
Lecture 5

Instructor: Quan Zhou

For more details about the materials covered in this note, see Tao [4],
Chapters 5.3 and 5.5 of Resnick [3] and Chapter 1.5 of Durrett [2].

5.1 Convergence of Lebesgue integrals

For all results below, assume the measure space (Ω,F , µ) is given, and {fn}
is a sequence of measurable functions taking value in (R̄,B(R̄)). Besides,
recall the following convention: if {an} is a sequence such that each ai ∈ R̄
and a1 ≤ a2 ≤ · · · , we write an ↑ ∞ or an → ∞.

Theorem 5.1 (Monotone convergence theorem). If fn ≥ 0 and fn ↑ f (i.e.,
for every ω ∈ Ω, 0 ≤ f1(ω) ≤ f2(ω) ≤ · · · ), then

∫
fndµ ↑

∫
fdµ.

Proof. Some authors prefer to first prove Fatou’s lemma and then use it to
prove monotone convergence theorem (MCT). Here we prove MCT first. We
assume that we have already proven Proposition 4.1 for non-negative simple
functions but not for non-negative measurable functions. And we will use
the following definition for

∫
fdµ,∫

fdµ = sup

{∫
φdµ : 0 ≤ φ ≤ f, φ is a simple function

}
.

The above definition implies that

if 0 ≤ g ≤ h, then

∫
gdµ ≤

∫
hdµ (1)

since 0 ≤ φ ≤ g implies 0 ≤ φ ≤ h. Besides,

∀a ∈ R, a

∫
fdµ =

∫
afdµ, (2)

since a
∫
φdµ =

∫
aφdµ for every non-negative simple function φ.

For a non-decreasing sequence of functions {fn}, lim fn = sup fn. By (1),
we have

∫
fndµ ≤

∫
fn+1dµ and thus lim

∫
fndµ = sup

∫
fndµ. Hence, to

prove MCT we just need to show that∫
sup
n≥1

fndµ = sup
n≥1

∫
fndµ.
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By (1),
∫
supn≥1 fndµ ≥

∫
fndµ and taking supremum on both sides we

obtain that ∫
sup
n≥1

fndµ ≥ sup
n≥1

∫
fndµ.

To prove the other direction, i.e.
∫
supn≥1 fndµ ≤ supn≥1

∫
fndµ, by our

definition of Lebesgue integral, we need to show that for any non-negative
simple function φ such that 0 ≤ φ ≤ sup fn, we have∫

φdµ ≤ sup
n≥1

∫
fndµ.

Choose an arbitrary simple function φ that satisfies 0 ≤ φ ≤ sup fn. It
suffices to prove that

(1− ϵ)

∫
φdµ ≤ sup

n≥1

∫
fndµ,

for every ϵ ∈ (0, 1) since then we can take limit on both sides by letting ϵ ↓ 0.
For any ϵ ∈ (0, 1) and any ω ∈ Ω, there exists some N = N(ϵ, ω) such that

fN(ω) ≥ (1− ϵ)φ(ω),

since φ(ω) ≤ sup fn(ω). The monotonicity of {fn} implies that for any
n ≥ N , fn(ω) ≥ (1 − ϵ)φ(ω). Define En = {ω ∈ Ω: fn(ω) ≥ (1 − ϵ)φ(ω)}.
We have E1 ⊂ E2 ⊂ · · · (by the monotonicity of {fn}) and ∪n≥1En = Ω
(since for every ω ∈ Ω, we can find N(ϵ, ω).)

Using (1) and (2), we find that

(1− ϵ)

∫
φ · 1Endµ =

∫
(1− ϵ)φ · 1Endµ ≤

∫
fn · 1Endµ ≤

∫
fndµ.

Since φ is simple, we may write φ =
∑k

i=1 ai1Ai
for some non-negative real

numbers a1, . . . , ak and disjoint sets A1, . . . , Ak, and∫
φdµ =

k∑
i=1

aiµ(Ai)

Observing that φ · 1En is also a simple function, we obtain that∫
φ · 1Endµ =

k∑
i=1

aiµ(Ai ∩ En).
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Taking supremum on both sides we get

sup
n≥1

∫
φ · 1Endµ = sup

n≥1

k∑
i=1

aiµ(Ai ∩ En) = lim
n→∞

k∑
i=1

aiµ(Ai ∩ En)

since E1 ⊂ E2 ⊂ · · · . By the continuity of measures from below, as n → ∞,
µ(Ai ∩ En) ↑ µ(Ai), which implies that

sup
n≥1

∫
φ · 1Endµ =

k∑
i=1

aiµ(Ai) =

∫
φdµ

Multiplying both sides by (1 − ϵ), we get (1 − ϵ)
∫
φdµ ≤ supn≥1

∫
fndµ,

which concludes the proof.

Theorem 5.2 (Fatou’s lemma). If fn ≥ 0, then∫
(lim inf

n→∞
fn)dµ ≤ lim inf

n→∞

∫
fndµ.

Proof. Note that lim infn→ fn = limn→∞(infk≥n fk), and {infk≥n fk : n =
1, 2, . . . } is a non-negative non-decreasing sequence. So by MCT,∫

lim inf
n→∞

fndµ =

∫
lim
n→∞

(inf
k≥n

fk)dµ = lim
n→∞

∫
(inf
k≥n

fk)dµ.

By the monotonicity of Lebesgue integrals,
∫
(infk≥n fk)dµ ≤ infk≥n

∫
fkdµ,

from which the result follows.

Theorem 5.3 (Dominated convergence theorem). If fn → f and there exists
an integrable function g such that |fn| ≤ g, then

∫
fndµ →

∫
fdµ and

∫
|fn−

f |dµ → 0.

Proof. By assumption, we have −g ≤ fn ≤ g. By Fatou’s lemma,

lim inf
n→∞

∫
(fn + g)dµ ≥

∫
lim inf
n→∞

(fn + g)dµ =

∫
(f + g)dµ,

lim inf
n→∞

∫
(g − fn)dµ ≥

∫
lim inf
n→∞

(g − fn)dµ =

∫
(g − f)dµ.

Canceling the constant
∫
gdµ on both sides, we get

lim inf
n→∞

∫
fndµ ≥

∫
fdµ ≥ lim sup

n→∞

∫
fndµ.
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Since lim sup is always greater than or equal to lim inf, we conclude that∫
fndµ →

∫
fdµ. To prove that fn converges to f in L1, note that |fn −

f | ≤ 2g since |fn| is bounded by g. So, by the first conclusion of DCT,∫
|fn − f |dµ → 0.

Theorem 5.4 (Bounded convergence theorem). If fn → f , µ(Ω) < ∞ and
there exists some constant M < ∞ such that fn(ω) ≤ M for every n ∈ N
and ω ∈ Ω, then

∫
fndµ →

∫
fdµ.

Proof. This follows from DCT. We can simply let g(ω) = M for every ω ∈ Ω.
Then g is integrable since µ(Ω) < ∞.

Example 5.1. Consider the probability space ([0, 1],B([0, 1]),m) where m
denotes the Lebesgue measure (note that m([0, 1]) = 1). Define Xn(ω) = n
if ω ∈ (0, 1/n) and Xn(ω) = 0 otherwise. Hence P(Xn = n) = 1/n and
P(Xn = 0) = 1 − 1/n. Then E(Xn) = 1, but Xn → 0 pointwise. That is,
limn→∞

∫
Xn dP = 1 and

∫
limn→∞Xn dP = 0.

5.2 Change of variables and densities

Theorem 5.5 (Change of variables). Let f : (Ω,F , µ) → (Λ,G) and g : (Λ,G) →
(R̄,B(R̄)). Then, ∫

Ω

g(f(ω))µ(dω) =

∫
Λ

g(λ)(µ ◦ f−1)(dλ),

provided that either integral is defined.

Proof. See Durrett [2, Theorem 5.5.1].

Example 5.2. Consider a probability space (Ω,F ,P) and a random variable
X. Recall that the distribution (or the law) ofX is given by the push-forward
measure P ◦X−1. Hence, using the change-of-variable formula, we obtain

E(X) =

∫
Ω

X(ω)P(dω) =

∫
R
x (P ◦X−1)(dx).

More generally, for a function g : R̄ → R̄, we have

E[g(X)] =

∫
Ω

g(X(ω))P(dω) =

∫
R
g(x) (P ◦X−1)(dx).
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The change-of-variable formula is also known as transformation theorem (see
Resnick’s book). A more interesting name is “the law of unconscious statis-
tician”. This is because in practice, the expectation of a random variable is
almost always computed by evaluating an integral on the real line, though
expectation is defined as a Lebesgue integral on the sample space Ω.

Theorem 5.6. Let f : (Ω,F , µ) → ([0,∞],B([0,∞])). Define

ν(A) =

∫
A

fdµ

for any A ∈ F . Then ν is a measure on (Ω,F), and f is called the density
of ν (with respect to µ).

Proof. Try it yourself.
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