
Lecture 8

Instructor: Quan Zhou

For more details about the materials covered in this note, see Chapter
10.1 of Resnick [2] and Chapter A.4 of Durrett [1].

8.1 Radon-Nikodym Theorem

Definition 8.1. For two measures defined on the same measurable space
(Ω,F), we say ν is absolutely continuous with respect to µ if µ(A) = 0 implies
ν(A) = 0 for any A ∈ F . This is often denoted by ν ≪ µ. (Sometimes we
also say µ dominates ν.)

We say µ, ν are equivalent and write µ ≃ ν if µ ≪ ν and ν ≪ µ. We say
µ, ν are mutually singular, which is denoted by µ ⊥ ν, if there exist A,B ∈ F
such that A ∩B = ∅, µ(Ac) = ν(Bc) = 0.

Theorem 8.1 (Radon-Nikodym theorem). Let µ, ν be σ-finite measures on
(Ω,F) such that ν ≪ µ. Then there exists a Borel function f ≥ 0 (measurable
w.r.t. F) such that, for any A ∈ F ,

ν(A) =

∫
A

fdµ.

Further, f is unique µ-a.e. We call f the Radon-Nikodym derivative or the
density of ν w.r.t. µ, and we write f = dν/dµ, dν = fdµ, ν(dx) = f(x)µ(dx)
or dν(x) = f(x)dµ(x).

Proof. See the textbook.

Example 8.1. If µ is the Lebesgue measure, then the function f in Radon-
Nikodym theorem is called the Lebesgue density. If the distribution (i.e. P ◦
X−1) of a random variable X has a Lebesgue density, we say X is absolutely
continuous.

Example 8.2. Consider (Ω,P(Ω),P) where Ω = {ω1, ω2, . . . } is a discrete
set. Then the density function w.r.t. the counting measure is simply given
by f(ωi) = P({ωi}), which is often called the probability mass function.
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Example 8.3. The Cantor distribution is the uniform distribution on the
Cantor set (which is a subset of [0, 1]). See Example 1.2.7 in Durrett [1]. The
distribution function is continuous. However, the Lebesgue measure of the
Cantor set is zero; that is, the Cantor distribution and the Lebesgue measure
are singular. It has no density w.r.t. the counting measure either, since it
has no point masses. We say it is a singular distribution.

8.2 Properties of Radon-Nikodym derivatives

Proposition 8.1. Measures mentioned below are assumed to be σ-finite and
defined on the measurable space (Ω,F).

(i) If ν1, ν2 ≪ µ, then ν1 + ν2 ≪ µ and

d(ν1 + ν2)

dµ
=

dν1
dµ

+
dν2
µ

, µ− a.e.

(ν1 + ν2 is defined by (ν1 + ν2)(A) = ν1(A) + ν2(A) for any A ∈ F .)

(ii) If ν ≪ µ and f ≥ 0, then∫
fdν =

∫
f

(
dν

dµ

)
dµ.

(iii) If π ≪ ν ≪ µ, then

dπ

dµ
=

dπ

dν

dν

dµ
, µ− a.e.

(iv) If ν ≪ µ and µ ≪ ν,

dµ

dν
=

(
dν

dµ

)−1

, µ− a.e.

Proof of part (i). Details of the first two steps are omitted.

Step (1). Prove that ν1 + ν2 is a σ-finite measure.

Step (2). Prove that ν1 + ν2 ≪ µ.
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Step (3). Consider any set A ∈ F .

(ν1 + ν2)(A)

= ν1(A) + ν2(A) (by definition of ν1 + ν2)

=

∫
A

dν1
dµ

dµ+

∫
A

dν2
dµ

dµ (by the R-N theorem)

=

∫
A

(
dν1
dµ

+
dν2
dµ

)
dµ (by linearity of Lebesgue integrals).

Finally, by the uniqueness part of the R-N theorem, dν1/dµ + dν2/dµ must
be equal to d(ν1 + ν2)/dµ, µ-a.e.

Proof of part (ii). Try it yourself. Recall how we construct the Lebesgue
integral: start from indicator functions and simple functions, and then move
on to consider more general choices of f .

Proof of part (iii). The existence of dπ/dν, dπ/dµ, and dν/dµ are guaranteed
by the R-N theorem. To prove the claim, note that for any A ∈ F ,

π(A) =

∫
A

dπ

dν
dν (by the R-N theorem)

=

∫
A

dπ

dν

dν

dµ
dµ (by part (ii) and letting f = dπ/dν) .

Apply the uniqueness part of the R-N theorem to conclude the proof.

Proof of part (iv). The proof is similar to that of part (iii).

Proposition 8.2. Let µi, νi be σ-finite measures on (Ωi,Fi) for i = 1, 2. If
νi ≪ µi for i = 1, 2, then ν1 × ν2 ≪ µ1 × µ2 and

d(ν1 × ν2)

d(µ1 × µ2)
(ω1, ω2) =

dν1
dµ1

(ω1) ·
dν2
dµ2

(ω2), (µ1 × µ2)− a.e.

Sketch of the proof. First, use Fubini’s theorem to show that for any mea-
surable rectangle A1 × A2,

(ν1 × ν2)(A1 × A2) =

∫
A1×A2

dν1
dµ1

(ω1) ·
dν2
dµ2

(ω2)(µ1 × µ2)d(ω1, ω2).
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Then one can apply Dynkin’s π-λ theorem. Alternatively, define another
measure ν on the product space by letting

ν(A) =

∫
A

dν1
dµ1

(ω1) ·
dν2
dµ2

(ω2)(µ1 × µ2)d(ω1, ω2),

for any A ∈ F1 × F2. By Theorem 6.1, ν = ν1 × ν2, and the claim follows
from the R-N theorem.
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