Lecture &

Instructor: Quan Zhou

For more details about the materials covered in this note, see Chapter
10.1 of Resnick [2] and Chapter A.4 of Durrett [1].

8.1 Radon-Nikodym Theorem

Definition 8.1. For two measures defined on the same measurable space
(Q, F), we say v is absolutely continuous with respect to p if (A) = 0 implies
v(A) = 0 for any A € F. This is often denoted by v < p. (Sometimes we
also say p dominates v.)

We say u, v are equivalent and write yu ~ v if y < v and v < u. We say
1, v are mutually singular, which is denoted by p L v, if there exist A, B € F
such that AN B =0, u(A°) = v(B°) = 0.

Theorem 8.1 (Radon-Nikodym theorem). Let u, v be o-finite measures on
(Q, F) such that v < p. Then there exists a Borel function f > 0 (measurable
w.r.t. F) such that, for any A € F,

V(A) = /A fdu.

Further, f is unique p-a.e. We call f the Radon-Nikodym derivative or the
density of v w.r.t. u, and we write f = dv/du, dv = fdu, v(dx) = f(x)u(dx)
or dv(z) = f(x)du(x).

Proof. See the textbook. O]

Example 8.1. If i is the Lebesgue measure, then the function f in Radon-
Nikodym theorem is called the Lebesgue density. If the distribution (i.e. Po
X 1) of a random variable X has a Lebesgue density, we say X is absolutely
continuous.

Example 8.2. Consider (2, P(£2),P) where Q = {wi,ws,...} is a discrete
set. Then the density function w.r.t. the counting measure is simply given
by f(w;) = P({w;}), which is often called the probability mass function.
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Example 8.3. The Cantor distribution is the uniform distribution on the
Cantor set (which is a subset of [0, 1]). See Example 1.2.7 in Durrett [I]. The
distribution function is continuous. However, the Lebesgue measure of the
Cantor set is zero; that is, the Cantor distribution and the Lebesgue measure
are singular. It has no density w.r.t. the counting measure either, since it
has no point masses. We say it is a singular distribution.

8.2 Properties of Radon-Nikodym derivatives

Proposition 8.1. Measures mentioned below are assumed to be o-finite and
defined on the measurable space (2, F).

(1) If 11, vy < i, then vy + vy < pu and

d d d
dnrw) _dndvy
dp dp — p

(v1 + vy is defined by (v + 12)(A) = 11 (A) + 15(A) for any A € F.)

(i) If v <y and f >0, then
d
foe= [ o (5 o

b
du — dvdp’ pac

(i) If 1 < v < i, then

() If v < pand p < v,
du  (dv - B
o\ , w— a.e.

Proof of part . Details of the first two steps are omitted.
Step (1). Prove that 14 + 15 is a o-finite measure.

Step (2). Prove that vy + vy < p.
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Step (3). Consider any set A € F.

(Vl + V2)(A)
=11(A) + (A (by definition of vy + 1)

d d
/ M g+ / 2 du (by the R-N theorem)

d d
= / et i dp (by linearity of Lebesgue integrals).
d,u du

Finally, by the uniqueness part of the R-N theorem, dvy/du + dvs/dp must
be equal to d(v; + vo)/du, p-a.e. O

Proof of part . Try it yourself. Recall how we construct the Lebesgue
integral: start from indicator functions and simple functions, and then move
on to consider more general choices of f. O

Proof of part (iil). The existence of drr/dv, dr/dy, and dv/dy are guaranteed
by the R-N theorem. To prove the claim, note that for any A € F,

/ iy (by the R-N theorem)

drd
— / d_wd_yd'u (by part and letting f = dm/dv) .
v dp

Apply the uniqueness part of the R-N theorem to conclude the proof. O
Proof of part . The proof is similar to that of part . O]

Proposition 8.2. Let p;,v; be o-finite measures on (Q;, F;) for i =1,2. If
v; K p; fori=1,2, then v; X vy < iy X o and

d(v X vg) _dw v,
d(,ul w ,u2) (W17W2) = diy (W1) diis (OJQ), (Ml X /L2> a.e.

Sketch of the proof. First, use Fubini’s theorem to show that for any mea-
surable rectangle A; x Ag,

dl/1 dVQ
vy X 19)(A; X A :/ —(wp) - —(w X o) d(wy, ws).
(n 2) (A1 2) e, dul( 1) d,u2( 2) (k1 X p2)d(wy, wo)
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Then one can apply Dynkin’s 7w\ theorem. Alternatively, define another
measure v on the product space by letting

V(A) = / j—ﬁwl) - j—Z(w»(m X p)d(wi, ws),

for any A € F; x F5. By Theorem 6.1, v = 14 X v, and the claim follows
from the R-N theorem. O
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