rm obj}:$ 50 noisy images labeled as "8"
- $\bullet~\mathcal{D}_{ref}:$ all clean images not labeled as "8"

(added entywise noise $\sim N(0, 0.4^2)$)

MNIST Example

FID scores (see our paper) indicate that $\beta = 1.5$ is the best

How to find the pair (ρ_0, ρ_T) that satisfies the following system?

(1)
$$f_0(y) = \rho_0(y) \int p(x, T | y, 0) \rho_T(x) \, dx,$$
 (1)
(2) $f_T(x) = \rho_T(x)^{(1+\beta)/\beta} \int p(x, T | y, 0) \rho_0(y) \, dy.$ (2)

Initial guess $\hat{
ho}_0 \Rightarrow$ calculate $\hat{
ho}_T$ by (2) \Rightarrow update $\hat{
ho}_0$ by (1) $\Rightarrow \cdots$

- If this iteration has a fixed point, then SSB has a solution.
- When β = ∞, this algorithm is known as iterative proportional fitting procedure (IPFP) or Sinkhorn algorithm [8, 20].

Under a compact support assumption, we show that this iteration is a strict contraction mapping with respect to the Hilbert metric [1].

The proof is similar to existing results for the SB problem [13, 15, 2, 9, 7]. However, the exponent $(1 + \beta)/\beta$ simplifies the argument significantly.

Time series SSB

Consider N fixed time points $0 < t_1 < \cdots < t_N = T$. Let μ_N be a probability distribution on $\mathbb{R}^{d \times N}$ such that $\mu_N \ll \lambda$. For $\beta > 0$, find $V = \inf_{u \in \mathcal{U}} J_{\beta}^N(u)$, where

$$J^N_{\beta}(u) = \beta \mathcal{D}_{\mathrm{KL}}(\mathcal{L}aw((X_{t_i})_{1 \le i \le N}), \mu_N) + \mathsf{E} \int_0^T \frac{\|u_t\|^2}{2\sigma^2} \mathrm{d}t,$$

and find the optimal control u^* such that $J^N_\beta(u^*) = V$.

See our paper [14] for the solution.

- Major contribution of our paper is theoretical: a rigorous solution to the SSB problem using the log transformation technique [10, 11, 12].
- Future direction: more general generative modeling algorithms based on SSB.
- Future direction: comparison between the convergence rate of IPFP for SB and that for SSB.
- There are interesting connections between SSB and the optimal transport [4]. In particular, Chen et al. [3] studied a matrix OT problem which is a discrete-time analogue to SSB on finite spaces.

Thank you!

Slides available at https://zhouquan34.github.io

Jhanvi Garg, Xianyang Zhang and Quan Zhou. "Soft-constrained Schrödinger bridge: a stochastic control approach." International Conference on Artificial Intelligence and Statistics (AISTATS 2024).

References I

- [1] Peter J Bushell. Hilbert's metric and positive contraction mappings in a Banach space. *Archive for Rational Mechanics and Analysis*, 52:330–338, 1973.
- [2] Yongxin Chen, Tryphon Georgiou, and Michele Pavon. Entropic and displacement interpolation: a computational approach using the Hilbert metric. SIAM Journal on Applied Mathematics, 76(6):2375–2396, 2016.
- [3] Yongxin Chen, Tryphon T Georgiou, Michele Pavon, and Allen Tannenbaum. Relaxed Schrödinger bridges and robust network routing. *IEEE Transactions on Control of Network Systems*, 7(2):923–931, 2019.
- [4] Marco Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. Advances in neural information processing systems, 26, 2013.
- [5] Paolo Dai Pra. A stochastic control approach to reciprocal diffusion processes. Applied Mathematics and Optimization, 23(1):313–329, 1991.
- [6] Valentin De Bortoli, James Thornton, Jeremy Heng, and Arnaud Doucet. Diffusion Schrödinger bridge with applications to score-based generative modeling. Advances in Neural Information Processing Systems, 34:17695–17709, 2021.
- [7] George Deligiannidis, Valentin De Bortoli, and Arnaud Doucet. Quantitative uniform stability of the iterative proportional fitting procedure. *The Annals of Applied Probability*, 34(1A):501–516, 2024.

References II

- [8] W Edwards Deming and Frederick F Stephan. On a least squares adjustment of a sampled frequency table when the expected marginal totals are known. *The Annals* of Mathematical Statistics, 11(4):427–444, 1940.
- [9] Montacer Essid and Michele Pavon. Traversing the Schrödinger bridge strait: Robert Fortet's marvelous proof redux. *Journal of Optimization Theory and Applications*, 181(1):23–60, 2019.
- [10] Wendell H Fleming. Exit probabilities and optimal stochastic control. Applied Mathematics and Optimization, 4:329–346, 1977.
- [11] Wendell H Fleming. Logarithmic transformations and stochastic control. In Advances in Filtering and Optimal Stochastic Control: Proceedings of the IFIP-WG 7/1 Working Conference Cocoyoc, Mexico, February 1–6, 1982, pages 131–141. Springer, 2005.
- [12] Wendell H Fleming and Raymond W Rishel. Deterministic and stochastic optimal control, volume 1. Springer Science & Business Media, 2012.
- [13] Robert Fortet. Résolution d'un système d'équations de m. Schrödinger. Journal de Mathématiques Pures et Appliquées, 19(1-4):83–105, 1940.
- [14] Jhanvi Garg, Xianyang Zhang, and Quan Zhou. Soft-constrained schrödinger bridge: a stochastic control approach. In *International Conference on Artificial Intelligence and Statistics*, pages 4429–4437. PMLR, 2024.

References III

- [15] Tryphon T Georgiou and Michele Pavon. Positive contraction mappings for classical and quantum Schrödinger systems. *Journal of Mathematical Physics*, 56(3), 2015.
- [16] Mohamed Hamdouche, Pierre Henry-Labordere, and Huyên Pham. Generative modeling for time series via Schrödinger bridge. arXiv preprint arXiv:2304.05093, 04 2023. doi: 10.13140/RG.2.2.25758.00324.
- [17] Jeremy Heng, Valentin De Bortoli, and Arnaud Doucet. Diffusion Schrödinger bridges for Bayesian computation. *Statistical Science*, 39(1):90–99, 2024.
- [18] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in Neural Information Processing Systems, 33:6840-6851, 2020.
- [19] Aapo Hyvärinen. Estimation of non-normalized statistical models by score matching. *Journal of Machine Learning Research*, 6(4):695–709, 2005.
- [20] Ludger Rueschendorf. Convergence of the iterative proportional fitting procedure. Annals of Statistics, 23, 08 1995. doi: 10.1214/aos/1176324703.
- [21] Yang Song, Jascha Sohl-Dickstein, Diederik P. Kingma, Abhishek Kumar, Stefano Ermon, and Ben Poole. Score-based generative modeling through stochastic differential equations, 2021.
- [22] Gefei Wang, Yuling Jiao, Qian Xu, Yang Wang, and Can Yang. Deep generative learning via Schrödinger bridge. In Marina Meila and Tong Zhang, editors, *Proceedings of the 38th International Conference on Machine Learning*, volume 139 of *Proceedings of Machine Learning Research*, pages 10794–10804. PMLR, 18–24 Jul 2021.