Lecture 3

Instructor: Quan Zhou
For more details about the materials covered in this note, see Chapters 3.1 and 3.2 of Resnick [3] and Chapter 1.3 of Durrett [2].

3.1 Inverse maps

Definition 3.1. Let Ω, Λ be two sets and consider a function $f: \Omega \rightarrow \Lambda$. For $A \subset \Lambda$, the inverse image of A under f is

$$
f^{-1}(A)=\{\omega \in \Omega: f(\omega) \in A\}
$$

Example 3.1. A simple function means a function with a finite range (finite number of possible values). For a real-valued simple function (i.e. $\Lambda=\mathbb{R}$), we may denote the range by $\left\{a_{1}, \ldots, a_{k}\right\}$, where a_{i} 's are distinct real numbers. Define $A_{i}=f^{-1}\left(\left\{a_{i}\right\}\right)$. Then, $\left\{A_{i}: i=1, \ldots, k\right\}$ partitions Ω. ("Partition" means $\cup_{i=1}^{k} A_{i}=\Omega$ and A_{i} 's are disjoint.) Further, the function can be expressed by $f=\sum_{i=1}^{k} a_{i} \mathbb{1}_{A_{i}}$.

Proposition 3.1. f^{-1} preserves complementation, unions and intersections; that is, $f^{-1}\left(A^{c}\right)=\left(f^{-1}(A)\right)^{c}, f^{-1}\left(\cup_{t \in T} A_{t}\right)=\cup_{t \in T} f^{-1}\left(A_{t}\right)$ and $f^{-1}\left(\cap_{t \in T} A_{t}\right)=$ $\cap_{t \in T} f^{-1}\left(A_{t}\right)$.

Proof. Try it yourself.
Lemma 3.1. Let \mathcal{G} be a σ-algebra on Λ. Then, $f^{-1}(\mathcal{G})=\left\{f^{-1}(A): A \in \mathcal{G}\right\}$ is a σ-algebra on Ω.

Proof. We only need to verify the three postulates. (i) Since $\Lambda \in \mathcal{G}$, we have $\Omega=f^{-1}(\Lambda) \in f^{-1}(\mathcal{G})$. (ii) If $f^{-1}(A) \in f^{-1}(\mathcal{G})$, so is $\left(f^{-1}(A)\right)^{c}=f^{-1}\left(A^{c}\right)$ by Proposition 3.1. (iii) If $f^{-1}\left(A_{i}\right) \in f^{-1}(\mathcal{G})$ for $i=1,2, \ldots$, we have $\cup_{i} f^{-1}\left(A_{i}\right)=f^{-1}\left(\cup_{i} A_{i}\right) \in f^{-1}(\mathcal{G})$ since $\cup_{i} A_{i} \in \mathcal{G}$ and f^{-1} preserves unions by Proposition 3.1.

Remark 3.1. Sometimes we also use the notation $\sigma(f)=f^{-1}(\mathcal{G})$, and we say that $\sigma(f)$ is the σ-algebra generated by f. Of course, when $\sigma(f)$ is used, it is assumed that \mathcal{G} is clear from context; for example, when $\Lambda=\mathbb{R}$, the notation $\sigma(f)$ means $f^{-1}(\mathcal{B}(\mathbb{R}))$.

Theorem 3.1. If $\mathcal{A} \subset \mathcal{P}(\Lambda)$ (i.e. \mathcal{A} is a collection of subsets of Λ), then $f^{-1}(\sigma(\mathcal{A}))=\sigma\left(f^{-1}(\mathcal{A})\right)$.

Proof. First, by Lemma $3.1 f^{-1}(\sigma(\mathcal{A}))$ is a σ-algebra and thus $f^{-1}(\sigma(\mathcal{A})) \supset$ $\sigma\left(f^{-1}(\mathcal{A})\right)$. Second, define $\mathcal{C}=\left\{B \subset \Lambda: f^{-1}(B) \in \sigma\left(f^{-1}(A)\right)\right\}$ and show that \mathcal{C} is also a σ-algebra. Clearly, $\mathcal{A} \subset \mathcal{C}$ and thus $\sigma(\mathcal{A}) \subset \mathcal{C}$. It follows that the other direction also holds, i.e. $f^{-1}(\sigma(\mathcal{A})) \subset \sigma\left(f^{-1}(\mathcal{A})\right)$, which concludes the proof.

3.2 Measurable functions and random variables

Definition 3.2. Let (Ω, \mathcal{F}) and (Λ, \mathcal{G}) be two measurable spaces and $f: \Omega \rightarrow$ Λ be a function. We say f is a measurable function if $f^{-1}(\mathcal{G}) \subset \mathcal{F}$ and we write $f:(\Omega, \mathcal{F}) \rightarrow(\Lambda, \mathcal{G})$. When Ω and Λ are clear from text and we only want to emphasize the σ-algebra, we may write $f \in \mathcal{F} / \mathcal{G}$.

If $(\Lambda, \mathcal{G})=\left(\mathbb{R}^{d}, \mathcal{B}\left(\mathbb{R}^{d}\right)\right)$, we say f is Borel measurable or a Borel function and often simply write $f \in \mathcal{F}$.

Definition 3.3. In probability theory, a real valued Borel function is called a random variable for $d=1$ and a random vector for $d>1$ and is often denoted by X, Y, \ldots.

Example 3.2. Consider a probability space $(\Omega, \mathcal{F}, \mathrm{P})$. Let $X=\mathbb{1}_{A}$ for some $A \in \mathcal{F}$. Then X is a random variable and $\sigma(X)=\left\{\emptyset, \Omega, A, A^{c}\right\}$.

Proposition 3.2 (Test for measurability). Consider measurable spaces (Ω, \mathcal{F}), (Λ, \mathcal{G}) and function $f: \Omega \rightarrow \Lambda$. If $f^{-1}(\mathcal{A}) \subset \mathcal{F}$ for some \mathcal{A} that generates \mathcal{G}, then f is measurable.

Proof. If $f^{-1}(\mathcal{A}) \subset \mathcal{F}$, we have $\sigma\left(f^{-1}(\mathcal{A})\right) \subset \mathcal{F}$ by the minimality of the generated σ-algebra. Then apply Theorem 3.1.

Corollary 3.1. The real valued function $X: \Omega \rightarrow \mathbb{R}$ is a random variable iff $X^{-1}((-\infty, b]) \in \mathcal{F}$ for any $b \in \mathbb{R}$.

Proof. Try it yourself.
Proposition 3.3. Let X be a random variable. If \mathcal{A} generates $\mathcal{B}(\mathbb{R})$, then $\sigma(X)=\sigma\left(\left\{X^{-1}(A): A \in \mathcal{A}\right\}\right)$.

Proof. Try it yourself.

Proposition 3.4 (Composition). Let $f:\left(\Omega_{1}, \mathcal{B}_{1}\right) \rightarrow\left(\Omega_{2}, \mathcal{B}_{2}\right)$ and $g:\left(\Omega_{2}, \mathcal{B}_{2}\right) \rightarrow$ $\left(\Omega_{3}, \mathcal{B}_{3}\right)$ where $\left(\Omega_{i}, \mathcal{B}_{i}\right)(i=1,2,3)$ are measurable spaces. Define the composition $g \circ f: \Omega_{1} \rightarrow \Omega_{3}$ by $g \circ f\left(\omega_{1}\right)=g\left(f\left(\omega_{1}\right)\right)$ for $\omega_{1} \in \Omega_{1}$. Then $g \circ f \in \mathcal{B}_{1} / \mathcal{B}_{3}$.

Proof. Try it yourself.
Proposition 3.5 (Converse to Proposition 3.4). Let $f:\left(\Omega_{1}, \mathcal{B}_{1}\right) \rightarrow\left(\Omega_{2}, \mathcal{B}_{2}\right)$ and $h: \Omega_{1} \rightarrow \mathbb{R}$. Then, $h \in \sigma(f) / \mathcal{B}(\mathbb{R})$ if and only if there exists some $g:\left(\Omega_{2}, \mathcal{B}_{2}\right) \rightarrow(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ such that $h=g \circ f$.

Proof. Try it yourself after Lecture 4.
Proposition 3.6. Let $f: \mathbb{R}^{m} \rightarrow \mathbb{R}^{d}$ be a continuous function. Then $f \in$ $\mathcal{B}\left(\mathbb{R}^{m}\right) / \mathcal{B}\left(\mathbb{R}^{d}\right)$.

Proof. It follows from the definition of Borel σ-algebra and the fact that $f^{-1}(A)$ is open if $A \subset \mathbb{R}^{d}$ is open and f is continuous.

Lemma 3.2. $X=\left(X_{1}, \ldots, X_{n}\right)$ is a random vector iff X_{i} is a random variable for every i.

Proof. The proof relies on the fact that $\mathcal{B}\left(\mathbb{R}^{n}\right)$ is generated by the collection of all the rectangles in \mathbb{R}^{n}. See Durrett [2, Theorem 1.3.5].

Theorem 3.2. If X_{1}, \ldots, X_{n} are random variables and $f:\left(\mathbb{R}^{n}, \mathcal{B}\left(\mathbb{R}^{n}\right)\right) \rightarrow$ $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$, then $f\left(X_{1}, \ldots, X_{n}\right)$ is a random variable and $X=\left(X_{1}, \ldots, X_{n}\right)$ is a random vector.

Proof. By Proposition 3.4, if $\left(X_{1}, \ldots, X_{n}\right)$ is a measurable function which maps from (Ω, \mathcal{F}) to $\left(\mathbb{R}^{n}, \mathcal{B}\left(\mathbb{R}^{n}\right)\right)$, then $f\left(X_{1}, \ldots, X_{n}\right)$ is a random variable. In other words, we need to show $\left(X_{1}, \ldots, X_{n}\right)$ is a random vector. But this follows from Lemma 3.2,

Theorem 3.3. If X_{1}, X_{2}, \ldots, are random variables, then $\inf _{n} X_{n}, \sup _{n} X_{n}$, $\lim \inf _{n} X_{n}, \limsup \underline{x}_{n} X_{n}$ are measurable. Note that they take value in the measurable space $(\overline{\mathbb{R}}, \mathcal{B}(\overline{\mathbb{R}}))$.

Proof. Observe that $\left\{\inf _{n} X_{n}<x\right\}=\cup_{n}\left\{X_{n}<x\right\}$ and $\left\{\sup _{n} X_{n}>x\right\}=$ $\cup_{n}\left\{X_{n}>x\right\}$. Then use the property that a σ-algebra is closed under countable unions/intersections.

Proposition 3.7. Let $(\Omega, \mathcal{F}, \mu)$ be a measure space, (Λ, \mathcal{G}) be a measurable space and $f:(\Omega, \mathcal{F}) \rightarrow(\Lambda, \mathcal{G})$. Define a function on \mathcal{G}, denoted by $\mu \circ f^{-1}$ (or $f_{\#} \mu$), as $\left(\mu \circ f^{-1}\right)(A)=\mu\left(f^{-1}(A)\right)$ for any $A \in \mathcal{G}$. Then $\mu \circ f^{-1}$ is a measure on (Λ, \mathcal{G}). It is called the push-forward measure of μ or the measure induced by f.

Proof. Try it yourself.
Definition 3.4. For a probability space $(\Omega, \mathcal{F}, \mathrm{P})$ and a random variable X defined on it, $\mathrm{P} \circ X^{-1}$ is called the distribution or the law of X.

Example 3.3. Consider tossing two dice, which corresponds to the sample space $\Omega=\{(i, j): 1 \leq i, j \leq 6\}$. Let $\Lambda=\{2,3, \ldots, 12\}$. Define $X: \Omega \rightarrow$ Λ by $X((i, j))=i+j$. Then $X^{-1}(\{2,3\})=\{(1,1),(1,2),(2,1)\}$. The distribution of X is given by the push-forward measure $\mathrm{P} \circ X^{-1}$ where P denotes the probability measure on Ω. Hence, $\mathrm{P} \circ X^{-1}(\{2,3\})=3 / 36$.

References

[1] Dennis D. Cox. The Theory of Statistics and Its Applications. Unpublished.
[2] Rick Durrett. Probability: Theory and Examples, volume 49. Cambridge university press, 2019.
[3] Sidney Resnick. A Probability Path. Springer, 2019.

