Lecture 7

Instructor: Quan Zhou

For more details about the materials covered in this note, see Chapters 4.1 and 4.2 of Resnick [2] and Chapter 2.1 of Durrett [1].

7.1 Independence

Definition 7.1. Independence for two events/ σ -algebras/random variables.

- (i) Two events A and B are independent if $P(A \cap B) = P(A)P(B)$.
- (ii) Two σ -algebras are independent if for any $A \in \mathcal{F}, B \in \mathcal{G}$, the events A and B are independent.
- (iii) Two random variables X and Y are independent if for all $A, B \in \mathcal{B}(\mathbb{R})$, we have $\mathsf{P}(X \in A, Y \in B) = \mathsf{P}(X \in A)\mathsf{P}(Y \in B)$.

Definition 7.2. Mutual independence.

- (i) σ -algebras $\mathcal{F}_1, \ldots, \mathcal{F}_n$ are independent if whenever $A_i \in \mathcal{F}_i$ for each i, we have $\mathsf{P}(\bigcap_{i=1}^n A_i) = \prod_{i=1}^n \mathsf{P}(A_i)$.
- (ii) Random variables X_1, \ldots, X_n are independent if whenever $B_i \in \mathcal{B}(\mathbb{R})$ for each *i*, we have $\mathsf{P}(\bigcap_{i=1}^n \{X_i \in \mathcal{B}_i\}) = \prod_{i=1}^n \mathsf{P}(X_i \in \mathcal{B}_i)$.
- (iii) Sets (events) A_1, \ldots, A_n are independent if whenever $I \subset \{1, 2, \ldots, n\}$ we have $\mathsf{P}(\bigcap_{i \in I} A_i) = \prod_{i \in I} \mathsf{P}(A_i)$.
- (iv) Let $\mathcal{A}_1, \ldots, \mathcal{A}_n$ be collections of measurable subsets of Ω . We say they are independent if whenever $A_i \in \mathcal{A}_i$ for each *i*, the events A_1, \ldots, A_n are independent.

Theorem 7.1. If X and Y are independent, then $\sigma(X)$ and $\sigma(Y)$ are independent.

Proof. If a set $A \in \sigma(X)$, then by definition $A = \{\omega : X(\omega) \in C\}$ for some $C \in \mathcal{B}(\mathbb{R})$. Similarly, if $B \in \sigma(Y)$, then $B = \{\omega : Y(\omega) \in D\}$ for some $D \in \mathcal{B}(\mathbb{R})$. Hence,

$$\mathsf{P}(A \cap B) = \mathsf{P}(\{\omega \colon X(\omega) \in C, Y(\omega) \in D\}) = \mathsf{P}(X(\omega) \in C)\mathsf{P}(Y(\omega) \in D)$$

since X, Y are independent. But the right-hand side is just $\mathsf{P}(A)\mathsf{P}(B)$. \Box

Theorem 7.2. If \mathcal{F} and \mathcal{G} are independent, $X \in \mathcal{F}$ and $Y \in \mathcal{G}$, then X and Y are independent.

Proof. If X is a measurable function with respect to \mathcal{F} and Y is measurable with respect to \mathcal{G} , then by definition for any $A, B \in \mathcal{B}(\mathbb{R})$ we have $\{X \in A\} \in \mathcal{F}$ and $\{Y \in B\} \in \mathcal{G}$. Since \mathcal{F} and \mathcal{G} are independent, the two events $\{X \in A\}$ and $\{Y \in B\}$ are independent. \Box

Example 7.1. Pairwise independence does not imply (mutual) independence. Consider a box containing 4 tickets labeled 112, 121, 211, 222. Let A_i denote the event that the *i*-th digit is 1 for i = 1, 2, 3. Clearly, $P(A_1) = P(A_2) = P(A_3) = 1/2$. Further, $P(A_1 \cap A_2) = P(A_1 \cap A_3) = P(A_2 \cap A_3) = 1/4$. However, $P(A_1 \cap A_2 \cap A_3) = 0$.

Example 7.2. Definition 7.2 (iii) may seem complicated but it cannot be simplified. Consider $\Omega = \{1, 2, 3, 4..., 16\}$ with a uniform probability measure (i.e. probability 1/16 for each outcome) and the following 4 events

$$A = \{1, 2, 4, 5, 6, 9, 10, 16\}, \quad B = \{1, 2, 3, 4, 7, 8, 11, 12\}, \\ C = \{1, 3, 4, 5, 7, 8, 11, 12\}, \quad D = \{1, 2, 3, 5, 6, 9, 10, 15\}.$$

Clearly $\mathsf{P}(A) = \mathsf{P}(B) = \mathsf{P}(C) = \mathsf{P}(D) = 1/2$. One can check that

$$P(A \cap B \cap C \cap D) = P(\{1\}) = 1/16,$$

$$P(A \cap B \cap C) = P(\{1, 4\}) = 1/8,$$

$$P(A \cap B \cap D) = P(\{1, 2\}) = 1/8,$$

$$P(A \cap C \cap D) = P(\{1, 5\}) = 1/8,$$

$$P(B \cap C \cap D) = P(\{1, 3\}) = 1/8.$$

However, we do not have any pairwise independence: $P(A \cap B) = P(A \cap C) = P(B \cap D) = P(C \cap D) = 3/16$, $P(A \cap D) = 6/16$, $P(B \cap C) = 7/16$.

7.2 Properties of independent random variables

Lemma 7.1. If A_1, A_2, \ldots, A_n are independent and each A_i is a π -system, then $\sigma(A_1), \ldots, \sigma(A_n)$ are independent.

Proof. See the textbook.

Theorem 7.3 (Factorization theorem). Random variables X_1, \ldots, X_n are independent if for all $x_1, \ldots, x_n \in (-\infty, \infty]$, we have

$$\mathsf{P}(X_1 \le x_1, \dots, X_n \le x_n) = \prod_{i=1}^n \mathsf{P}(X_i \le x_i).$$

Proof. Let $\mathcal{A}_i = \{\{X_i \leq x\} : x \in (-\infty, \infty]\}$ for $i = 1, \ldots, n$. It is straightforward to check that \mathcal{A}_i is a π -system. Further, $\sigma(\mathcal{A}_i) = \sigma(X_i)$ by Proposition 3.3. The result then follows from Lemma 7.1.

Corollary 7.1. Discrete random variables X_1, \ldots, X_n are independent if

$$\mathsf{P}(X_1 = x_1, \dots, X_n = x_n) = \prod_{i=1}^n \mathsf{P}(X_i = x_i),$$

for all possible values of (x_1, \ldots, x_n) .

Proof. Try it yourself.

Example 7.3. Let X_1, X_2, \ldots be a sequence of i.i.d. continuous random variables with distribution function F(x). X_n is called a record if $X_n > \max\{X_i : i = 1, \ldots, n-1\}$. It can be proven that the events $A_n = \{X_n \text{ is a record}\}$ are independent. See Resnick [2, §4.3].

Theorem 7.4. If X_1, \ldots, X_n are independent random variables and X_i has distribution μ_i , then (X_1, \ldots, X_n) has distribution $\mu_1 \times \cdots \times \mu_n$.

Proof. It follows from Dynkin's π - λ theorem and $\mathcal{B}(\mathbb{R}^n) = \mathcal{B}(\mathbb{R})^n$.

Theorem 7.5. Suppose X, Y are independent random variables, and $f, g: \mathbb{R} \to \mathbb{R}$ are measurable functions such that either $f, g \ge 0$, or both f(X) and g(Y) are integrable, then E[f(X)g(Y)] = E[f(X)]E[g(Y)].

Proof. Here we only prove a special case: E[XY] = E[X]E[Y] for nonnegative independent random variables X and Y. The proof for the general case is very similar.

Let $(\Omega, \mathcal{F}, \mathsf{P})$ be the underlying probability space. Denote the laws of X and Y by $\mathsf{P}_X = \mathsf{P} \circ X^{-1}$ and $\mathsf{P}_Y = \mathsf{P} \circ Y^{-1}$ respectively. Let Z = (X, Y)

and denote the distribution of Z by $\mathsf{P}_Z = \mathsf{P} \circ Z^{-1}$. By the independence assumption, for any Borel sets A, B,

$$\mathsf{P}_Z(A \times B) = \mathsf{P}(Z \in A \times B) = \mathsf{P}_X(A)\mathsf{P}_Y(B).$$

By Dynkin's theorem, this equality holds on the σ -algebra generated by all measurable rectangle sets, which is $\mathcal{B}(\mathbb{R}) \times \mathcal{B}(\mathbb{R})$; that is, $\mathsf{P}_Z = \mathsf{P}_X \times \mathsf{P}_Y$ on $\mathcal{B}(\mathbb{R}) \times \mathcal{B}(\mathbb{R})$. By the change-of-variable formula,

$$E[XY] = \int_{\Omega} X(\omega)Y(\omega)\mathsf{P}(d\omega)$$

= $\int_{\mathbb{R}^{2}_{+}} g(z)\mathsf{P}_{Z}(dz),$ (we define $g(x, y) = xy$)
= $\int_{\mathbb{R}^{2}_{+}} g(z)(\mathsf{P}_{X} \times \mathsf{P}_{Y})(dz)$
= $\int_{\mathbb{R}_{+}} y\left\{\int_{\mathbb{R}_{+}} x\mathsf{P}_{X}(dx)\right\}\mathsf{P}_{Y}(dy)$ (by Fubini's theorem)
= $E[X]E[Y]$

where in the last step we have used the change-of-variable formula again. \Box

References

- [1] Rick Durrett. *Probability: Theory and Examples*, volume 49. Cambridge university press, 2019.
- [2] Sidney Resnick. A Probability Path. Springer, 2019.
- [3] Jordan M Stoyanov. *Counterexamples in probability*. Courier Corporation, 2013.