
Lecture 4

Instructor: Quan Zhou

For more details about the materials covered in this note, see Chapters
5.1 and 5.2 of Resnick [3] and Chapter 1.4 of Durrett [2].

4.1 Simple functions

We first give a formal definition of simple functions. Note that we require
them to be real-valued and measurable in the definition.

Definition 4.1. Given a measurable space (Ω,F), a simple function f is a
measurable mapping from (Ω,F) to (R,B(R)) with a finite range.

Remark 4.1. Given a simple function f , let {a1, . . . , ak} denote its range,
where a1, . . . , ak are distinct real numbers, andAi = f−1(ai). Then, A1, . . . , Ak

are disjoint and measurable, and we can express f by f =
∑k

i=1 ai1Ai
.

Lemma 4.1. Let f, g : (Ω,F) → (R,B(R)) be simple functions. Then, f + g
is also a simple function. For any a ∈ R, af is also a simple function.

Proof. Try it yourself.

Lemma 4.2. Let f : (Ω,F) → ([0,∞],B([0,∞])) be a non-negative extended
real-valued Borel function.1 There exists a sequence of simple functions {φn}
such that 0 ≤ φn ↑ f pointwisely; i.e. 0 ≤ φ1 ≤ φ2 ≤ · · · ≤ f and
limn→∞ φn(x) = f(x) for every x ∈ Ω. Further, if f is bounded, then φn ↑ f
uniformly.

Proof. Here we only prove the first claim. The idea is that we construct
φn by (1) truncating f at height 2n, and (2) rounding f(x) to the greatest
integer multiple of 2−n that does not exceed f(x). Explicitly, we define the
simple function φn by

φn(x) = sup

{
k

2n
: k = 0, 1, 2, . . . ,

k

2n
≤ min{f(x), 2n}

}
.

It is not difficult to show that (1) φn ∈ [0,∞), (2) φn is measurable, and
(3) φn ≤ φn+1 for every n. To prove φn(x) → f(x), first assume that
f(x) < ∞. Then the approximation error |φn(x) − f(x)| vanishes at rate
2−n. If f(x) = ∞, then φn(x) = 2n → ∞.

1It can be shown that B(R̄) = {A ⊂ R̄ : A ∩ R ∈ B(R)}.
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4.2 Lebesgue integral

Let (Ω,F , µ) be a measure space and f : (Ω,F) → (R̄,B(R̄)). Now we show
how to construct the Lebesgue integral

∫
Ω
fdµ. Other notation often used

for denoting Lebesgue integral includes∫
Ω

f(ω)µ(dω),

∫
Ω

f(ω)dµ(ω),

∫
fdµ,

∫
f.

It is better to use the first two for clarity. There are a few ways to construct∫
Ω
fdµ. Here we present the construction that is commonly used in real

analysis books, which is slightly different from the approaches in Resnick’s
and Durrett’s books.

Step 1. Consider a non-negative simple function φ(ω) =
∑n

i=1 ai1Ai
(ω)

where a1, . . . , an ∈ [0,∞) and A1, . . . , An are disjoint measurable subsets of
Ω that partition Ω. Define ∫

Ω

φdµ =
n∑

i=1

aiµ(Ai). (1)

Note that the right-hand side makes sense since φ is assumed measurable (and
thus Ai ∈ F). The definition immediately implies that, for any measurable
set A,

∫
Ω
1Adµ = µ(A).

Step 2. For f : (Ω,F) → ([0,∞],B([0,∞])), define∫
Ω

fdµ = sup

{∫
Ω

φdµ : 0 ≤ φ ≤ f, and φ is simple

}
. (2)

We need to prove that when f is a non-negative simple function, the two
definitions in Step 1 and Step 2 give the same value (see Lemma 4.3).

Equivalently, we can define
∫
Ω
fdµ = limn→∞

∫
Ω
φndµ using any sequence

of simple functions φn such that 0 ≤ φn ↑ f . This approach requires us to
check that (1)

∫
Ω
φndµ does converge, and (2) the limit does not depend on

the sequence {φn} we pick [3, §5.2.2]. In the next lecture, we will prove the
monotone convergence theorem (MCT) using the definition given in (2). The
equivalence of the two definitions then follows from MCT.

Lemma 4.3. For the Lebesgue integral of a non-negative simple function f ,
the two definitions given in (1) and (2) are the same.
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Proof. Since f is simple, f can be written as f(ω) =
∑n

i=1 ai1Ai
(ω) where

a1, . . . , an ∈ [0,∞) and A1, . . . , An are disjoint subsets of Ω. Let

I1 =
n∑

i=1

aiµ(Ai).

We need to show that I1 = I2, where

I2 = sup

{∫
Ω

φdµ : 0 ≤ φ ≤ f, and φ is simple

}
.

Since f is simple, we immediately have that I1 ≤ I2 by choosing φ = f .
Next, for any two non-negative simple functions f, φ such that f ≥ φ, one
can show that

∫
fdµ ≥

∫
φdµ using the definition of the Lebesgue integral

given in Step 1; see Proposition 4.1(iv). Taking sup on both sides we get
I1 ≥ I2. Hence, I1 = I2.

Step 3. For f : (Ω,F) → (R̄,B(R̄)), define the positive part and negative
part of f as follows:

f+(ω) = f(ω) ∨ 0, f−(ω) = (−f(ω)) ∨ 0.

Hence, f = f+ − f− and |f | = f+ + f−. If at least one of
∫
Ω
f+dµ and∫

Ω
f−dµ is finite, we say f is quasi-integrable and the integral exists (or is

defined). If both are finite, we say f is integrable, which is equivalent to
requiring that

∫
Ω
|f |dµ < ∞. When the integral exists, we define it by∫

Ω

fdµ =

∫
Ω

f+dµ−
∫
Ω

f−dµ.

Definition 4.2. When µ is a probability measure, we define E[X] =
∫
Ω
Xdµ,

which is called the expectation of X.

Definition 4.3. For A ∈ F , define∫
A

fdµ =

∫
Ω

1A fdµ,

provided that the right-hand side is defined.
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Example 4.1. Consider the probability space (Ω,F , δx) where δx denotes a
unit point mass on x. Then, for any measurable f ,

∫
Ω
fdδx = f(x). To prove

this, first check that it holds true for non-negative simple functions. Next,
for f ≥ 0 and any simple function 0 ≤ ϕ ≤ f , we have∫

Ω

ϕ(ω)δx(dω) = ϕ(x) ≤ f(x).

Now if we choose ϕ(ω) = f(x)1{x}(ω), the supremum is achieved and thus∫
fdδx = f(x). Finally, for a general measurable f , we have

∫
fdδx =

f+(x)− f−(x) = f(x).

Example 4.2. Consider the measure space (Ω,P(Ω),#) where Ω = {a1, a2, . . . }
and # is the counting measure. Then, for any measurable f , it can be shown
that

∫
Ω
fd# =

∑
i f(ai).

4.3 Properties of Lebesgue integral

Proposition 4.1. Let f, g be Lebesgue integrable functions defined on (Ω,F , µ).

(i) If f ≥ 0 a.e., then
∫
fdµ ≥ 0.

(ii) ∀ a ∈ R,
∫
afdµ = a

∫
fdµ.

(iii)
∫
(f + g)dµ =

∫
fdµ+

∫
gdµ.

(iv) If g ≤ f a.e., then
∫
fdµ ≥

∫
gdµ.

(v) If g = f a.e., then
∫
fdµ =

∫
gdµ.

(vi) |
∫
fdµ| ≤

∫
|f |dµ.

Remark 4.2. “a.e.” means almost everywhere. When we say some property
holds a.e., it means that there exists a set N ∈ F with µ(N) = 0 such that
the property holds on N c. When µ is a probability measure, we often say
almost surely, which is abbreviated as “a.s.”.

Proof of part (iii). We need to prove the claim using the definition of the
Lebesgue integral, i.e. the three-step construction. So let’s start from non-
negative simple functions and prove the property using the corresponding
definition of the Lebesgue integral.
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Step (1). We claim that for two non-negative simple functions f, g, we have∫
(f + g)dµ =

∫
fdµ+

∫
gdµ. By definition, we can express f, g as

f =
m∑
i=1

ai1Ai
, g =

n∑
i=1

bi1Bi
,

where ai, bi are non-negative real numbers and {Ai} (or {Bi}) is a
partition of Ω. Hence, we have

(f + g)(ω) =
m∑
i=1

n∑
j=1

(ai + bj)1Ai∩Bj
(ω),

and clearly f + g is also a non-negative simple function. Further,
{Ai ∩ Bj : 1 ≤ i ≤ m, 1 ≤ j ≤ n} forms a new partition of Ω.
Therefore, by the definition of Lebesgue integral for non-negative
simple functions, we have∫

(f + g)dµ =
m∑
i=1

n∑
j=1

(ai + bj)µ(Ai ∩Bj)

=
m∑
i=1

ai

n∑
j=1

µ(Ai ∩Bj) +
n∑

j=1

bj

m∑
i=1

µ(Ai ∩Bj)

=
m∑
i=1

aiµ(Ai) +
n∑

j=1

bjµ(Bj)

=

∫
fdµ+

∫
gdµ.

Step (2). We prove that for any two non-negative measurable functions f and
g, we also have

∫
(f + g)dµ =

∫
fdµ +

∫
gdµ. We do not use the

definition given in (2). Instead, we use the alternative definition
discussed in Step 2 in Section 4.2. (Again, it follows from the
monotone convergence theorem, which will be proven in the next
lecture.) Choose sequences of non-negative simple functions {fn}
and {gn} such that fn ↑ f and gn ↑ g. They always exist by
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Lemma 4.2. Since (fn + gn) ↑ (f + g), we find that∫
(f + g)dµ = lim

n→∞

∫
(fn + gn)dµ

= lim
n→∞

(∫
fndµ+

∫
gndµ

)
= lim

n→∞

∫
fndµ+ lim

n→∞

∫
gndµ

=

∫
fdµ+

∫
gdµ.

Step (3). We first prove that for non-negative integrable functions f1, f2, we
have

∫
(f1 − f2)dµ =

∫
f1dµ −

∫
f2dµ. Let f = f1 − f2. Since

f = f+ − f−, we have f1 + f− = f2 + f+, which gives∫
f1dµ+

∫
f−dµ =

∫
f2dµ+

∫
f+dµ.

By definition,
∫
fdµ =

∫
f+dµ−

∫
f−dµ =

∫
f1dµ−

∫
f2dµ.

Now we consider arbitrary integrable functions f, g. Notice that

f + g = (f+ − f−) + (g+ − g−) = (f+ + g+)− (f− + g−).

Hence,
∫
(f+g)dµ =

∫
(f++g+)dµ−

∫
(f−+g−)dµ =

∫
fdµ+

∫
gdµ.

The proof is complete.

Proof of the remaining part(s). Try it yourself.

Proposition 4.2. Assume X, Y are random variables defined on the same
probability space such that E[X] and E[Y ] exist (may be equal to infinity).

(i) If E[X+] < ∞ and E[Y +] < ∞, then E[X + Y ] = E[X] + E[Y ]. The
condition can also be replaced by E[X−] < ∞ and E[Y −] < ∞.

(ii) ∀ a, b ∈ R, E[aX + b] = aE[X] + b.

(iii) If X ≥ Y a.e., then E[X] ≥ E[Y ].

Proof. Try it yourself.
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Theorem 4.1. Let f : [a, b] → R be Riemann integrable for some −∞ <
a ≤ b < ∞. Then, f is Lebesgue integrable on [a, b] and the two integrals
coincide.

Proof. See the textbook.

Remark 4.3. See a real analysis textbook for the construction of Riemann
integrals. A function f : [a, b] → R, is Riemann integrable if and only if f
is bounded and the set of discontinuity points of f has Lebesgue measure
zero (the latter is known as “Lebesgue’s integrability criterion”). Note that
an improperly Riemann integrable function f on [a,∞) or (a, b] may not be
Lebesgue integrable.
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