Multiple-try MCMC without Rejection

Quan Zhou

Department of Statistics
Texas A&M University
In this note, I explain how the famous multiple-try Metropolis (MTM) algorithm [5] can be turned into a rejection-free MCMC method without extra computational cost.

For details, see our paper [arxiv] (see Algorithm 7 therein) or my other slides at https://web.stat.tamu.edu/~quan/.
MTM algorithm

- \mathcal{X}: a general state space.
- $Q(x, \cdot)$: a proposal distribution given current state $x \in \mathcal{X}$.
- $q(x, \cdot)$: density function of $Q(x, \cdot)$; we assume $q(x, y) = q(y, x)$.
- π: density function of the target distribution.

MTM is essentially a Metropolis-Hastings algorithm with a complicated proposal scheme. Instead of simply proposing one state from $Q(x, \cdot)$, MTM proposes multiple candidate moves (i.e., multiple “tries”) and then assign larger proposal probabilities to states with larger π. We assume the weight of y given current state x is proportional to

$$h \left(\frac{\pi(y)}{\pi(x)} \right)$$

for some function $h: (0, \infty) \rightarrow (0, \infty)$.
MTM algorithm

An iteration of MTM at state x with m tries:

1. Draw y_1, \ldots, y_m from $Q(x, \cdot)$.
2. Select y from y_1, \ldots, y_m with probability $\propto h \left(\frac{\pi(y)}{\pi(x)} \right)$.
3. Draw x_1, \ldots, x_{m-1} from $Q(y, \cdot)$. Set $x_m = x$.
4. Accept y with probability

 $$\min \left\{ 1, \frac{Z_h(x, y_1, \ldots, y_m)}{Z_h(y, x_1, \ldots, x_m)} \right\},$$

 where $Z_h(x, y_1, \ldots, y_m) = \sum_{k=1}^m h \left(\frac{\pi(y_k)}{\pi(x)} \right)$.

Choice of h

The recent studies [2, 1] suggest that one wants to choose h such that

$$h(u) = u h(u^{-1}), \quad \forall u > 0.$$

Such a function is called a balancing function. Examples include

$$h(u) = 1 + u, \quad h(u) = \sqrt{u}, \quad h(u) = \min\{1, u\}.$$

We assume h is a balancing function henceforth.
Our Multiple Try Importance Tempering algorithm

An iteration of MT-IT at state x with m tries, y_1, \ldots, y_m.

1. Select y from y_1, \ldots, y_m with probability $\propto h\left(\frac{\pi(y)}{\pi(x)}\right)$.

2. Accept y. Assign to the previous state x (un-normalized) importance weight $Z_h(x, y_1, \ldots, y_m)^{-1}$.

3. Draw x_1, \ldots, x_{m-1} from $Q(y, \cdot)$. Set $x_m = x$. In the next iteration, we use x_1, \ldots, x_m as the m tries at state y.

The only differences from MTM are that (1) we always accept y, (2) we calculate importance weight instead of acceptance probability (note both rely on evaluating the function Z_h).
Why is it correct?

Let’s consider the dynamics of the state \((x, \{y_1, \ldots, y_m\}) \in \mathcal{X} \times \mathcal{X}_m\), where \(\mathcal{X}_m\) is the collection of all unordered subsets of \(\mathcal{X}\) with \(m\) elements. It is a Markov chain with transition density

\[
p((x, \{y_1, \ldots, y_m\}), (y, \{x_1, \ldots, x_m\})) = A_1 A_2,
\]

where

\[
A_1 = \frac{h \left(\frac{\pi(y)}{\pi(x)} \right)}{Z_h(x, y_1, \ldots, y_m)}, \quad A_2 = \prod_{k=1}^{m-1} q(y, x_k).
\]

\(A_1\) corresponds to how we select \(y\) from \(\{y_1, \ldots, y_m\}\), and \(A_2\) corresponds to how we generate \(x_1, \ldots, x_m\). Note that \(x_m\) is fixed to be \(x\)!
Why is it correct?

p satisfies the detailed balance condition w.r.t. the stationary distribution

\[
\pi_h(x, \{y_1, \ldots, y_m\}) \propto \pi(x) Z_h(x, y_1, \ldots, y_k) \prod_{k=1}^{m} q(x, y_k).
\]

Comparing this to a reference distribution

\[
\bar{\pi}(x, \{y_1, \ldots, y_m\}) = \pi(x) \prod_{k=1}^{m} q(x, y_k),
\]

we see that $Z_h(x, y_1, \ldots, y_k)^{-1}$ is the importance weight we need.
Why is it correct?

Here is the proof of the detailed balance condition. Since \((y_1, \ldots, y_m)\) is treated as an unordered set, we can assume \(y = y_k\). Then,

\[
\pi_h(x, \{y_1, \ldots, y_m\})p((x, \{y_1, \ldots, y_m\}), (y, \{x_1, \ldots, x_m\})) = \pi(x)q(x, y)h\left(\frac{\pi(y)}{\pi(x)}\right) \prod_{k=1}^{m-1} q(y, x_k) \prod_{k=1}^{m-1} q(x, y_k).
\]

It only remains to show that

\[
\pi(x)q(x, y)h\left(\frac{\pi(y)}{\pi(x)}\right) = \pi(y)q(y, x)h\left(\frac{\pi(x)}{\pi(y)}\right),
\]

which holds since \(q\) is assumed symmetric and \(h\) is a balancing function.
Why is it correct?

Caveat: Fixing $x_m = x$ is important! This guarantees that the transition density from $(x, \{y_1, \ldots, y_m\})$ to $(y, \{x_1, \ldots, x_m\})$ is nonzero only if

$$y \in \{y_1, \ldots, y_m\} \text{ and } x \in \{x_1, \ldots, x_m\}.$$

Without this symmetry, reversibility fails and the stationary distribution of the chain is unclear.
References

