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MCMC in high-dimensional statistics

MCMC (Markov chain Monte Carlo) methods are frequently used in
Bayesian statistics for sampling from posterior distributions.

Let S denote the state space. In model selection problems, typically
|S| (the cardinality of S) depends on a parameter p (number of
variables).

Example (variable selection)

S = {0, 1}p and |S| = 2p.

Example (structure learning)

S is the space of p-vertex directed acyclic graphs, and |S| grows
super-exponentially with p.
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MCMC in high-dimensional statistics

In high-dimensional settings with p� n (n denotes the sample size),
some sparsity constraint needs to be imposed, but usually |S| still
grows super-polynomially with p.

Compared with other approximate methods for posterior computation,
e.g. variational Bayes [1], are MCMC algorithms efficient enough?

Definition (rapid mixing)

We say an MCMC algorithm is rapidly mixing if its mixing time grows only
polynomially with p and n.
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Metropolis-Hastings (MH) algorithms

Let S be a finite state space and π be a probability distribution defined on
S (assume π(x) > 0 for each x). Given an irreducible transition matrix K,
we define

P (x, y) =

{
K(x, y) min

{
1, π(y)π(x)

K(y,x)
K(x,y)

}
, if x 6= y,

1−
∑

x′ 6=x P (x, x′), if x = y.

P is reversible with respect to π.

To simulate a Markov chain with transition matrix P , we only need to
know an un-normalized version of π.
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Metropolis-Hastings (MH) algorithms

Let S be a finite state space and π be a probability distribution defined on
S (assume π(x) > 0 for each x). Given an irreducible transition matrix K,
we define

P (x, y) =

{
K(x, y)min

{
1, π(y)π(x)

K(y,x)
K(x,y)

}
, if x 6= y,

1−
∑

x′ 6=x P (x, x′), if x = y.

K(x, ·) is called the proposal distribution.

min
{

1, π(y)π(x)
K(y,x)
K(x,y)

}
is called the acceptance probability.
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Local proposals

Let N (x) = {y ∈ S : K(x, y) > 0} denote the neighborhood of x.

In practice, |N (·)| usually grows polynomially with p.

Most “standard” MH algorithms use random walk proposals,

K(x, y) =
1N (x)(y)

|N (x)|
, ∀x, y ∈ S.
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Locally informed proposals

Making proposals informed (Zanella [2])

Choose some f : (0,∞)→ (0,∞), and define a new proposal transition
matrix Kf by

Kf (x, y) =
f (π(y)/π(x))

Z(x)
1N (x)(y), where Z(x) =

∑
x′∈N (x)

f

(
π(x′)

π(x)

)
.

In words, we propose y ∈ N (x) with probability ∝ f (π(y)/π(x)).
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Locally informed proposals

Kf (x, y) =
f (π(y)/π(x))

Z(x)
1N (x)(y), where Z(x) =

∑
x′∈N (x)

f

(
π(x′)

π(x)

)
.

Intuitively, we prefer non-decreasing f .

The calculation of Z(x) requires us to evaluate π for each y ∈ N (x).

Similar ideas are used in other MCMC methods [3, 4, 5] and some
non-MCMC methods as well [6, 7, 8].

Can informed MCMC methods achieve a sufficiently fast convergence rate
that offsets the cost of computing Z(x) in each iteration?
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What can we say about π?

Definition (selection consistency)

We say a Bayesian model selection procedure has selection consistency if,
for some x∗ ∈ S, π(x∗)→ 1 in probability w.r.t. the true data generating
process. (Here, S, π, x∗ are all implicitly indexed by n.)

If π concentrates on a single point x∗, the mixing time of an MCMC
algorithm is equivalent to the expected hitting time of x∗ [9, 10].

Selection consistency can often be proved by showing that π is unimodal
(w.r.t. a local neighborhood relation) and the peak is “sharp”.
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Sparse linear regression

Consider the linear regression model y = Xβ + ε.

X is an n× p matrix (n: sample size; p: number of variables).

We are mostly interested in the case p� n.

β ∈ Rp is assumed to be sparse: most entries are zero or “negligible”.

ε represents normal i.i.d. errors.
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Sparse linear regression

Let γ denote the set of variables that have non-negligible effects. The goal
of “variable selection” is to identify γ from the data.

Model space

Due to the sparsity assumption, we can assume γ takes value in the space

M(s0) = {γ ⊆ {1, 2, . . . , p} : |γ| ≤ s0},

for some constant s0 (which may grow with p).



13/40

Introduction LIT-MH for variable selection Two-stage drift condition

Local MH algorithms for variable selection

Add-delete-swap neighborhood

For each γ ∈M(s0), define

Nadd(γ) = {γ′ ∈M(s0) : γ′ = γ ∪ {j} for some j /∈ γ},
Ndel(γ) = {γ′ ∈M(s0) : γ′ = γ \ {k} for some k ∈ γ},
Nswap(γ) = {γ′ ∈M(s0) : γ′ = (γ ∪ {j}) \ {k} for some j /∈ γ, k ∈ γ}.

Note |Nadd(γ) ∪Ndel(γ)| = p and |Nswap(γ)| = (p− |γ|)|γ|.
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Local MH algorithms for variable selection

Using the addition/deletion/swap moves, we can define a random walk
MH algorithm as follows.

Symmetric RWMH for variable selection

Given current state γ,

with probability 1/2, propose a state from Nadd(γ) ∪Ndel(γ)
randomly with equal probability;

with probability 1/2, propose a state from Nswap(γ) randomly with
equal probability.
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Challenge I: π can be highly “irregular”

Let γ∗ denote the true set of “influential” covariates, and let γ 6= γ∗.
Even if n is sufficiently large,

moving from γ to γ ∪ {j} for some j ∈ γ∗ \ γ may not increase the
posterior probability,

moving from γ to γ \ {k} for some k ∈ γ \ γ∗ may not increase the
posterior probability.

Reason: dependence among the p variables.

But (with high probability) there always exists one addition or
deletion move at γ which can increase the posterior probability.
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Rapid mixing of RWMH

Yang et al. (Ann. Stat., 2016) proved that, under mild high-dimensional
assumptions, the symmetric RWMH algorithm for Bayesian variable
selection is rapidly mixing .

The order of their mixing time bound is roughly pns20 log p.

The proof relies on the canonical path method of Sinclair [11];
see [12, 13] for the general theory.

How fast can the mixing of an informed algorithm be?
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Challenge II: a naive informed scheme can easily fail

A naive informed proposal

Let N (γ) = Nadd(γ) ∪Ndel(γ) ∪Nswap(γ), and

K(γ, γ′) ∝ π(γ′)1N (γ)(γ
′).

Suppose γ∗ = {1, 2} and the current model is γ = ∅. Then

P (∅, {1}) ≤ π({1})
π(∅)

K({1}, ∅) ≤ π({1})
π(∅)

π(∅)
π({1, 2})

=
π({1})
π({1, 2})

,

which tends to be extremely small for large n.
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Challenge II: a naive informed scheme can easily fail

Recall the general definition of a locally informed proposal scheme.

Kf (γ, γ′) =
f (π(γ′)/π(γ))

Z(γ)
1N (γ)(γ

′), where Z(γ′) =
∑

γ̃∈N (γ)

f

(
π(γ̃)

π(γ)

)
.

A main challenge is that we can say almost nothing about the behavior of
the mapping γ 7→ Z(γ), for most choices of f , e.g. f(x) = xc.

Solution

Choose some bounded f so that Z is also bounded.
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Our algorithm: LIT-MH

We propose an informed MCMC algorithm for variable selection still using
the add-delete-swap neighborhood, named LIT-MH (Metropolis–Hastings
with Locally Informed and Thresholded proposals).

Step 1: partition the neighborhood

Klit(γ, γ
′) =

1

3

∑
?=‘add’, ‘del’, ‘swap’

w?(γ
′ | γ)

Z?(γ)
1N?(γ)(γ

′),

Z?(γ) =
∑

γ̃∈N?(γ)

w?(γ̃ | γ),

where w?(γ
′ | γ) ∈ [0,∞) denotes the proposal weight of γ′ ∈ N?(γ) given

current state γ.
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Our algorithm: LIT-MH

Step 2: assign bounded proposal weights

The proposal weight of γ′ ∈ N (γ) is calculated by

w?(γ
′ | γ) = p`? ∨ π(γ′)

π(γ)
∧ pL? , for ? = ‘add’, ‘del’, ‘swap’,

where −∞ ≤ `? ≤ L? ≤ ∞ are some constants that may depend on the
type of move.
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Main result

Theorem (dimension-free mixing of LIT-MH)

Define the mixing time of the LIT-MH chain by

Tmix = sup
γ∈M(s0)

min{t ≥ 0: ‖P tlit(γ, ·)− π(·)‖TV ≤ 1/4},

where ‖·‖TV denotes the total variation distance. Under some mild
high-dimensional assumptions and assuming the parameters of the LIT-MH
proposal scheme are properly chosen (see our paper for details), we have

Tmix ≤ Cn

for some universal constant C.
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Main result

The result holds under the high-dimensional assumptions used by
Yang et al. [14]. Recall that they showed the mixing time of RWMH
is O(pns20 log p). Since |N (·)| grows at rate ps0, the total complexity
of LIT-MH is smaller than the bound of [14] for RWMH.

We only need to require s0 log p = O(n), which is a “standard”
asymptotic regime in high-dimensional statistical theory [15, 16, 17].

The mixing time bound of LIT-MH derived in our paper is actually
slightly smaller than O(n).
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Simulation study I: find the posterior mode

First, we considered the simulation settings of Yang et al. [14] with
|γ∗| = 10. The sampler is initialized at some randomly generated γ(0) with
|γ(0)| = 10. When the signal-to-noise is sufficiently large, LIT-MH finds
the posterior mode much faster than RWMH.

n = 1000, p = 5000, independent design. RWMH: about 15 seconds;
LIT-MH: 0.1 second.

n = 1000, p = 5000, correlated design. RWMH: 20 to 40 seconds;
LIT-MH: 0.1 to 0.2 second.

When γ∗ = ∅, π tends to be very flat and RWMH tends to perform better.
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Simulation study I: Rao-Blackwellization

No extra computational cost for Rao-Blackwellized estimation of β.
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Simulation study II: exploring multimodal distributions

The design matrix X has i.i.d. rows, but each row is sampled from
N(0,Σd,p) where Σd,p = diag(Σd, . . . ,Σd) is block-diagonal. Each
block Σd has dimension d× d, and (Σd)jk = e−|j−k|/3.

We fix n = 1000, p = 5000 and d = 20.

The response y is simulated by y = Xβ∗ + z with z ∼ N(0, In). We
generate β∗ by first randomly sampling 100 nonzero entries and then
sampling β∗γ∗ ∼ N(0, σ2βI100).
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Simulation study II: exploring multimodal distributions

RWMH (200K iterations) LIT-MH (2K iterations)

σβ = 0.1

Time 78.1 9.95

Acc. Rate 0.012 0.495

ESS/Time 4.83 34.5

σβ = 0.3

Time 80.4 27.9

Acc. Rate 0.0037 0.578

ESS/Time 3.57 19.8

σβ = 0.5

Time 81.8 42.5

Acc. Rate 0.0021 0.485

ESS/Time 2.45 15.0

Table: “ESS/Time” is the effective sample size per second calculated using

‖Xβ(k)‖22. All statistics are averaged over 20 data sets.
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Real GWAS data analysis

We applied our method to two real GWAS (genome-wide association
study) datasets obtained from dbGaP (accession no: phs000308.v1.p1,
phs000238.v1.p1). The response y is the cup-to-disk ratio measurement.

After quality control, we end up with n = 5, 418 and p = 328, 129.

RWMH has effective sample size 1.95 per minute.

An approximate implementation of LIT-MH has effective sample size
33.5 per minute.

We were able to recover 5 known GWAS hits for ocular traits located
in 4 different regions.
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Drift-condition approach to the analysis of LIT-MH

Drift condition

For any function g, let (Pg)(γ) =
∑

γ′ g(γ′)P (γ, γ′). If for some set
A ⊂M(s0), function V : M(s0)→ [1,∞) and constant λ ∈ (0, 1),

(PV )(γ) ≤ λV (γ), ∀x ∈ A,

we say the P satisfies a drift condition on A, which implies that the entry
time of the Markov chain into Ac has a “thin-tailed” distribution [24].

We bound the mixing time of LIT-MH by showing that Plit satisfies a
two-stage drift condition.
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Drift-condition approach to the analysis of LIT-MH

To our knowledge, drift condition is rarely used in the mixing time
analysis of high-dimensional discrete statistical problems such as
variable selection.

To establish a drift condition, we need to bound the expected change
in the drift function by considering all possible moves of the chain.

For informed MH algorithms, we need to find good bounds for the
normalizing constants of proposal distributions.
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Two-stage drift condition

Overfitted and underfitted models

Let O = {γ ∈M(s0) : γ∗ ⊆ γ}. Models in O are said to be overfitted,
and other models are underfitted.

Two-stage drift condition of LIT-MH

Plit satisfies a drift condition on Oc,
Plit satisfies another drift condition on O \ {γ∗},
Plit(γ,Oc) is very small for any γ ∈ O.
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Two-stage drift condition
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Two-stage drift condition

A path of Plit.
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Two drift functions

We consider the prior used by Yang et al. [14], which yields the posterior,

π(γ) ∝ p−κ|γ|
(
1−R2

γ + g−1
)−n/2

1M(s0)(γ),

where κ and g are hyperparameters and R2
γ denotes the coefficient of

determinant for regressing y on the covariates in γ.

The term p−κ|γ| penalizes the model size.

The term
(
1−R2

γ + g−1
)−n/2

penalizes the lack of fit.

Other priors can be used as well.
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Two drift functions

The two drift functions we choose are given by

V1(γ) =
{

1 + g−1(1−R2
γ)
}1/ log(1+g)

,

V2(γ) = e|γ\γ
∗|/s0 .

V1 is used for the drift condition on underfitted models.

V2 is used for the drift condition on overfitted models.
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Two drift functions

The two drift functions we choose are given by

V1(γ) =
{

1 + g−1(1−R2
γ)
}1/ log(1+g)

,

V2(γ) = e|γ\γ
∗|/s0 .

Intuition:

When the model is underfitted, the chain tends to drift towards
overfitted models to increase R2

γ .

When the model is underfitted, the chain tends to move towards γ∗

by removing covariates in γ \ γ∗.
Using a single drift function such as V (γ) = exp(|γ4γ∗|) will
probably fail as the behavior of the chain on Oc is “hard to predict”.
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How to bound the mixing time

Let τ∗ denote the hitting time of the true model γ∗. If we can bound
E[α−τ

∗ | started at some γ(0)] for some α ∈ (0, 1), we can use the
result of [25] to derive a mixing time bound.

For our problem, directly bounding the generating function seems
difficult. So we start by finding a tail bound instead.

We split the path of the chain into disjoint “excursions” in O and Oc.
For each excursion in O, there is some positive probability that the
chain can hit γ∗, and then we can use a union bound to handle the
tail probability of τ∗ [26].

The two-stage drift condition is conceptually similar to the classical
drift-and-minorization approach [26, 27].
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Two-stage drift condition

The chain hits γ∗ during its second excursion in O.
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General results for the two-stage drift condition

Assumption on P

(Xt)t∈N is a Markov chain defined on a state space (X , E) where the
σ-algebra E is countably generated. The transition kernel P is reversible
with respect to a stationary distribution π, and the spectrum of P is
non-negative.

Two-stage drift condition

Suppose that there exist two drift functions V1, V2 : X → [1,∞), constants
λ1, λ2 ∈ (0, 1), a set A ∈ E and a point x∗ ∈ A such that

(i) PV1 ≤ λ1V1 on Ac, (ii) PV2 ≤ λ2V2 on A \ {x∗}.
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General results for the two-stage drift condition

Theorem (mixing time bound with the two-stage drift condition)

In addition to the two-stage drift condition, suppose that A satisfies the
following conditions, for any x ∈ A, for some finite constants M,K.

(iii) V1(x) = 1, and if P (x,Ac) > 0, Ex[V1(X1) | X1 ∈ Ac] ≤M/2.

(iv) V2(x) ≤ K, and if P (x,Ac) > 0, Ex[V2(X1) | X1 ∈ Ac] ≥ V2(x).

(v) P (x,Ac) ≤ q for some q < min{1− λ1, (1− λ2)/K}.
Then, for every x ∈ X and t ∈ N, we have

‖P t(x, ·)− π‖TV ≤ 4αt+1
(
1 +M−1V1(x)

)
,

where α is a constant in (1− q/4, 1) and can be computed by

α =
1 + ρr

2
=

1 +M r/u

2
, ρ =

qK

1− λ2
, u =

1

1− q/2
, r =

log u

log(M/ρ)
.
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Concluding remarks

LIT-MH is a simple but highly efficient solution to the variable
selection problem. It attains a provable dimension-free mixing rate.

Local evaluation of π can be easily parallelized.

LIT-MH can be combined with other MCMC techniques such as
blocking, tempering, lifting, etc.

The methodology can be generalized to other model selection
problems, e.g. structure learning.

A key step of the theoretical analysis is to establish a unimodal
condition, which also gives insights on how to devise efficient MCMC
algorithms for model selection.
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