Lecture 7

Instructor: Quan Zhou
For more details about the materials covered in this note, see Chapters 4.1 and 4.2 of Resnick [2] and Chapter 2.1 of Durrett [1].

7.1 Independence

Definition 7.1. Independence for two events/ σ-algebras/random variables.
(i) Two events A and B are independent if $\mathrm{P}(A \cap B)=\mathrm{P}(A) \mathrm{P}(B)$.
(ii) Two σ-algebras are independent if for any $A \in \mathcal{F}, B \in \mathcal{G}$, the events A and B are independent.
(iii) Two random variables X and Y are independent if for all $A, B \in \mathcal{B}(\mathbb{R})$, we have $\mathrm{P}(X \in A, Y \in B)=\mathrm{P}(X \in A) \mathrm{P}(Y \in B)$.

Definition 7.2. Mutual independence.
(i) σ-algebras $\mathcal{F}_{1}, \ldots, \mathcal{F}_{n}$ are independent if whenever $A_{i} \in \mathcal{F}_{i}$ for each i, we have $\mathrm{P}\left(\cap_{i=1}^{n} A_{i}\right)=\prod_{i=1}^{n} \mathrm{P}\left(A_{i}\right)$.
(ii) Random variables X_{1}, \ldots, X_{n} are independent if whenever $B_{i} \in \mathcal{B}(\mathbb{R})$ for each i, we have $\mathrm{P}\left(\cap_{i=1}^{n}\left\{X_{i} \in \mathcal{B}_{i}\right\}\right)=\prod_{i=1}^{n} \mathrm{P}\left(X_{i} \in \mathcal{B}_{i}\right)$.
(iii) Sets (events) A_{1}, \ldots, A_{n} are independent if whenever $I \subset\{1,2, \ldots, n\}$ we have $\mathrm{P}\left(\cap_{i \in I} A_{i}\right)=\prod_{i \in I} \mathrm{P}\left(A_{i}\right)$.
(iv) Let $\mathcal{A}_{1}, \ldots, \mathcal{A}_{n}$ be collections of measurable subsets of Ω. We say they are independent if whenever $A_{i} \in \mathcal{A}_{i}$ for each i, the events A_{1}, \ldots, A_{n} are independent.

Theorem 7.1. If X and Y are independent, then $\sigma(X)$ and $\sigma(Y)$ are independent.

Proof. If a set $A \in \sigma(X)$, then by definition $A=\{\omega: X(\omega) \in C\}$ for some $C \in \mathcal{B}(\mathbb{R})$. Similarly, if $B \in \sigma(Y)$, then $B=\{\omega: Y(\omega) \in D\}$ for some $D \in \mathcal{B}(\mathbb{R})$. Hence,

$$
\mathrm{P}(A \cap B)=\mathrm{P}(\{\omega: X(\omega) \in C, Y(\omega) \in D\})=\mathrm{P}(X(\omega) \in C) \mathrm{P}(Y(\omega) \in D)
$$

since X, Y are independent. But the right-hand side is just $\mathrm{P}(A) \mathrm{P}(B)$.

Theorem 7.2. If \mathcal{F} and \mathcal{G} are independent, $X \in \mathcal{F}$ and $Y \in \mathcal{G}$, then X and Y are independent.

Proof. If X is a measurable function with respect to \mathcal{F} and Y is measurable with respect to \mathcal{G}, then by definition for any $A, B \in \mathcal{B}(\mathbb{R})$ we have $\{X \in$ $A\} \in \mathcal{F}$ and $\{Y \in B\} \in \mathcal{G}$. Since \mathcal{F} and \mathcal{G} are independent, the two events $\{X \in A\}$ and $\{Y \in B\}$ are independent.

Example 7.1. Pairwise independence does not imply (mutual) independence. Consider a box containing 4 tickets labeled 112, 121, 211, 222. Let A_{i} denote the event that the i-th digit is 1 for $i=1,2,3$. Clearly, $\mathrm{P}\left(A_{1}\right)=$ $\mathrm{P}\left(A_{2}\right)=\mathrm{P}\left(A_{3}\right)=1 / 2$. Further, $\mathrm{P}\left(A_{1} \cap A_{2}\right)=\mathrm{P}\left(A_{1} \cap A_{3}\right)=\mathrm{P}\left(A_{2} \cap A_{3}\right)=1 / 4$. However, $\mathrm{P}\left(A_{1} \cap A_{2} \cap A_{3}\right)=0$.

Example 7.2. Definition 7.2 (iii) may seem complicated but it cannot be simplified. Consider $\Omega=\{1,2,3,4 \ldots, 16\}$ with a uniform probability measure (i.e. probability $1 / 16$ for each outcome) and the following 4 events

$$
\begin{array}{ll}
A=\{1,2,4,5,6,9,10,16\}, & B=\{1,2,3,4,7,8,11,12\}, \\
C=\{1,3,4,5,7,8,11,12\}, & D=\{1,2,3,5,6,9,10,15\} .
\end{array}
$$

Clearly $\mathrm{P}(A)=\mathrm{P}(B)=\mathrm{P}(C)=\mathrm{P}(D)=1 / 2$. One can check that

$$
\begin{aligned}
& \mathrm{P}(A \cap B \cap C \cap D)=\mathrm{P}(\{1\})=1 / 16, \\
& \mathrm{P}(A \cap B \cap C)=\mathrm{P}(\{1,4\})=1 / 8, \\
& \mathrm{P}(A \cap B \cap D)=\mathrm{P}(\{1,2\})=1 / 8, \\
& \mathrm{P}(A \cap C \cap D)=\mathrm{P}(\{1,5\})=1 / 8, \\
& \mathrm{P}(B \cap C \cap D)=\mathrm{P}(\{1,3\})=1 / 8
\end{aligned}
$$

However, we do not have any pairwise independence: $\mathrm{P}(A \cap B)=\mathrm{P}(A \cap C)=$ $\mathrm{P}(B \cap D)=\mathrm{P}(C \cap D)=3 / 16, \mathrm{P}(A \cap D)=6 / 16, \mathrm{P}(B \cap C)=7 / 16$.

7.2 Properties of independent random variables

Lemma 7.1. If $\mathcal{A}_{1}, \mathcal{A}_{2}, \ldots, \mathcal{A}_{n}$ are independent and each \mathcal{A}_{i} is a π-system, then $\sigma\left(\mathcal{A}_{1}\right), \ldots, \sigma\left(\mathcal{A}_{n}\right)$ are independent.

Proof. See the textbook.

Theorem 7.3 (Factorization theorem). Random variables X_{1}, \ldots, X_{n} are independent if for all $x_{1}, \ldots, x_{n} \in(-\infty, \infty]$, we have

$$
\mathrm{P}\left(X_{1} \leq x_{1}, \ldots, X_{n} \leq x_{n}\right)=\prod_{i=1}^{n} \mathrm{P}\left(X_{i} \leq x_{i}\right) .
$$

Proof. Let $\mathcal{A}_{i}=\left\{\left\{X_{i} \leq x\right\}: x \in(-\infty, \infty]\right\}$ for $i=1, \ldots, n$. It is straightforward to check that \mathcal{A}_{i} is a π-system. Further, $\sigma\left(\mathcal{A}_{i}\right)=\sigma\left(X_{i}\right)$ by Proposition 3.3. The result then follows from Lemma 7.1.

Corollary 7.1. Discrete random variables X_{1}, \ldots, X_{n} are independent if

$$
\mathrm{P}\left(X_{1}=x_{1}, \ldots, X_{n}=x_{n}\right)=\prod_{i=1}^{n} \mathrm{P}\left(X_{i}=x_{i}\right)
$$

for all possible values of $\left(x_{1}, \ldots, x_{n}\right)$.
Proof. Try it yourself.
Example 7.3. Let X_{1}, X_{2}, \ldots be a sequence of i.i.d. continuous random variables with distribution function $F(x) . X_{n}$ is called a record if $X_{n}>\max \left\{X_{i}\right.$: $i=1, \ldots, n-1\}$. It can be proven that the events $A_{n}=\left\{X_{n}\right.$ is a record $\}$ are independent. See Resnick [2, §4.3].

Theorem 7.4. If X_{1}, \ldots, X_{n} are independent random variables and X_{i} has distribution μ_{i}, then $\left(X_{1}, \ldots, X_{n}\right)$ has distribution $\mu_{1} \times \cdots \times \mu_{n}$.

Proof. It follows from Dynkin's $\pi-\lambda$ theorem and $\mathcal{B}\left(\mathbb{R}^{n}\right)=\mathcal{B}(\mathbb{R})^{n}$.
Theorem 7.5. Suppose X, Y are independent random variables, and $f, g: \mathbb{R} \rightarrow$ \mathbb{R} are measurable functions such that either $f, g \geq 0$, or both $f(X)$ and $g(Y)$ are integrable, then $E[f(X) g(Y)]=E[f(X)] E[g(Y)]$.

Proof. Here we only prove a special case: $E[X Y]=E[X] E[Y]$ for nonnegative independent random variables X and Y. The proof for the general case is very similar.

Let $(\Omega, \mathcal{F}, \mathrm{P})$ be the underlying probability space. Denote the laws of X and Y by $\mathrm{P}_{X}=\mathrm{P} \circ X^{-1}$ and $\mathrm{P}_{Y}=\mathrm{P} \circ Y^{-1}$ respectively. Let $Z=(X, Y)$
and denote the distribution of Z by $\mathrm{P}_{Z}=\mathrm{P} \circ Z^{-1}$. By the independence assumption, for any Borel sets A, B,

$$
\mathrm{P}_{Z}(A \times B)=\mathrm{P}(Z \in A \times B)=\mathrm{P}_{X}(A) \mathrm{P}_{Y}(B)
$$

By Dynkin's theorem, this equality holds on the σ-algebra generated by all measurable rectangle sets, which is $\mathcal{B}(\mathbb{R}) \times \mathcal{B}(\mathbb{R})$; that is, $\mathrm{P}_{Z}=\mathrm{P}_{X} \times \mathrm{P}_{Y}$ on $\mathcal{B}(\mathbb{R}) \times \mathcal{B}(\mathbb{R})$. By the change-of-variable formula,

$$
\begin{aligned}
E[X Y] & =\int_{\Omega} X(\omega) Y(\omega) \mathrm{P}(d \omega) \\
& =\int_{\mathbb{R}_{+}^{2}} g(z) \mathrm{P}_{Z}(d z), \quad \text { (we define } g(x, y)=x y \text {) } \\
& =\int_{\mathbb{R}_{+}^{2}} g(z)\left(\mathrm{P}_{X} \times \mathrm{P}_{Y}\right)(d z) \\
& =\int_{\mathbb{R}_{+}} y\left\{\int_{\mathbb{R}_{+}} x \mathrm{P}_{X}(d x)\right\} \mathrm{P}_{Y}(d y) \quad \text { (by Fubini's theorem) } \\
& =E[X] E[Y]
\end{aligned}
$$

where in the last step we have used the change-of-variable formula again.

References

[1] Rick Durrett. Probability: Theory and Examples, volume 49. Cambridge university press, 2019.
[2] Sidney Resnick. A Probability Path. Springer, 2019.
[3] Jordan M Stoyanov. Counterexamples in probability. Courier Corporation, 2013.

