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High-dimensional model selection

Let X be the state space for a model selection problem with p variables.
Let |X | denote the cardinality.

Examples:

Variable selection (sparse linear regression): X = 2{1,...,p}, |X | = 2p.

Structure learning: X is the space of p-vertex DAGs, and |X | grows
super-exponentially with p.

In high-dimensional settings, sparsity constraints need to be imposed, but
usually |X | still grows super-polynomially in p.

Goal: generate samples from the posterior distribution π.
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MCMC for model selection

Local MCMC samplers

Most MCMC samplers for model selection problems are “local”: at x, we
propose the next state from a “small” set N (x) ⊂ X such that |N (x)| is
polynomial in p.

Example: a typical path in variable selection.

{1, 2} add covariate 4−−−−−−−−−→ {1, 2, 4} swap covariate 2 with 3−−−−−−−−−−−−−−→ {1, 3, 4}

delete covariate 4−−−−−−−−−−→ {1, 3} delete covariate 1−−−−−−−−−−→ {3}
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Do we have theoretical guarantees?

Rapid mixing

An MCMC algorithm is rapidly mixing if its mixing time grows
polynomially with p (number of variables) and n (sample size).

Challenges in the complexity analysis of MCMC for model selection:

1 State space is discrete, and samplers only use local moves.

2 Need mixing time bounds in high-dimensional settings.

Two steps:

1 Analyze the landscape of π using high-dim statistical theory.

2 Bound the mixing time using tools from Markov chain theory.
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Two classes of proposals

Consider local Metropolis-Hastings (MH) algorithms. Let K(x, ·) denote
the proposal distribution at state x.

Random walk (uninformed) proposal

Recall N (x) is the set of neighboring states of x. Let K(x, y) = 1/|N (x)|
for every y ∈ N (x). That is, we randomly propose a state from N (x) with
equal probability.

Informed proposal

Let K(x, y) depend on π(y). For example, set K(x, y) ∝ π(y) for
y ∈ N (x).
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Do we have theoretical guarantees?

On the informed proposals:

Similar ideas are used in many MCMC methods [Titsias and Yau,
2017, Zanella and Roberts, 2019, Zanella, 2020, Griffin et al., 2021]
and some non-MCMC methods [Hans et al., 2007, Shin et al., 2018].

To implement an informed proposal at x, we need to evaluate π for
each y ∈ N (x).

Can informed MCMC methods achieve a sufficiently fast convergence
rate that offsets the cost of local evaluation of π?

How to choose the proposal weighting scheme?

Any other scheme that is more efficient than the MH implementation?
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Our mixing time bounds

Define mixing time by Tmix = maxxmin{t : ||P t(x, ·)− π||TV ≤ 1/4}.

Under a “unimodal condition” on π,

For random walk MH, the mixing time is O(N log π−1min) where

πmin = minx∈X π(x),
N is the maximum neighborhood size.

There exists an informed MH with mixing time O(log π−1min).

(Precise statements will be given later.)

Recall that the per-iteration cost of informed MH is N times that of
random walk MH.
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Set-up for general finite state spaces

Notation:

X : a finite state space.

π: a positive probability measure.

N : a neighborhood function; i.e., N (x) is the set of states that the
sampler may move to from x. Assume (i) x /∈ N (x), and (ii)
x ∈ N (y) whenever y ∈ N (x).

x∗ = argmaxx∈X π(x): the global mode.

To obtain a rapid mixing guarantee, we will assume π is “unimodal with
light tails.”
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A unimodal condition

Define two parameters:

N = max
x∈X
|N (x)|,

R = min
x 6=x∗

max
y∈N (x)

π(y)

π(x)
.

That is, for any x 6= x∗, there exists y ∈ N (x) such that π(y)/π(x) ≥ R.

If R > 1, we say π is unimodal (w.r.t. N ).

If R > N , π has “sub-exponential tails”:

π({x : dist(x, x∗) ≥ k}) ≤ e−ck, where c = log(R/N).

We will assume R > N ≥ 1.
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On the unimodal condition

It is supported by the high-dimensional statistical theory.

Log-concavity is widely used in the theory of sampling and
optimization algorithms on Rp [Dalalyan, 2017, Dwivedi et al., 2018,
Cheng et al., 2018, Mangoubi and Smith, 2019, Shen and Lee, 2019].
Log-concavity implies unimodality and sub-exponential tails, and is
conceptually stronger than our unimodal condition.

If there exist very “sharp” sub-optimal local modes separated from
each other, rapid mixing may be impossible.

Unimodal distribution is a building block for general multimodal
distributions (use state decomposition theorems).
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Unimodal distributions

A bivariate normal distribution.
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Unimodal distributions

A unimodal distribution on X = {1, 2, 3}2 (the neighborhood of each
point is the set of closest points).
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Unimodal distributions

Moving from (1, 1) to (1, 3).
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Unimodal distributions

A continuous version.
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Mixing of random walk MH

Let Plazy = (P + I)/2 denote the lazy version of a transition matrix P .

Theorem (Rapid mixing of RWMH)

Suppose ρ = R/N > 1. For random walk MH,

Tmix(P
RW
lazy ) ≤ cρN log π−1min,

where πmin = minx∈X π(x) and cρ is a small constant only depending on
ρ (cρ decreases as ρ increases).

This improves the bounds in Yang et al. [2016] (variable selection)
and Zhuo and Gao [2021] (stochastic block model). Both works derive the
bounds by verifying R/N →∞ and using the canonical path method
of Sinclair [1992].
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Mixing of informed MH

Theorem (Rapid mixing of informed MH)

Let ρ = R/N and suppose R > N2. There exists a locally informed MH
algorithm P inf such that

Tmix(P
inf
lazy) ≤ 2cρ log π

−1
min.

This can be proved by using Theorem 2 of [Zhou and Chang, 2023].

The bound does not involve neighborhood size N ! But, constructing an
informed algorithm that attains this bound in practice may be difficult.
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How to check the unimodal condition?

For most high-dimensional model selection problems, establishing R > N c

for any given c > 0 is essentially the same as establishing R > 1 (i.e., π is
unimodal).

More precisely, the high-dimensional assumptions used to prove R > N c

are essentially the same as the assumptions used to prove R > 1 (one only
needs to modify some universal constants in the assumptions).

However, proving unimodality is often much more difficult than proving
the posterior selection consistency.
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High-dimensional variable selection

Let s0 be a sparsity parameter and define the model space by

X = {x ⊆ {1, . . . , p} : |x| ≤ s0}.

In high-dimensional settings, we typically let s0 →∞.

For add-delete-swap MH samplers, N = maxx |N (x)| ≤ p2.

Let x∗ ∈ X denote the true model. Yang et al. [2016] proved that,
under mild assumptions,

π(x∗) converges to 1 in probability (strong selection consistency);
with high probability, R ≥ pν for some universal constant ν > 2 (this
implies strong selection consistency);
with high probability, the mixing time of the random walk
add-delete-swap sampler is O(pns20 log p).
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LIT-MH for high-dimensional variable selection

In [Zhou et al., 2022], we propose an informed MH algorithm using
add-delete-swap proposals, named LIT-MH (Metropolis–Hastings with
Locally Informed and Thresholded proposals).

Theorem (Dimension-free mixing of LIT-MH)

Under the high-dimensional assumptions of [Yang et al., 2016] and
assuming the parameters of the LIT-MH proposal are properly chosen,

Tmix(P
LIT
lazy ) ≤ Cn

for some universal constant C ∈ (0,∞).
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High-dimensional structure learning

DAG model

A p-variate directed acyclic graph (DAG) encodes the conditional
independence (CI) relations among p node variables.

Structure learning

Learn the underlying DAG model of a p-variate probability distribution
from n observations.

Defining the model space is tricky.

Markov equivalence class

Two DAGs are Markov equivalent if they encode the same set of CI
relations, e.g. i→ j → k and i← j → k.
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High-dimensional structure learning

In Zhou and Chang [2023], we proved the unimodal condition and rapid
mixing of an RWMH sampler on the space of sparse equivalence classes.

Sparisty is imposed by using in-degree and out-degree constraints.

We only consider equivalence classes that have a member DAG that
satisfy the node degree cosntraints.

Challenges:

construct a proper local neighborhood relation N ,
prove that π is unimodal w.r.t. N ; in particular, the degree constraints
make the analysis very difficult.

Open problems: rapid mixing on the DAG space and order space.
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Potential issues with informed MH algorithms

Devising an efficient informed MH algorithm for model selection problems
can be surprisingly challenging.

It is easy to assign larger proposal probabilities to states with larger
posterior, e.g. K(x, y) ∝ π(y).
But it is difficult to control the acceptance probability.

Informed MH algorithms can mix even more slowly than RWMH.

Henceforth, we will consider locally balanced proposals (a class of informed
proposals).
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Locally balanced proposals

Balancing function

We say h : (0,∞)→ (0,∞) is a balancing function if

h(u) = uh(1/u), ∀u > 0.

Examples: h(u) = 1 + u, h(u) = min{1, u}, h(u) =
√
u.

Locally balanced proposals (Zanella, JASA 2020)

Let N : X → 2X be given and choose a balancing function h. Propose

y ∈ N (x) with probability ∝ h
(
π(y)
π(x)

)
, i.e.,

Kh(x, y) =
h
(
π(y)
π(x)

)
Zh(x)

1N (x)(y), where Zh(x) =
∑

x′∈N (x)

h

(
π(y)

π(x)

)
.



24/34

Introduction General theory Model selection examples Informed importance tempering

Potential issues with informed MH algorithms

The acceptance probability of moving from x to y is

αh(x, y) = min

{
1,
π(y)Kh(y, x)

π(x)Kh(x, y)

}
= min

{
1,
uh(u−1)/Zh(y)

h(u)/Zh(x)

} (
let u =

π(y)

π(x)

)
= min

{
1,
Zh(x)

Zh(y)

}
, (since h is a balancing function).

Let y = argmaxz∈N (x) π(z). The behavior of Zh(x)/Zh(y) in model
selection problems is unpredictable. For variable selection, if predictors are
correlated, this ratio can easily be exceedingly small when n→∞.
See Zhou et al. [2022] for a toy example.
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A simple solution

The acceptance probability of moving from x to y is

αh(x, y) = min

{
1,
π(y)Kh(y, x)

π(x)Kh(x, y)

}
= min

{
1,
uh(u−1)/Zh(y)

h(u)/Zh(x)

} (
let u =

π(y)

π(x)

)
= min

{
1,
Zh(x)

Zh(y)

}
, (since h is a balancing function).

Solution: Replace π with a new target distribution πh(x) ∝ π(x)Zh(x).
Then the acceptance probability is always 1.
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Informed importance tempering (IIT)

Algorithm:

We draw samples x(1), . . . , x(t) from the Markov chain Kh (transition
matrix of the locally balanced proposal scheme).

Since Kh is reversible w.r.t. πh, we calculate the importance weights
ω(1), . . . , ω(t) by ω(k) = π(x(k))/πh(x

(k)) ∝ 1/Zh(x).

This is also the main idea behind the tempered Gibbs sampler of Zanella
and Roberts [2019], which uses balancing function h(u) = 1 + u.

“Importance tempering” just means to run an MCMC targeting some π̃
and use importance sampling to correct for the bias. This dates back
to Hastings [1970].
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Rapid convergence of IIT

An obvious advantage of IIT is that the chain is always moving (we
assume the informed proposal satisfies Kh(x, x) = 0).

In Zhou and Smith [2022], we show that:

If R/N →∞, IIT with h(u) = 1 + u converges extremely fast and
has overall complexity O(N2/R) (see our paper for definition).

However, h(u) = 1 + u is too aggresive and can be very inefficient for
multimodal targets.

h(u) =
√
u performs well in a wider range of settings.
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Extensions of IIT

This importance tempering trick turns out to be widely applicable. Most
existing Metropolis-Hastings schemes can be converted to IIT versions.

Another perspective on MH algorithms

Actually, even the standard random walk MH algorithm is an importance
tempering scheme where

samples are accepted states, and

sojourn times give unbiased estimates of importance weights.

See, e.g., Douc and Robert [2011].
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Extensions of IIT

In Li et al. [2023], we propose the following IIT variants:

IIT schemes that do not require posterior evaluation of all neighboring
states;

integration of IIT and simulated tempering algorithm;

integration of IIT and pseudo-marginal methods;

importance-tempered multiple-try algorithm, which is applicable to
general state spaces.

IIT schemes appear to always converge faster than their MH counterparts
in our numerical studies.
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Example: importance tempering of MTM

Multiple-try Metropolis (MTM) algorithms are widely used but known to
suffer from low acceptance rates [Yang and Liu, 2023]. Chang et al. [2022],
Gagnon et al. [2022] proposed to use balancing functions to construct
locally balanced MTM schemes, which tend to have high acceptance rates.

But importance tempering can be used to further enforce the sampler to
always accept the proposal. The main idea is similar to that behind IIT.
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Example: importance tempering of MTM

Locally balanced MTM on general state spaces

Let Q(x, ·) denote an uninformed symmetric proposal with density q such
that q(x, y) = q(y, x). Let h be a balancing function.

An iteration of MTM at state x:

1 Draw y1, . . . , ym from Q(x, ·).
2 Select y from y1, . . . , ym with probability ∝ h(π(y)/π(x)).
3 Draw x1, . . . , xm−1 from Q(y, ·). Set xm = x.

4 Accept y with probability

min

{
1,
Zh(x, y1, . . . , ym)

Zh(y, x1, . . . , xm)

}
,

where Zh(x, y1, . . . , ym) =
∑m

k=1 h(π(yk)/π(x)).
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Example: importance tempering of MTM

Multiple-try importance tempering

In Step 4, we can actually just accept y and assign to the previous state x
importance weight 1/Zh(x, y1, . . . , ym).

Caveat: in the next iteration, the m candidate neighboring states of y are
NOT resampled (we have already generated them in Step 3).

Why is it correct? One can show that this algorithm is just a standard
IIT algorithm on an augmented space with auxiliary variables being the m
candidate neighboring states.
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A comment on Peskun’s ordering

Consider random walk MH algorithms with symmetric proposals. One can
accept x→ y with probability min{1, π(y)/π(x)}, or π(y)/(π(x) + π(y))
(Barker’s acceptance probability), etc.

The choice min{1, π(y)/π(x)} is most popular since Peskun’s ordering
guarantees that this is the optimal choice.

But if we use IIT to exactly calculate the importance weight, we no longer
have such results. The optimal choice of the balancing function depends
on the problem.
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Concluding remarks

Informed MCMC methods are useful and can be much more efficient
than RWMH for model selection problems. Local evaluation of π can
be easily parallelized.

For any high-dimensional model selection problems, once one prove
the unimodality condition, our bounds can be used to obtain the
rapid mixing results for RWMH and informed MH.

Informed proposal scheme needs to be chosen with caution.

Importance tempering seems always better than Metropolis-Hastings
for utilizing informed proposals.
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