Lecture 6

Instructor: Quan Zhou
For more details about the materials covered in this note, see Chapters 5.7 to 5.9 of Resnick [3] and Chapter 1.7 of Durrett [2].

6.1 Product spaces

Definition 6.1. Let $\left(\Omega_{1}, \mathcal{F}_{1}, \mu_{1}\right),\left(\Omega_{2}, \mathcal{F}_{2}, \mu_{2}\right)$ be two measure spaces.
(i) Product space: $\Omega_{1} \times \Omega_{2}=\left\{\left(\omega_{1}, \omega_{2}\right): \omega_{i} \in \Omega_{i}, i=1,2.\right\}$.
(ii) Product σ-algebra: $\mathcal{F}_{1} \times \mathcal{F}_{2}=\sigma\left(\left\{A_{1} \times A_{2}: A_{1} \in \mathcal{F}_{1}, A_{2} \in \mathcal{F}_{2}\right\}\right)$.
(iii) Coordinate (or projection) maps: $\pi_{i}\left(\omega_{1}, \omega_{2}\right)=\omega_{i}$ for $i=1,2$. Note that π_{i} is a mapping from $\Omega_{1} \times \Omega_{2}$ to Ω_{i}.
(iv) For $A \subset \Omega_{1} \times \Omega_{2}$, the section of A at ω_{1} is defined by

$$
A_{\omega_{1}}=\left\{\omega_{2}:\left(\omega_{1}, \omega_{2}\right) \in A\right\} \subset \Omega_{2}
$$

Similarly, we can define the section of A at $\omega_{2} \cdot \frac{1}{\square}$
(v) For a real valued function f defined on $\Omega_{1} \times \Omega_{2}$, the section of f at ω_{1} is defined by $f_{\omega_{1}}\left(\omega_{2}\right)=f\left(\omega_{1}, \omega_{2}\right)$. So $f_{\omega_{1}}$ is a mapping from Ω_{2} to \mathbb{R}.
(vi) If $A_{i} \subset \Omega_{i}$ for $i=1,2$, then we call $A_{1} \times A_{2}$ a rectangle. Further, we say it is measurable if $A_{i} \in \mathcal{F}_{i}$ for $i=1,2$. Note that some authors use "rectangles" to refer to "measurable rectangles".

Example 6.1. When Ω_{1}, Ω_{2} are countable and $\mathcal{F}_{i}=\mathcal{P}\left(\Omega_{i}\right)$ for $i=1,2$, we have $\mathcal{F}_{1} \times \mathcal{F}_{2}=\mathcal{P}\left(\Omega_{1} \times \Omega_{2}\right)$. Another special case is the Borel σ-algebra on \mathbb{R}^{2}. It can be shown that $\mathcal{B}\left(\mathbb{R}^{2}\right)=\mathcal{B}(\mathbb{R}) \times \mathcal{B}(\mathbb{R})$.

Example 6.2. Let $\Omega=[0,1]$ and equip it with the σ-algebra generated by all one-point sets, which we denote by \mathcal{C}. Consider the product space $(\Omega \times \Omega, \mathcal{C} \times \mathcal{C})$. Define the diagonal set $D=\{(\omega, \omega): \omega \in \Omega\}$. Its sections are clearly measurable with respect to \mathcal{C} but it can be shown that $D \notin \mathcal{C} \times \mathcal{C}$.

[^0]Lemma 6.1. The collection of all measurable rectangles is a semi-algebra.
Proof. See page 144 of Resnick [3].
Proposition 6.1. Properties of sections.
(i) If $A \subset \Omega_{1} \times \Omega_{2}$, then $\left(A^{c}\right)_{\omega_{1}}=\left(A_{\omega_{1}}\right)^{c}$.
(ii) If for a set T, we have $A_{t} \subset \Omega_{1} \times \Omega_{2}$ for all $t \in T$, then

$$
\left(\bigcup_{t} A_{t}\right)_{\omega_{1}}=\bigcup_{t}\left(A_{t}\right)_{\omega_{1}}, \quad\left(\bigcap_{t} A_{t}\right)_{\omega_{1}}=\bigcap_{t}\left(A_{t}\right)_{\omega_{1}} .
$$

(iii) If f, g are functions defined on $\Omega_{1} \times \Omega_{2}$, then $(f+g)_{\omega_{1}}=f_{\omega_{1}}+g_{\omega_{1}}$.
(iv) Let f_{n} be a sequence of functions defined on $\Omega_{1} \times \Omega_{2}$ such that $f_{n} \rightarrow f$. Then, $\lim _{n \rightarrow \infty}\left(f_{n}\right)_{\omega_{1}}=f_{\omega_{1}}$.

Proof. Try it yourself.
Lemma 6.2. If a set $A \in \mathcal{F}_{1} \times \mathcal{F}_{2}$, then for all $\omega_{1} \in \Omega_{1}$, we have $A_{\omega_{1}} \in \mathcal{F}_{2}$.
Proof. Define $\mathcal{C}_{\omega_{1}}=\left\{A \subset \Omega_{1} \times \Omega_{2}: A_{\omega_{1}} \in \mathcal{F}_{2}\right\}$. If A is a measurable rectangle, we can write it as $A=A_{1} \times A_{2}$ and thus

$$
A_{\omega_{1}}=\left\{\omega_{2}:\left(\omega_{1}, \omega_{2}\right) \in A_{1} \times A_{2}\right\}=\left\{\begin{array}{cl}
A_{2} \in \mathcal{F}_{2}, & \text { if } \omega_{1} \in A_{1} \\
\emptyset, & \text { if } \omega_{1} \notin A_{1}
\end{array}\right.
$$

Thus, all the measurable rectangles belong to $\mathcal{C}_{\omega_{1}}$.
Next, we prove $\mathcal{C}_{\omega_{1}}$ is a λ-system.
(1) Clearly $\Omega_{1} \times \Omega_{2} \in \mathcal{C}_{\omega_{1}}$ since $\Omega_{1} \times \Omega_{2}$ is a measurable rectangle.
(2) If $A \in \mathcal{C}_{\omega_{1}}$, then $A^{c} \in \mathcal{C}_{\omega_{1}}$ since $\left(A^{c}\right)_{\omega_{1}}=\left(A_{\omega_{1}}\right)^{c}$ by Proposition 6.1.
(3) Consider a sequence of disjoint sets A_{1}, A_{2}, \ldots such that $A_{n} \in \mathcal{C}_{\omega_{1}}$ for $n=$ $1,2, \ldots$ Since $\left(A_{n}\right)_{\omega_{1}} \in \mathcal{F}_{2}$, we have $\cup_{n}\left(A_{n}\right)_{\omega_{1}} \in \mathcal{F}_{2}$. By Proposition 6.1, this further implies $\left(\cup_{n} A_{n}\right)_{\omega_{1}} \in \mathcal{F}_{2}$ and thus $\cup_{n} A_{n} \in \mathcal{C}_{\omega_{1}}$.

By Lemma 6.1, the collection of all measurable rectangles is a π-system. Hence, by Dynkin's theorem, the σ-algebra generated by this π-system is contained in $\mathcal{C}_{\omega_{1}}$; that is, $\mathcal{F}_{1} \times \mathcal{F}_{2} \subset \mathcal{C}_{\omega_{1}}$.
Corollary 6.1. Let $f:\left(\Omega_{1} \times \Omega_{2}, \mathcal{F}_{1} \times \mathcal{F}_{2}\right) \rightarrow(\mathbb{R}, \mathcal{B}(\mathbb{R}))$. Then $f_{\omega_{1}} \in \mathcal{F}_{2}$.
Proof. Try it yourself.

6.2 Product measures

Theorem 6.1. Let $\left(\Omega_{1}, \mathcal{F}_{1}, \mu_{1}\right),\left(\Omega_{2}, \mathcal{F}_{2}, \mu_{2}\right)$ be two σ-finite measure spaces. Then there is a unique measure μ on $\left(\Omega_{1} \times \Omega_{2}, \mathcal{F}_{1} \times \mathcal{F}_{2}\right)$ such that

$$
\mu\left(A_{1} \times A_{2}\right)=\mu_{1}\left(A_{1}\right) \mu_{2}\left(A_{2}\right),
$$

for any $A_{1} \times A_{2} \in \mathcal{F}_{1} \times \mathcal{F}_{2}$. We write $\mu=\mu_{1} \times \mu_{2}$ and call it product measure.
Proof. For any $A_{1} \times A_{2} \in \mathcal{F}_{1} \times \mathcal{F}_{2}$, define $\mu\left(A_{1} \times A_{2}\right)=\mu_{1}\left(A_{1}\right) \mu_{2}\left(A_{2}\right)$. By the extension theorems and Lemma 6.1, we only need to prove μ is a pre-measure (i.e. a σ-additive function) on the collection of all measurable rectangles and μ is σ-finite. The latter is easy: one can show that the σ-finiteness of μ_{1} and μ_{2} implies that μ is σ-finite.

To prove μ is σ-additive for measurable rectangles, let $\left\{A_{n, 1} \times A_{n, 2}\right.$: $n=1,2, \ldots\}$ be a collection of disjoint measurable rectangles such that $\cup_{n}\left(A_{n, 1} \times A_{n, 2}\right)=A_{1} \times A_{2}$ for some $A_{1} \in \mathcal{F}_{1}, A_{2} \in \mathcal{F}_{2}$. We need to show that $\mu\left(A_{1} \times A_{2}\right)=\sum_{n=1}^{\infty} \mu\left(A_{n, 1} \times A_{n, 2}\right)$. By the definition of μ,

$$
\begin{aligned}
\mu\left(A_{1} \times A_{2}\right) & =\mu_{1}\left(A_{1}\right) \times \mu_{2}\left(A_{2}\right) \\
& =\left(\int_{\Omega_{1}} \mathbb{1}_{A_{1}} d \mu_{1}\right) \mu_{2}\left(A_{2}\right) \\
& =\int_{\Omega_{1}} \mu_{2}\left(A_{2}\right) \mathbb{1}_{A_{1}}\left(\omega_{1}\right) \mu_{1}\left(d \omega_{1}\right) .
\end{aligned}
$$

The second line follows from the definition of the Lebesgue integral for simple functions. Observe that

$$
\mu_{2}\left(A_{2}\right) \mathbb{1}_{A_{1}}\left(\omega_{1}\right)=\sum_{n=1}^{\infty} \mu_{2}\left(A_{n, 2}\right) \mathbb{1}_{A_{n, 1}}\left(\omega_{1}\right),
$$

because $A_{1} \times A_{2}$ is a measurable rectangle set and μ_{2}, as a measure, is σ additive for disjoint subsets of Ω_{2}. Hence, by the monotone convergence
theorem, we have

$$
\begin{aligned}
\mu\left(A_{1} \times A_{2}\right) & =\int_{\Omega_{1}}\left(\sum_{n=1}^{\infty} \mu_{2}\left(A_{n, 2}\right) \mathbb{1}_{A_{n, 1}}\left(\omega_{1}\right)\right) \mu_{1}\left(d \omega_{1}\right) \\
& =\sum_{n=1}^{\infty} \int_{\Omega_{1}} \mu_{2}\left(A_{n, 2}\right) \mathbb{1}_{A_{n, 1}}\left(\omega_{1}\right) \mu_{1}\left(d \omega_{1}\right) \\
& =\sum_{n=1}^{\infty} \mu_{2}\left(A_{n, 2}\right) \int_{\Omega_{1}} \mathbb{1}_{A_{n, 1}}\left(\omega_{1}\right) \mu_{1}\left(d \omega_{1}\right) \\
& =\sum_{n=1}^{\infty} \mu_{1}\left(A_{n, 1}\right) \mu_{2}\left(A_{n, 2}\right) \\
& =\sum_{n=1}^{\infty} \mu\left(A_{n, 1} \times A_{n, 2}\right)
\end{aligned}
$$

which completes the proof.
Example 6.3. We can construct independent random variables (to be defined in the next lecture) using product measure. Assume μ_{1}, μ_{2} are probability measures. Let $X_{i}:\left(\Omega_{i}, \mathcal{F}_{i}, \mu_{i}\right) \rightarrow(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ and consider the product space $\left(\Omega_{1} \times \Omega_{2}, \mathcal{F}_{1} \times \mathcal{F}_{2}, \mu_{1} \times \mu_{2}\right)$. Define

$$
X_{1}^{*}\left(\omega_{1}, \omega_{2}\right)=X_{1}\left(\omega_{1}\right), \quad X_{2}^{*}\left(\omega_{1}, \omega_{2}\right)=X_{2}\left(\omega_{2}\right)
$$

They are both random variables on the product space. Now using the definition of rectangle sets and product measure, we can find that

$$
\begin{aligned}
& \mu_{1} \times \mu_{2}\left(\left\{\left(\omega_{1}, \omega_{2}\right): X_{1}^{*} \leq x_{1}, X_{2}^{*} \leq x_{2}\right\}\right) \\
= & \mu_{1}\left(\left\{\omega_{1}: X_{1}\left(\omega_{1}\right) \leq x_{1}\right\}\right) \mu_{2}\left(\left\{\omega_{2}: X_{2}\left(\omega_{2}\right) \leq x_{2}\right\}\right) \\
= & \mu_{1} \times \mu_{2}\left(\left\{\left(\omega_{1}, \omega_{2}\right): X_{1}^{*} \leq x_{1}\right\}\right) \mu_{1} \times \mu_{2}\left(\left\{\left(\omega_{1}, \omega_{2}\right): X_{2}^{*} \leq x_{2}\right\}\right) .
\end{aligned}
$$

In the next lecture, we will see that this implies X_{1}^{*} and X_{2}^{*} are independent under the measure $\mu_{1} \times \mu_{2}$.

6.3 Fubini's theorem

Theorem 6.2 (Fubini's theorem). Let $\left(\Omega_{1}, \mathcal{F}_{1}, \mu_{1}\right),\left(\Omega_{2}, \mathcal{F}_{2}, \mu_{2}\right)$ be two σ finite measure spaces and let $f:\left(\Omega_{1} \times \Omega_{2}, \mathcal{F}_{1} \times \mathcal{F}_{2}\right) \rightarrow(\overline{\mathbb{R}}, \mathcal{B}(\overline{\mathbb{R}}))$. Then if
either $f \geq 0$ or f is integrable (with respect to $\mu_{1} \times \mu_{2}$), we have

$$
\begin{aligned}
\int_{\Omega_{1} \times \Omega_{2}} f d\left(\mu_{1} \times \mu_{2}\right) & =\int_{\Omega_{1}}\left(\int_{\Omega_{2}} f\left(\omega_{1}, \omega_{2}\right) \mu_{2}\left(d \omega_{2}\right)\right) \mu_{1}\left(d \omega_{1}\right) \\
& =\int_{\Omega_{2}}\left(\int_{\Omega_{1}} f\left(\omega_{1}, \omega_{2}\right) \mu_{1}\left(d \omega_{1}\right)\right) \mu_{2}\left(d \omega_{2}\right) .
\end{aligned}
$$

When $f \geq 0$, this result is also known as Tonelli's theorem.
Proof. See the textbook.
Example 6.4. Consider two measure spaces $\left(\Omega_{1}=[0,1], \mathcal{B}([0,1]), m\right)$ and $\left(\Omega_{2}=[0,1], \mathcal{P}([0,1]), \#\right)$ where m denotes the Lebesgue measure and $\#$ is the counting measure. On the product space we define a measurable function $f\left(\omega_{1}, \omega_{2}\right)=\mathbb{1}\left(\omega_{1}=\omega_{2}\right)$. However,
$\int_{\Omega_{1}}\left(\int_{\Omega_{2}} f\left(\omega_{1}, \omega_{2}\right) \#\left(d \omega_{2}\right)\right) m\left(d \omega_{1}\right)=\int_{\Omega_{1}}\left(\int_{\Omega_{2}} \mathbb{1}_{\left\{\omega_{1}\right\}}\left(\omega_{2}\right) \#\left(d \omega_{2}\right)\right) m\left(d \omega_{1}\right)=1$.
$\int_{\Omega_{2}}\left(\int_{\Omega_{1}} f\left(\omega_{1}, \omega_{2}\right) m\left(d \omega_{1}\right)\right) \#\left(d \omega_{2}\right)=\int_{\Omega_{2}}\left(\int_{\Omega_{1}} \mathbb{1}_{\left\{\omega_{2}\right\}}\left(\omega_{1}\right) m\left(d \omega_{1}\right)\right) \#\left(d \omega_{2}\right)=0$.
Note that Fubini's theorem cannot be applied since $([0,1], \mathcal{P}([0,1]), \#)$ is not σ-finite.

References

[1] Dennis D. Cox. The Theory of Statistics and Its Applications. Unpublished.
[2] Rick Durrett. Probability: Theory and Examples, volume 49. Cambridge university press, 2019.
[3] Sidney Resnick. A Probability Path. Springer, 2019.

[^0]: ${ }^{1}$ This notation for sections can be confusing. We will not use it in other lectures.

