
Lecture 7

Instructor: Quan Zhou

For more details about the materials covered in this note, see Chapters
4.1 and 4.2 of Resnick [2] and Chapter 2.1 of Durrett [1].

7.1 Independence

Definition 7.1. Independence for two events/σ-algebras/random variables.

(i) Two events A and B are independent if P(A ∩B) = P(A)P(B).

(ii) Two σ-algebras are independent if for any A ∈ F , B ∈ G, the events A
and B are independent.

(iii) Two random variables X and Y are independent if for all A,B ∈ B(R),
we have P(X ∈ A, Y ∈ B) = P(X ∈ A)P(Y ∈ B).

Definition 7.2. Mutual independence.

(i) σ-algebras F1, . . . ,Fn are independent if whenever Ai ∈ Fi for each i,
we have P(∩n

i=1Ai) =
∏n

i=1 P(Ai).

(ii) Random variables X1, . . . , Xn are independent if whenever Bi ∈ B(R)
for each i, we have P(∩n

i=1{Xi ∈ Bi}) =
∏n

i=1 P(Xi ∈ Bi).

(iii) Sets (events) A1, . . . , An are independent if whenever I ⊂ {1, 2, . . . , n}
we have P(∩i∈IAi) =

∏
i∈I P(Ai).

(iv) Let A1, . . . ,An be collections of measurable subsets of Ω. We say they
are independent if whenever Ai ∈ Ai for each i, the events A1, . . . , An

are independent.

Theorem 7.1. If X and Y are independent, then σ(X) and σ(Y ) are inde-
pendent.

Proof. If a set A ∈ σ(X), then by definition A = {ω : X(ω) ∈ C} for some
C ∈ B(R). Similarly, if B ∈ σ(Y ), then B = {ω : Y (ω) ∈ D} for some
D ∈ B(R). Hence,

P(A ∩B) = P({ω : X(ω) ∈ C, Y (ω) ∈ D}) = P(X(ω) ∈ C)P(Y (ω) ∈ D)

since X, Y are independent. But the right-hand side is just P(A)P(B).
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Theorem 7.2. If F and G are independent, X ∈ F and Y ∈ G, then X and
Y are independent.

Proof. If X is a measurable function with respect to F and Y is measurable
with respect to G, then by definition for any A,B ∈ B(R) we have {X ∈
A} ∈ F and {Y ∈ B} ∈ G. Since F and G are independent, the two events
{X ∈ A} and {Y ∈ B} are independent.

Example 7.1. Pairwise independence does not imply (mutual) indepen-
dence. Consider a box containing 4 tickets labeled 112, 121, 211, 222. Let
Ai denote the event that the i-th digit is 1 for i = 1, 2, 3. Clearly, P(A1) =
P(A2) = P(A3) = 1/2. Further, P(A1∩A2) = P(A1∩A3) = P(A2∩A3) = 1/4.
However, P(A1 ∩ A2 ∩ A3) = 0.

Example 7.2. Definition 7.2 (iii) may seem complicated but it cannot be
simplified. Consider Ω = {1, 2, 3, 4 . . . , 16} with a uniform probability mea-
sure (i.e. probability 1/16 for each outcome) and the following 4 events

A = {1, 2, 4, 5, 6, 9, 10, 16}, B = {1, 2, 3, 4, 7, 8, 11, 12},
C = {1, 3, 4, 5, 7, 8, 11, 12}, D = {1, 2, 3, 5, 6, 9, 10, 15}.

Clearly P(A) = P(B) = P(C) = P(D) = 1/2. One can check that

P(A ∩B ∩ C ∩D) = P({1}) = 1/16,

P(A ∩B ∩ C) = P({1, 4}) = 1/8,

P(A ∩B ∩D) = P({1, 2}) = 1/8,

P(A ∩ C ∩D) = P({1, 5}) = 1/8,

P(B ∩ C ∩D) = P({1, 3}) = 1/8.

However, we do not have any pairwise independence: P(A∩B) = P(A∩C) =
P(B ∩D) = P(C ∩D) = 3/16,P(A ∩D) = 6/16,P(B ∩ C) = 7/16.

7.2 Properties of independent random variables

Lemma 7.1. If A1,A2, . . . ,An are independent and each Ai is a π-system,
then σ(A1), . . . , σ(An) are independent.

Proof. See the textbook.
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Theorem 7.3 (Factorization theorem). Random variables X1, . . . , Xn are
independent if for all x1, . . . , xn ∈ (−∞,∞], we have

P(X1 ≤ x1, . . . , Xn ≤ xn) =
n∏

i=1

P(Xi ≤ xi).

Proof. Let Ai = {{Xi ≤ x} : x ∈ (−∞,∞]} for i = 1, . . . , n. It is straightfor-
ward to check that Ai is a π-system. Further, σ(Ai) = σ(Xi) by Proposition
3.3. The result then follows from Lemma 7.1.

Corollary 7.1. Discrete random variables X1, . . . , Xn are independent if

P(X1 = x1, . . . , Xn = xn) =
n∏

i=1

P(Xi = xi),

for all possible values of (x1, . . . , xn).

Proof. Try it yourself.

Example 7.3. LetX1, X2, . . . be a sequence of i.i.d. continuous random vari-
ables with distribution function F (x). Xn is called a record if Xn > max{Xi :
i = 1, . . . , n − 1}. It can be proven that the events An = {Xn is a record}
are independent. See Resnick [2, §4.3].

Theorem 7.4. If X1, . . . , Xn are independent random variables and Xi has
distribution µi, then (X1, . . . , Xn) has distribution µ1 × · · · × µn.

Proof. It follows from Dynkin’s π-λ theorem and B(Rn) = B(R)n.

Theorem 7.5. Suppose X, Y are independent random variables, and f, g : R →
R are measurable functions such that either f, g ≥ 0, or both f(X) and g(Y )
are integrable, then E[f(X)g(Y )] = E[f(X)]E[g(Y )].

Proof. Here we only prove a special case: E[XY ] = E[X]E[Y ] for non-
negative independent random variables X and Y . The proof for the general
case is very similar.

Let (Ω,F ,P) be the underlying probability space. Denote the laws of X
and Y by PX = P ◦ X−1 and PY = P ◦ Y −1 respectively. Let Z = (X, Y )
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and denote the distribution of Z by PZ = P ◦ Z−1. By the independence
assumption, for any Borel sets A,B,

PZ(A×B) = P(Z ∈ A×B) = PX(A)PY (B).

By Dynkin’s theorem, this equality holds on the σ-algebra generated by all
measurable rectangle sets, which is B(R)× B(R); that is, PZ = PX × PY on
B(R)× B(R). By the change-of-variable formula,

E[XY ] =

∫
Ω

X(ω)Y (ω)P(dω)

=

∫
R2
+

g(z)PZ(dz), (we define g(x, y) = xy)

=

∫
R2
+

g(z)(PX × PY )(dz)

=

∫
R+

y

{∫
R+

xPX(dx)

}
PY (dy) (by Fubini’s theorem)

= E[X]E[Y ]

where in the last step we have used the change-of-variable formula again.
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