
Lecture 3

Instructor: Quan Zhou

For more details about the materials covered in this note, see Chapters
3.1 and 3.2 of Resnick [3] and Chapter 1.3 of Durrett [2].

3.1 Inverse maps

Definition 3.1. Let Ω,Λ be two sets and consider a function f : Ω → Λ.
For A ⊂ Λ, the inverse image of A under f is

f−1(A) = {ω ∈ Ω : f(ω) ∈ A}.

Example 3.1. A simple function means a function with a finite range (finite
number of possible values). For a real-valued simple function (i.e. Λ = R), we
may denote the range by {a1, . . . , ak}, where ai’s are distinct real numbers.
Define Ai = f−1({ai}). Then, {Ai : i = 1, . . . , k} partitions Ω. (“Partition”
means ∪k

i=1Ai = Ω and Ai’s are disjoint.) Further, the function can be
expressed by f =

∑k
i=1 ai1Ai

.

Proposition 3.1. f−1 preserves complementation, unions and intersections;
that is, f−1(Ac) = (f−1(A))c, f−1(∪t∈TAt) = ∪t∈Tf

−1(At) and f
−1(∩t∈TAt) =

∩t∈Tf
−1(At).

Proof. Try it yourself.

Lemma 3.1. Let G be a σ-algebra on Λ. Then, f−1(G) = {f−1(A) : A ∈ G}
is a σ-algebra on Ω.

Proof. We only need to verify the three postulates. (i) Since Λ ∈ G, we have
Ω = f−1(Λ) ∈ f−1(G). (ii) If f−1(A) ∈ f−1(G), so is (f−1(A))c = f−1(Ac)
by Proposition 3.1. (iii) If f−1(Ai) ∈ f−1(G) for i = 1, 2, . . . , we have
∪if

−1(Ai) = f−1(∪iAi) ∈ f−1(G) since ∪iAi ∈ G and f−1 preserves unions
by Proposition 3.1.

Remark 3.1. Sometimes we also use the notation σ(f) = f−1(G), and we
say that σ(f) is the σ-algebra generated by f . Of course, when σ(f) is used,
it is assumed that G is clear from context; for example, when Λ = R, the
notation σ(f) means f−1(B(R)).
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Theorem 3.1. If A ⊂ P(Λ) (i.e. A is a collection of subsets of Λ), then
f−1(σ(A)) = σ(f−1(A)).

Proof. First, by Lemma 3.1 f−1(σ(A)) is a σ-algebra and thus f−1(σ(A)) ⊃
σ(f−1(A)). Second, define C = {B ⊂ Λ : f−1(B) ∈ σ(f−1(A))} and show
that C is also a σ-algebra. Clearly, A ⊂ C and thus σ(A) ⊂ C. It follows that
the other direction also holds, i.e. f−1(σ(A)) ⊂ σ(f−1(A)), which concludes
the proof.

3.2 Measurable functions and random variables

Definition 3.2. Let (Ω,F) and (Λ,G) be two measurable spaces and f : Ω →
Λ be a function. We say f is a measurable function if f−1(G) ⊂ F and we
write f : (Ω,F) → (Λ,G). When Ω and Λ are clear from text and we only
want to emphasize the σ-algebra, we may write f ∈ F/G.

If (Λ,G) = (Rd,B(Rd)), we say f is Borel measurable or a Borel function
and often simply write f ∈ F .

Definition 3.3. In probability theory, a real valued Borel function is called
a random variable for d = 1 and a random vector for d > 1 and is often
denoted by X, Y, . . . .

Example 3.2. Consider a probability space (Ω,F ,P). Let X = 1A for some
A ∈ F . Then X is a random variable and σ(X) = {∅,Ω, A,Ac}.

Proposition 3.2 (Test for measurability). Consider measurable spaces (Ω,F),
(Λ,G) and function f : Ω → Λ. If f−1(A) ⊂ F for some A that generates G,
then f is measurable.

Proof. If f−1(A) ⊂ F , we have σ(f−1(A)) ⊂ F by the minimality of the
generated σ-algebra. Then apply Theorem 3.1.

Corollary 3.1. The real valued function X : Ω → R is a random variable iff
X−1((−∞, b]) ∈ F for any b ∈ R.

Proof. Try it yourself.

Proposition 3.3. Let X be a random variable. If A generates B(R), then
σ(X) = σ({X−1(A) : A ∈ A}).

Proof. Try it yourself.
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Proposition 3.4 (Composition). Let f : (Ω1,B1) → (Ω2,B2) and g : (Ω2,B2) →
(Ω3,B3) where (Ωi,Bi) (i = 1, 2, 3) are measurable spaces. Define the com-
position g ◦ f : Ω1 → Ω3 by g ◦ f(ω1) = g(f(ω1)) for ω1 ∈ Ω1. Then
g ◦ f ∈ B1/B3.

Proof. Try it yourself.

Proposition 3.5 (Converse to Proposition 3.4). Let f : (Ω1,B1) → (Ω2,B2)
and h : Ω1 → R. Then, h ∈ σ(f)/B(R) if and only if there exists some
g : (Ω2,B2) → (R,B(R)) such that h = g ◦ f .

Proof. Try it yourself after Lecture 4.

Proposition 3.6. Let f : Rm → Rd be a continuous function. Then f ∈
B(Rm)/B(Rd).

Proof. It follows from the definition of Borel σ-algebra and the fact that
f−1(A) is open if A ⊂ Rd is open and f is continuous.

Lemma 3.2. X = (X1, . . . , Xn) is a random vector iff Xi is a random
variable for every i.

Proof. The proof relies on the fact that B(Rn) is generated by the collection
of all the rectangles in Rn. See Durrett [2, Theorem 1.3.5].

Theorem 3.2. If X1, . . . , Xn are random variables and f : (Rn,B(Rn)) →
(R,B(R)), then f(X1, . . . , Xn) is a random variable and X = (X1, . . . , Xn)
is a random vector.

Proof. By Proposition 3.4, if (X1, . . . , Xn) is a measurable function which
maps from (Ω,F) to (Rn,B(Rn)), then f(X1, . . . , Xn) is a random variable.
In other words, we need to show (X1, . . . , Xn) is a random vector. But this
follows from Lemma 3.2.

Theorem 3.3. If X1, X2, . . . , are random variables, then infnXn, supnXn,
lim infnXn, lim supn Xn are measurable. Note that they take value in the
measurable space (R̄,B(R̄)).

Proof. Observe that {infn Xn < x} = ∪n{Xn < x} and {supnXn > x} =
∪n{Xn > x}. Then use the property that a σ-algebra is closed under count-
able unions/intersections.
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Proposition 3.7. Let (Ω,F , µ) be a measure space, (Λ,G) be a measurable
space and f : (Ω,F) → (Λ,G). Define a function on G, denoted by µ ◦ f−1

(or f#µ), as (µ ◦ f−1)(A) = µ(f−1(A)) for any A ∈ G. Then µ ◦ f−1 is a
measure on (Λ,G). It is called the push-forward measure of µ or the measure
induced by f .

Proof. Try it yourself.

Definition 3.4. For a probability space (Ω,F ,P) and a random variable X
defined on it, P ◦X−1 is called the distribution or the law of X.

Example 3.3. Consider tossing two dice, which corresponds to the sample
space Ω = {(i, j) : 1 ≤ i, j ≤ 6}. Let Λ = {2, 3, . . . , 12}. Define X : Ω →
Λ by X((i, j)) = i + j. Then X−1({2, 3}) = {(1, 1), (1, 2), (2, 1)}. The
distribution of X is given by the push-forward measure P ◦ X−1 where P
denotes the probability measure on Ω. Hence, P ◦X−1({2, 3}) = 3/36.
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