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MCMC in high-dimensional statistics

e MCMC (Markov chain Monte Carlo) methods are frequently used in
Bayesian statistics for sampling from posterior distributions.

@ Let S denote the state space. In model selection problems, typically
|S| (the cardinality of S) depends on a parameter p (number of
variables).

Example (variable selection)

S =1{0,1}? and |S| = 2.

Example (structure learning)

S is the space of p-vertex directed acyclic graphs, and |S| grows
super-exponentially with p.
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MCMC in high-dimensional statistics

@ In high-dimensional settings with p > n (n denotes the sample size),
some sparsity constraint needs to be imposed, but usually |S| still
grows super-polynomially with p.

@ Compared with other approximate methods for posterior computation,
e.g. variational Bayes [1], are MCMC algorithms efficient enough?

Definition (rapid mixing)
We say an MCMC algorithm is rapidly mixing if its mixing time grows only
polynomially with p and n.
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Metropolis-Hastings (MH) algorithms

Let S be a finite state space and 7 be a probability distribution defined on

S (assume 7(x) > 0 for each z). Given an irreducible transition matrix K,
we define

Ple.y) = { K(:U,ly)I;n{ljz
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@ P is reversible with respect to .

@ To simulate a Markov chain with transition matrix P, we only need to
know an un-normalized version of .
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Metropolis-Hastings (MH) algorithms

Let S be a finite state space and 7 be a probability distribution defined on

S (assume 7(x) > 0 for each z). Given an irreducible transition matrix K,
we define

Pl — | Kloomin{LHGEEGE oty
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@ K (x,-) is called the proposal distribution.

@ min {1, %%} is called the acceptance probability.
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Local proposals

Let NV(z) = {y € S: K(z,y) > 0} denote the neighborhood of x.

@ In practice, |N(+)| usually grows polynomially with p.

@ Most “standard” MH algorithms use random walk proposals,

Iy (y)
K(:Cay)_W? VCL"aZJGS-
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Locally informed proposals

Making proposals informed (Zanella [2])

Choose some f: (0,00) — (0,00), and define a new proposal transition
matrix K by

Kf(z,y) = WﬂN(x)(y), where Z(z Z f < ZI > :

' eN(z)

In words, we propose y € N(x) with probability o f (7(y)/m(x)).
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Locally informed proposals

Kf(l‘,y) = %)HN(x)(y)’ where Z Z f < xwl)>

' eN(z)

o Intuitively, we prefer non-decreasing f.
@ The calculation of Z(x) requires us to evaluate 7 for each y € N (z).

@ Similar ideas are used in other MCMC methods [3, 4, 5] and some
non-MCMC methods as well [6, 7, 8].

Can informed MCMC methods achieve a sufficiently fast convergence rate
that offsets the cost of computing Z(x) in each iteration? J
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What can we say about 7?7

Definition (selection consistency)

We say a Bayesian model selection procedure has selection consistency if,
for some z* € S, m(2*) — 1 in probability w.r.t. the true data generating
process. (Here, S, m, z* are all implicitly indexed by n.)

If 7 concentrates on a single point z*, the mixing time of an MCMC
algorithm is equivalent to the expected hitting time of z* [9, 10].

Selection consistency can often be proved by showing that 7 is unimodal
(w.r.t. a local neighborhood relation) and the peak is “sharp”.
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Sparse linear regression

Consider the linear regression model y = X5 + .
e X is an n x p matrix (n: sample size; p: number of variables).
@ We are mostly interested in the case p > n.
o 3 € RP is assumed to be sparse: most entries are zero or “negligible”.

@ ¢ represents normal i.i.d. errors.
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Sparse linear regression

Let v denote the set of variables that have non-negligible effects. The goal
of “variable selection” is to identify « from the data.

Model space
Due to the sparsity assumption, we can assume -y takes value in the space

M(s0) ={v € {1,2,...,p}: | < so},

for some constant sp (which may grow with p).
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Local MH algorithms for variable selection

Add-delete-swap neighborhood
For each v € M(sp), define

Naaa(7) = {7 € M(s0): v =y U {j} for some j ¢ 7},
Naa(7) = {7 € M(s0): v =\ {k} for some k € v},
-/V.swap(')') = {7I € M(SO): 'Y/ = (’Y U {j}) \ {k} for Somej ¢ Y k€ ’7}‘ )

Note [NMaada(7) UNael(7)] = p and [Nowap (V)| = (2 = 7D 7.
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Local MH algorithms for variable selection

Using the addition/deletion/swap moves, we can define a random walk
MH algorithm as follows.

Symmetric RWMH for variable selection
Given current state v,
e with probability 1/2, propose a state from NMuqq(7) U Ngel(7)
randomly with equal probability;
@ with probability 1/2, propose a state from Ngyap(y) randomly with
equal probability.
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Challenge I: ™ can be highly “irregular”

Let v* denote the true set of “influential” covariates, and let v # ~*.
Even if n is sufficiently large,

e moving from  to y U {j} for some j € v*\ v may not increase the
posterior probability,

@ moving from  to 7y \ {k} for some k € v\ 7v* may not increase the
posterior probability.

@ Reason: dependence among the p variables.

@ But (with high probability) there always exists one addition or
deletion move at v which can increase the posterior probability.
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Rapid mixing of RWMH

Yang et al. (Ann. Stat., 2016) proved that, under mild high-dimensional
assumptions, the symmetric RWMH algorithm for Bayesian variable
selection is rapidly mixing.

@ The order of their mixing time bound is roughly pns? log p.

@ The proof relies on the canonical path method of Sinclair [11];
see [12, 13] for the general theory.

How fast can the mixing of an informed algorithm be?
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Challenge Il: a naive informed scheme can easily fail

A naive informed proposal

Let N(’Y) = Nadd('.)/) U Ndel(’}/) UA/;wap('Y)y and

K(v,7') o< (v ) pr(y) (7)-

Suppose v* = {1,2} and the current model is v = ). Then

~({1)) A1) @0 ()
PO = Z @) FOLD < G me) ~ =L

which tends to be extremely small for large n.
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Challenge Il: a naive informed scheme can easily fail

Recall the general definition of a locally informed proposal scheme.

K(3,7) = f(ﬂ(;,(),i;rm)ﬂNw)(V')a where Z(+) = 3 f< z))

FEN(7)

A main challenge is that we can say almost nothing about the behavior of
the mapping v — Z(7), for most choices of f, e.g. f(z) = z°.

Choose some bounded f so that Z is also bounded.
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Our algorithm: LIT-MH

We propose an informed MCMC algorithm for variable selection still using
the add-delete-swap neighborhood, named LIT-MH (Metropolis—Hastings
with Locally Informed and Thresholded proposals).

Step 1: partition the neighborhood

1 we(v | 7)
Kiu(1,7) = 3 > 70y W)

+x="‘add’, ‘del’, ‘swap’
Z(7) = Z we(¥ | 7),
FEN(7)

where w, (7' | ) € [0,00) denotes the proposal weight of v/ € N, () given
current state 7.

v
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Our algorithm: LIT-MH

Step 2: assign bounded proposal weights

The proposal weight of 7/ € AN/(7) is calculated by
wi(y' | 7) =p™ Vv = Apl*,  for x = ‘add’, ‘del’, ‘swap’,

where —oco < ¢, < L, < 0o are some constants that may depend on the
type of move.
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Main result

Theorem (dimension-free mixing of LIT-MH)

Define the mixing time of the LIT-MH chain by

Twix = sup min{t > 0: [|Bi(y,-) = 7()||lpy < 1/4},
’)’EM(So)

where ||-|| oy denotes the total variation distance. Under some mild
high-dimensional assumptions and assuming the parameters of the LIT-MH
proposal scheme are properly chosen (see our paper for details), we have

Wriee = Oy

for some universal constant C'.
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Main result

@ The result holds under the high-dimensional assumptions used by
Yang et al. [14]. Recall that they showed the mixing time of RWMH
is O(pnsélogp). Since |N(-)| grows at rate pso, the total complexity
of LIT-MH is smaller than the bound of [14] for RWMH.

@ We only need to require sglogp = O(n), which is a “standard”
asymptotic regime in high-dimensional statistical theory [15, 16, 17].

@ The mixing time bound of LIT-MH derived in our paper is actually
slightly smaller than O(n).
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Simulation study I: find the posterior mode

First, we considered the simulation settings of Yang et al. [14] with
|7*| = 10. The sampler is initialized at some randomly generated ~) with
70| = 10. When the signal-to-noise is sufficiently large, LIT-MH finds
the posterior mode much faster than RWMH.
e n = 1000, p = 5000, independent design. RWMH: about 15 seconds;
LIT-MH: 0.1 second.

e n = 1000, p = 5000, correlated design. RWMH: 20 to 40 seconds;
LIT-MH: 0.1 to 0.2 second.

When v* = (), 7 tends to be very flat and RWMH tends to perform better.
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Simulation study I: Rao-Blackwellization

No extra computational cost for Rao-Blackwellized estimation of £3.

n=1000, p=5000, independent design n=1000, p=5000, correlated design
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Simulation study Il: exploring multimodal distributions

@ The design matrix X has i.i.d. rows, but each row is sampled from
N(0,%4p) where ¥g,, = diag(Xq, ..., Xq) is block-diagonal. Each
block 34 has dimension d x d, and (Xg) 1 = e~ li=KI/3,

e We fix n = 1000, p = 5000 and d = 20.

@ The response y is simulated by y = X* + z with z ~ N(0, [,,). We
generate * by first randomly sampling 100 nonzero entries and then
sampling Bj;* ~ N(O, U%IIOO)-
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Simulation study Il: exploring multimodal distributions

RWMH (200K iterations) LIT-MH (2K iterations)

Time 78.1 9.95

o =0.1 Acc. Rate 0.012 0.495
ESS/Time 4.83 345

Time 80.4 27.9

og =03  Acc. Rate 0.0037 0.578
ESS/Time 3.57 19.8

Time 81.8 425

o =0.5 Acc. Rate 0.0021 0.485
ESS/Time 2.45 15.0

Table: “ESS/Time" is the effective sample size per second calculated using
| XBR)||2. Al statistics are averaged over 20 data sets.
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Real GWAS data analysis

We applied our method to two real GWAS (genome-wide association
study) datasets obtained from dbGaP (accession no: phs000308.v1.p1,
phs000238.v1.pl). The response y is the cup-to-disk ratio measurement.

o After quality control, we end up with n = 5,418 and p = 328,129.
@ RWMH has effective sample size 1.95 per minute.

@ An approximate implementation of LIT-MH has effective sample size
33.5 per minute.

@ We were able to recover 5 known GWAS hits for ocular traits located
in 4 different regions.
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Drift-condition approach to the analysis of LIT-MH

Drift condition

For any function g, let (Pg)(v) = 3., g(v")P(v,7"). If for some set
A C M(sp), function V': M(sp) — [1,00) and constant A € (0,1),

(PV)(7v) <AV(y), Yz €A,

we say the P satisfies a drift condition on A, which implies that the entry
time of the Markov chain into A® has a “thin-tailed” distribution [24].

We bound the mixing time of LIT-MH by showing that Pj; satisfies a
two-stage drift condition.
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Drift-condition approach to the analysis of LIT-MH

@ To our knowledge, drift condition is rarely used in the mixing time
analysis of high-dimensional discrete statistical problems such as
variable selection.

@ To establish a drift condition, we need to bound the expected change
in the drift function by considering all possible moves of the chain.

@ For informed MH algorithms, we need to find good bounds for the
normalizing constants of proposal distributions.
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Two-stage drift condition

Overfitted and underfitted models

Let O = {v € M(so): v* C v}. Models in O are said to be overfitted,
and other models are underfitted.

Two-stage drift condition of LIT-MH

@ Py satisfies a drift condition on OF,

@ Py satisfies another drift condition on O\ {7*},
@ Pit(y, O°) is very small for any v € O.
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Two-stage drift condition

Underfitted

Overfitted
oV
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Two-stage drift condition

Underfitted

Overfitted
y*

A path of Pj.
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Two drift functions

We consider the prior used by Yang et al. [14], which yields the posterior,

_ _1\—n/2
w(7) o™ (1= B2+ g7) T Ly (),
where k and g are hyperparameters and R% denotes the coefficient of
determinant for regressing y on the covariates in ~.
o The term p~*1! penalizes the model size.

o The term (1 — R2 + g_l)_n/2 penalizes the lack of fit.
@ Other priors can be used as well.
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Two drift functions

The two drift functions we choose are given by

_ 1/log(1
Vi(y) = {1+g 1(1 _R?y)} / log( +9)’
Va(y) = e\ 150,

@ V7 is used for the drift condition on underfitted models.

@ V% is used for the drift condition on overfitted models.
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Two drift functions

The two drift functions we choose are given by

— 1/log(1
‘/i(’Y): {1+g 1(1_R'2y)} / log( +g)’
Va(y) = e\ 150,

Intuition:

@ When the model is underfitted, the chain tends to drift towards
overfitted models to increase R%.

@ When the model is underfitted, the chain tends to move towards ~*
by removing covariates in v \ v*.

e Using a single drift function such as V(vy) = exp(|yAv*]) will
probably fail as the behavior of the chain on O¢ is “hard to predict”.
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How to bound the mixing time

@ Let 7* denote the hitting time of the true model v*. If we can bound
E[a~"" | started at some v(%)] for some a € (0,1), we can use the
result of [25] to derive a mixing time bound.

@ For our problem, directly bounding the generating function seems
difficult. So we start by finding a tail bound instead.

@ We split the path of the chain into disjoint “excursions” in O and O°¢.
For each excursion in O, there is some positive probability that the
chain can hit v*, and then we can use a union bound to handle the
tail probability of 7* [26].

@ The two-stage drift condition is conceptually similar to the classical
drift-and-minorization approach [26, 27].
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Two-stage drift condition

Underfitted

Overfitted

*

14

The chain hits v* during its second excursion in O.
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General results for the two-stage drift condition

Assumption on P

(X¢)ten is @ Markov chain defined on a state space (X, ) where the
o-algebra £ is countably generated. The transition kernel P is reversible
with respect to a stationary distribution 7, and the spectrum of P is
non-negative.

Two-stage drift condition

Suppose that there exist two drift functions Vi, Va: X — [1,00), constants
A1, A2 € (0,1), aset A € € and a point z* € A such that

(i) PVi <A\Vi on AS, (i) PVa < X2V on A\ {z*}.
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General results for the two-stage drift condition

Theorem (mixing time bound with the two-stage drift condition)

In addition to the two-stage drift condition, suppose that A satisfies the
following conditions, for any © € A, for some finite constants M, K.

(iii) Vi(z) =1, and if P(x,A°) >0, E;[V1(X1) | X1 € A°] < M /2.
(iv) Va(z) < K, and if P(x,A°) > 0, E,[Va(X1) | X1 € A¢] > Va(x).
(v) P(z,A°) < q for some ¢ < min{l — Ay, (1 — A2)/K}.

Then, for every x € X and t € N, we have

||Pt($a ) _ 7THTV S 4at+1 (1 + M_l‘/l(m)) )
where « is a constant in (1 — q/4,1) and can be computed by

1+p" 14+ M'/u qgK 1 logu
o = = =S U= ——- r=——--.
2 2 ’ 1—X 1—q/2’ log(M/p)
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Concluding remarks

@ LIT-MH is a simple but highly efficient solution to the variable
selection problem. It attains a provable dimension-free mixing rate.

@ Local evaluation of 7 can be easily parallelized.

@ LIT-MH can be combined with other MCMC techniques such as
blocking, tempering, lifting, etc.

@ The methodology can be generalized to other model selection
problems, e.g. structure learning.

@ A key step of the theoretical analysis is to establish a unimodal
condition, which also gives insights on how to devise efficient MCMC
algorithms for model selection.



Thank you!
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