Lecture 8

Instructor: Quan Zhou
For more details about the materials covered in this note, see Chapter 10.1 of Resnick [2] and Chapter A. 4 of Durrett [1].

8.1 Radon-Nikodym Theorem

Definition 8.1. For two measures defined on the same measurable space (Ω, \mathcal{F}), we say ν is absolutely continuous with respect to μ if $\mu(A)=0$ implies $\nu(A)=0$ for any $A \in \mathcal{F}$. This is often denoted by $\nu \ll \mu$. (Sometimes we also say μ dominates ν.)

We say μ, ν are equivalent and write $\mu \simeq \nu$ if $\mu \ll \nu$ and $\nu \ll \mu$. We say μ, ν are mutually singular, which is denoted by $\mu \perp \nu$, if there exist $A, B \in \mathcal{F}$ such that $A \cap B=\emptyset, \mu\left(A^{c}\right)=\nu\left(B^{c}\right)=0$.

Theorem 8.1 (Radon-Nikodym theorem). Let μ, ν be σ-finite measures on (Ω, \mathcal{F}) such that $\nu \ll \mu$. Then there exists a Borel function $f \geq 0$ (measurable w.r.t. \mathcal{F}) such that, for any $A \in \mathcal{F}$,

$$
\nu(A)=\int_{A} f d \mu
$$

Further, f is unique μ-a.e. We call f the Radon-Nikodym derivative or the density of ν w.r.t. μ, and we write $f=d \nu / d \mu, d \nu=f d \mu, \nu(d x)=f(x) \mu(d x)$ or $d \nu(x)=f(x) d \mu(x)$.

Proof. See the textbook.
Example 8.1. If μ is the Lebesgue measure, then the function f in RadonNikodym theorem is called the Lebesgue density. If the distribution (i.e. $\mathrm{P} \circ$ X^{-1}) of a random variable X has a Lebesgue density, we say X is absolutely continuous.

Example 8.2. Consider $(\Omega, \mathcal{P}(\Omega), \mathrm{P})$ where $\Omega=\left\{\omega_{1}, \omega_{2}, \ldots\right\}$ is a discrete set. Then the density function w.r.t. the counting measure is simply given by $f\left(\omega_{i}\right)=\mathrm{P}\left(\left\{\omega_{i}\right\}\right)$, which is often called the probability mass function.

Example 8.3. The Cantor distribution is the uniform distribution on the Cantor set (which is a subset of $[0,1]$). See Example 1.2.7 in Durrett [1]. The distribution function is continuous. However, the Lebesgue measure of the Cantor set is zero; that is, the Cantor distribution and the Lebesgue measure are singular. It has no density w.r.t. the counting measure either, since it has no point masses. We say it is a singular distribution.

8.2 Properties of Radon-Nikodym derivatives

Proposition 8.1. Measures mentioned below are assumed to be σ-finite and defined on the measurable space (Ω, \mathcal{F}).
(i) If $\nu_{1}, \nu_{2} \ll \mu$, then $\nu_{1}+\nu_{2} \ll \mu$ and

$$
\frac{d\left(\nu_{1}+\nu_{2}\right)}{d \mu}=\frac{d \nu_{1}}{d \mu}+\frac{d \nu_{2}}{\mu}, \quad \mu-a . e .
$$

$$
\left(\nu_{1}+\nu_{2} \text { is defined by }\left(\nu_{1}+\nu_{2}\right)(A)=\nu_{1}(A)+\nu_{2}(A) \text { for any } A \in \mathcal{F} .\right)
$$

(ii) If $\nu \ll \mu$ and $f \geq 0$, then

$$
\int f d \nu=\int f\left(\frac{d \nu}{d \mu}\right) d \mu
$$

(iii) If $\pi \ll \nu \ll \mu$, then

$$
\frac{d \pi}{d \mu}=\frac{d \pi}{d \nu} \frac{d \nu}{d \mu}, \quad \mu-a . e .
$$

(iv) If $\nu \ll \mu$ and $\mu \ll \nu$,

$$
\frac{d \mu}{d \nu}=\left(\frac{d \nu}{d \mu}\right)^{-1}, \quad \mu-a . e .
$$

Proof of part (ii). Details of the first two steps are omitted.
Step (1). Prove that $\nu_{1}+\nu_{2}$ is a σ-finite measure.
Step (2). Prove that $\nu_{1}+\nu_{2} \ll \mu$.

Step (3). Consider any set $A \in \mathcal{F}$.

$$
\begin{array}{rlr}
& \left(\nu_{1}+\nu_{2}\right)(A) & \\
= & \nu_{1}(A)+\nu_{2}(A) & \text { (by definition of } \left.\nu_{1}+\nu_{2}\right) \\
= & \int_{A} \frac{d \nu_{1}}{d \mu} d \mu+\int_{A} \frac{d \nu_{2}}{d \mu} d \mu & \text { (by the R-N theorem) } \\
= & \int_{A}\left(\frac{d \nu_{1}}{d \mu}+\frac{d \nu_{2}}{d \mu}\right) d \mu & \text { (by linearity of Lebesgue integrals). }
\end{array}
$$

Finally, by the uniqueness part of the R-N theorem, $d \nu_{1} / d \mu+d \nu_{2} / d \mu$ must be equal to $d\left(\nu_{1}+\nu_{2}\right) / d \mu$, μ-a.e.

Proof of part (iii). Try it yourself. Recall how we construct the Lebesgue integral: start from indicator functions and simple functions, and then move on to consider more general choices of f.

Proof of part (iiii). The existence of $d \pi / d \nu, d \pi / d \mu$, and $d \nu / d \mu$ are guaranteed by the R-N theorem. To prove the claim, note that for any $A \in \mathcal{F}$,

$$
\begin{aligned}
\pi(A) & =\int_{A} \frac{d \pi}{d \nu} d \nu \\
& =\int_{A} \frac{d \pi}{d \nu} \frac{d \nu}{d \mu} d \mu \quad \text { (by part (iii) and letting } f=d \pi / d \nu \text {). }
\end{aligned}
$$

Apply the uniqueness part of the R-N theorem to conclude the proof.
Proof of part (iv). The proof is similar to that of part (iii).
Proposition 8.2. Let μ_{i}, ν_{i} be σ-finite measures on $\left(\Omega_{i}, \mathcal{F}_{i}\right)$ for $i=1$, 2. If $\nu_{i} \ll \mu_{i}$ for $i=1,2$, then $\nu_{1} \times \nu_{2} \ll \mu_{1} \times \mu_{2}$ and

$$
\frac{d\left(\nu_{1} \times \nu_{2}\right)}{d\left(\mu_{1} \times \mu_{2}\right)}\left(\omega_{1}, \omega_{2}\right)=\frac{d \nu_{1}}{d \mu_{1}}\left(\omega_{1}\right) \cdot \frac{d \nu_{2}}{d \mu_{2}}\left(\omega_{2}\right), \quad\left(\mu_{1} \times \mu_{2}\right)-a . e .
$$

Sketch of the proof. First, use Fubini's theorem to show that for any measurable rectangle $A_{1} \times A_{2}$,

$$
\left(\nu_{1} \times \nu_{2}\right)\left(A_{1} \times A_{2}\right)=\int_{A_{1} \times A_{2}} \frac{d \nu_{1}}{d \mu_{1}}\left(\omega_{1}\right) \cdot \frac{d \nu_{2}}{d \mu_{2}}\left(\omega_{2}\right)\left(\mu_{1} \times \mu_{2}\right) d\left(\omega_{1}, \omega_{2}\right) .
$$

Then one can apply Dynkin's $\pi-\lambda$ theorem. Alternatively, define another measure ν on the product space by letting

$$
\nu(A)=\int_{A} \frac{d \nu_{1}}{d \mu_{1}}\left(\omega_{1}\right) \cdot \frac{d \nu_{2}}{d \mu_{2}}\left(\omega_{2}\right)\left(\mu_{1} \times \mu_{2}\right) d\left(\omega_{1}, \omega_{2}\right)
$$

for any $A \in \mathcal{F}_{1} \times \mathcal{F}_{2}$. By Theorem 6.1, $\nu=\nu_{1} \times \nu_{2}$, and the claim follows from the R-N theorem.

References

[1] Rick Durrett. Probability: Theory and Examples, volume 49. Cambridge university press, 2019.
[2] Sidney Resnick. A Probability Path. Springer, 2019.

