Lecture 2

Instructor: Quan Zhou
For more details about the materials covered in this note, see Chapters 2.1, 2.2 and 2.4 of Resnick [3] and Chapter 1.1 and Appendix A of Durrett [2].

2.1 Measures and measure spaces

Definition 2.1. Given a measurable space (Ω, \mathcal{F}), a function $\mu: \mathcal{F} \rightarrow[0, \infty]$ is a measure if

- $\mu(A) \geq 0$ for any $A \in \mathcal{F}$;
- $\mu(\emptyset)=0$;
- if $\left\{A_{1}, A_{2}, \ldots\right\}$ is a countable sequence of disjoint sets in \mathcal{F}, then $\mu\left(\cup_{i} A_{i}\right)=\sum_{i} \mu\left(A_{i}\right)$. This is called countable additivity (or σ-additivity).
$(\Omega, \mathcal{F}, \mu)$ is called a measure space, and sets in \mathcal{F} are called measurable sets. If $\mu(\Omega)=1$, we call μ a probability measure and $(\Omega, \mathcal{F}, \mu)$ a probability space (or a probability triple).

Remark 2.1. For convenience, we will often deal with the extended real line $\overline{\mathbb{R}}=\mathbb{R} \cup\{-\infty, \infty\}$. The arithemetic operations involving $\pm \infty$ are defined as follows: (1) $a \pm \infty= \pm \infty$ for any $a \in \mathbb{R}$; (2) $\infty+\infty=\infty$; (3) $a \cdot \infty=\infty$ for any $a \in(0, \infty) ;(4) \infty \cdot \infty=\infty$. Note that $\infty-\infty, 0 \cdot \infty$ and ∞ / ∞ are not defined. In measure theory, it is usually fine to assume that $0 \cdot \infty=0$ but a rigorous proof is always preferred ${ }^{\top}$

Example 2.1. The following examples are important for probability theory.
(i) Let Ω be a discrete sample space (finite or countably infinite). The counting measure on $(\Omega, \mathcal{P}(\Omega))$ is denoted by $\#$. For any $A \in \mathcal{P}(\Omega)$, $\#(A)$ is equal to the number of elements in A.

[^0](ii) The Lebesgue measure on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$, denoted by m, is given by $m((a, b))=$ $b-a$ for any $-\infty<a \leq b<\infty$ [3, §2.5.1].
(iii) Unit point mass measures (Dirac measures): Given a measurable space (Ω, \mathcal{F}) and some $x \in \Omega$, we can define the Dirac measure at x by $\delta_{x}(A)=\mathbb{1}_{A}(x)$ for any $A \in \mathcal{F}$.
(iv) An arbitrary discrete probability measure: Assume $\Omega=\left\{\omega_{1}, \omega_{2}, \ldots\right\}$ and let $\left\{p_{i} \geq 0\right\}_{i=1}^{\infty}$ be a sequence of non-negative real numbers such that $\sum p_{i}=1$. Then we can define a probability measure P by letting $\mathrm{P}\left(\left\{\omega_{i}\right\}\right)=p_{i}$ and $\mathrm{P}(A)=\sum_{\omega_{i} \in A} p_{i}$ for any $A \in \mathcal{P}(\Omega)$. One can check this is a probability measure on $(\Omega, \mathcal{P}(\Omega))$.

2.2 Properties of measures

Proposition 2.1. Let $(\Omega, \mathcal{F}, \mu)$ be a measure space. Assume that the sets we mention below are all in \mathcal{F}.
(i) Monotonicity: If $A \subset B$, then $\mu(A) \leq \mu(B)$.
(ii) Subadditivity: If $A \subset \cup_{i} A_{i}$, then $\mu(A) \leq \sum_{i} \mu\left(A_{i}\right)$.
(iii) Continuity from below: If $A_{i} \uparrow A$, then $\mu\left(A_{i}\right) \uparrow \mu(A)$.
(iv) Continuity from above: If $A_{i} \downarrow A$ and $\mu\left(A_{1}\right)<\infty$, then $\mu\left(A_{i}\right) \downarrow \mu(A)$.
(v) Inclusion-exclusion formula: If $\mu\left(A_{i}\right)<\infty$ for $i=1,2, \ldots, n$, then

$$
\mu\left(\bigcup_{i=1}^{n} A_{i}\right)=\sum_{k=1}^{n}\left\{(-1)^{k-1} \sum_{I \subset\{1,2, \ldots, n\}: \#(I)=k} \mu\left(\bigcap_{i \in I} A_{i}\right)\right\} .
$$

(vi) If $\mu\left(\cup_{n} A_{n}\right)<\infty$, then

$$
\mu\left(\liminf _{n \rightarrow \infty} A_{n}\right) \leq \liminf _{n \rightarrow \infty} \mu\left(A_{n}\right) \leq \limsup _{n \rightarrow \infty} \mu\left(A_{n}\right) \leq \mu\left(\limsup _{n \rightarrow \infty} A_{n}\right)
$$

Further, if $A_{n} \rightarrow A$, then $\mu\left(A_{n}\right) \rightarrow \mu(A)$.
Proof of part (iii). Let $\left\{A_{n}\right\}$ be an increasing sequence, i.e. $A_{1} \subset A_{2} \subset \cdots$. Define another sequence of sets $\left\{B_{n}\right\}$ by letting $B_{1}=A_{1}$ and $B_{n}=A_{n} \cap A_{n-1}^{c}$ (this can also be written as $B_{n}=A_{n} \backslash A_{n-1}$.) Note that $\cup_{i=1}^{n} B_{n}=A_{n}$, which
implies that $\cup_{n=1}^{\infty} B_{n}=\lim _{n \rightarrow \infty} A_{n}=A$. Further, $\left\{B_{n}\right\}$ is a disjoint sequence and thus by the σ-additivity of measures,

$$
\mu(A)=\mu\left(\cup_{n \geq 1} B_{n}\right)=\sum_{n \geq 1} \mu\left(B_{n}\right)=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \mu\left(B_{i}\right) .
$$

The last step follows from the monotone convergence theorem for sequences of real numbers, and note that the limit can be infinity. The rest follows by observing that $\sum_{i=1}^{n} \mu\left(B_{i}\right)=\mu\left(\cup_{i=1}^{n} B_{i}\right)=\mu\left(A_{n}\right)$.
Proof of part vi). For a sequence of sets $\left\{A_{n}\right\}$, define $B_{n}=\sup _{k \geq n} A_{k}$ and $C_{n}=\inf _{k \geq n} A_{k}$. Note that both $\left\{B_{n}\right\}$ and $\left\{C_{n}\right\}$ are monotone sequences and by Proposition 1.3, we have $\liminf _{n \rightarrow \infty} A_{n}=\lim _{n \rightarrow \infty} C_{n}$ and $\limsup _{n \rightarrow \infty} A_{n}=$ $\lim _{n \rightarrow \infty} B_{n}$. Assuming $\mu\left(B_{1}\right)=\mu\left(\cup_{n \geq 1} A_{n}\right)<\infty$, by (i) and (iv),

$$
\mu\left(\limsup _{n \rightarrow \infty} A_{n}\right)=\lim _{n \rightarrow \infty} \mu\left(B_{n}\right)=\limsup _{n \rightarrow \infty} \mu\left(B_{n}\right) \geq \limsup _{n \rightarrow \infty} \mu\left(A_{n}\right) .
$$

Similarly, $\mu\left(\liminf _{n \rightarrow \infty} A_{n}\right)=\lim _{n \rightarrow \infty} \mu\left(C_{n}\right) \leq \liminf _{n \rightarrow \infty} \mu\left(A_{n}\right)$ by (i) and (iii). The first claim then follows since liminf (of a real sequence) cannot be greater than limsup.

If we further assume that $A_{n} \rightarrow A$, which by definition means that $A=$ $\limsup _{n \rightarrow \infty} A_{n}=\liminf _{n \rightarrow \infty} A_{n}$, then

$$
\mu(A) \leq \liminf _{n \rightarrow \infty} \mu\left(A_{n}\right) \leq \limsup _{n \rightarrow \infty} \mu\left(A_{n}\right) \leq \mu(A)
$$

Hence, $\lim \sup _{n \rightarrow \infty} \mu\left(A_{n}\right)=\liminf _{n \rightarrow \infty} \mu\left(A_{n}\right)$ and $\mu\left(A_{n}\right) \rightarrow \mu(A)$.
Proof of the remaining part(s). Try it yourself.
Example 2.2. The inclusion-exclusion formula can be proved by using Venn diagram. The simplest case is given by $\mu(A \cup B)=\mu(A)+\mu(B)-\mu(A \cap B)$.

Example 2.3. Let m be the Lebesgue measure on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$. Let $A_{n}=$ $[n, \infty)$. Then, $m\left(A_{n}\right)=\infty$ for every n, but $m\left(\lim _{n \rightarrow \infty} A_{n}\right)=m(\emptyset)=0$.

2.3 Dynkin's $\pi-\lambda$ theorem

Definition 2.2. Let \mathcal{P}, \mathcal{L} be two collections of subsets of Ω.

- \mathcal{P} is called a π-system if it is closed under finite intersections.
- \mathcal{L} is called a λ-system if (i) $\emptyset \in \mathcal{L}$; (ii) \mathcal{L} is closed under complementation; (iii) \mathcal{L} is closed under countable disjoint unions.

Lemma 2.1. If a λ-system is closed under finite intersections (i.e. it is also $a \pi$-system), then it is a σ-algebra.

Proof. Try it yourself.
Theorem 2.1 (Dynkin's $\pi-\lambda$ theorem). If \mathcal{P} is $a \pi$-system and \mathcal{L} is a λ system and $\mathcal{P} \subset \mathcal{L}$, then $\sigma(\mathcal{P}) \subset \mathcal{L}$.

Proof. Let $\lambda(\mathcal{P})$ denote the minimal λ-system generated by \mathcal{P}, which always exists and is unique.

Step (1). For $A \in \lambda(\mathcal{P})$, define $\mathcal{G}_{A}=\{B: A \cap B \in \lambda(\mathcal{P})\}$. We claim \mathcal{G}_{A} is a λ-system.
First, since $A \cap \Omega=A \in \lambda(\mathcal{P})$, we have $\Omega \in \mathcal{G}_{A}$.
Second, suppose $B \in \mathcal{G}_{A}$ which means $A \cap B \in \lambda(\mathcal{P})$ by the definition of \mathcal{G}_{A}. Note that $A \cap B^{c}=\left(A^{c} \cup B\right)^{c}=\left(A^{c} \cup(A \cap B)\right)^{c}$. Since both A^{c} and $A \cap B$ are in $\lambda(\mathcal{P})$ and they are disjoint, $A^{c} \cup(A \cap B)$ and its complement are also in $\lambda(\mathcal{P})$. Thus, $B^{c} \in \mathcal{G}_{A}$.
Third, if B_{1}, \ldots, B_{n} are disjoint sets in \mathcal{G}_{A}, then $A \cap\left(\cup_{i=1}^{n} B_{i}\right)=$ $\cup_{i=1}^{n}\left(A \cap B_{i}\right)$ is a countable disjoint union of sets in $\lambda(\mathcal{P})$, which is also in $\lambda(\mathcal{P})$. Therefore, $\cup_{i=1}^{n} B_{i} \in \mathcal{G}_{A}$.

Step (2). Next, we prove $\lambda(\mathcal{P})$ is a σ-algebra. By Lemma 2.1, it suffices to show that $\lambda(\mathcal{P})$ is closed under finite intersections; that is, for any $A, B \in \lambda(\mathcal{P})$, we have $A \cap B \in \lambda(\mathcal{P})$.
For any $A, B \in \mathcal{P}, A \cap B \in \mathcal{P} \subset \lambda(\mathcal{P})$ since \mathcal{P} is a π-system.
This implies that for any $A \in \mathcal{P}$, we have $\mathcal{P} \subset \mathcal{G}_{A}$. Because $\lambda(\mathcal{P})$ is the minimal λ-system over \mathcal{P}, we have $\lambda(\mathcal{P}) \subset \mathcal{G}_{A}$. It follows from the definition of \mathcal{G}_{A} that for any $A \in \mathcal{P}$ and $B \in \lambda(\mathcal{P})$, $A \cap B \in \lambda(\mathcal{P})$.
Interchanging the roles of A and B in the previous conclusion, we obtain that for any $A \in \lambda(\mathcal{P})$ and $B \in \mathcal{P}, A \cap B \in \lambda(\mathcal{P})$. But this just means $\mathcal{P} \subset \mathcal{G}_{A}$. Hence, $\lambda(\mathcal{P}) \subset \mathcal{G}_{A}$ for any $A \in \lambda(\mathcal{P})$, which implies that $\lambda(\mathcal{P})$ is a π-system.

Step (3). By definition, $\sigma(\mathcal{P}) \subset \lambda(\mathcal{P})$ and $\lambda(\mathcal{P}) \subset \mathcal{L}$. Thus, $\sigma(\mathcal{P}) \subset \mathcal{L}$.
The proof is complete.
Corollary 2.1. If \mathcal{P} is a π-system, then $\sigma(\mathcal{P})=\lambda(\mathcal{P})$, where $\lambda(\mathcal{P})$ denotes the minimal λ-system that contains \mathcal{P}.

Proof. Try it yourself.
Theorem 2.2. Let $\mathrm{P}_{1}, \mathrm{P}_{2}$ be two probability measures on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ such that for any $x \in \mathbb{R}$, we have $\mathrm{P}_{1}((-\infty, x])=\mathrm{P}_{2}((-\infty, x])$. Then $\mathrm{P}_{1}=\mathrm{P}_{2}$ on $\mathcal{B}(\mathbb{R})$.

Proof. This is a very deep result. It tells us the distribution function (which will be defined shortly) uniquely defines a probability measure on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$. We prove the result using Dynkin's theorem.

Step (1). Let $\mathcal{P}=\{(-\infty, x]: x \in \mathbb{R}\}$. Then \mathcal{P} is a π-system since $(-\infty, a] \cap$

$$
(-\infty, b]=(-\infty, a \wedge b]
$$

Step (2). Consider the collection of sets $\mathcal{L}=\left\{A \in \mathcal{B}(\mathbb{R}): \mathrm{P}_{1}(A)=\mathrm{P}_{2}(A)\right\}$. Using the properties of probability measures, it is easy to verify that \mathcal{L} is a λ-system.

Step (3). Notice that $\mathcal{P} \subset \mathcal{L}$ and thus $\sigma(\mathcal{P}) \subset \mathcal{L}$. Recalling that $\sigma(\mathcal{P})=$ $\mathcal{B}(\mathbb{R})$, we conclude that $\mathcal{L} \supset \mathcal{B}(\mathbb{R})$, i.e. P_{1} and P_{2} agree on $\mathcal{B}(\mathbb{R})$.

The proof is complete.

2.4 Distribution functions

Definition 2.3. A function $F: \mathbb{R} \rightarrow[0,1]$ is called a distribution function if

- F is right continuous, i.e. $\lim _{x_{n} \downarrow x} F\left(x_{n}\right)=F(x)$ for every x;
- F is non-decreasing;
- $\lim _{x \rightarrow \infty} F(x)=1$ and $\lim _{x \rightarrow-\infty} F(x)=0$.

Definition 2.4. Quantile functions.
(i) Lower quantile function: $F^{-}(\alpha)=\inf \{x: F(x) \geq \alpha\}$.
(ii) Upper quantile function: $F^{+}(\alpha)=\sup \{x: F(x) \leq \alpha\}$.

Example 2.4. A uniform distribution on $(0,1)$ has distribution function $F(x)=x \mathbb{1}_{(0,1)}(x)+\mathbb{1}_{[1, \infty)}(x)$ (note that F is defined on \mathbb{R}).

2.5 Construction of uncountable measure spaces

Definition 2.5. A measure space $(\Omega, \mathcal{F}, \mu)$ is called σ-finite if there exists a sequence of sets A_{1}, A_{2}, \ldots in \mathcal{F} such that $\mu\left(A_{i}\right)<\infty$ for each i and $\Omega=\cup_{i=1}^{\infty} A_{i}$.
Example 2.5. Examples of σ-finite and non- σ-finite measures.
(i) The Lebesgue measure on the real line and the counting measure defined on some countable space are σ-finite.
(ii) Consider a measure space $(\Omega, \mathcal{F}, \mu)$ such that $\mu(\Omega)>0$. Define another measure ν by

$$
\nu(A)= \begin{cases}0, & \text { if } \mu(A)=0 \\ \infty, & \text { if } \mu(A)>0\end{cases}
$$

for any $A \in \mathcal{F}$. One can show that ν is not σ-finite.
Definition 2.6. An algebra (field) on Ω is a collection of subsets of Ω which contains Ω and is closed under complementation and finite unions.
Definition 2.7. A semi-algebra \mathcal{S} on Ω is a collection of subsets of Ω such that (i) $\emptyset, \Omega \in \mathcal{S}$; (ii) \mathcal{S} is closed under finite intersections; (iii) if $A \in \mathcal{S}$, then A^{c} is a finite disjoint union of sets in \mathcal{S}.
Theorem 2.3. Let \mathcal{S} be a semi-algebra and $\mu: \mathcal{S} \rightarrow[0, \infty]$ be a σ-additive (countably additive) function such that $\mu(\emptyset)=0$. Then μ has a unique extension which is a measure on the algebra generated by \mathcal{S}.
Proof. See the textbook.
Theorem 2.4 (Caratheodory's extension theorem). A σ-finite measure μ on an algebra \mathcal{A} has a unique extension which is a measure on $\sigma(\mathcal{A})$.
Proof. See the textbook.
Example 2.6. Consider the sample space \mathbb{R}^{d} and let \mathcal{S}_{d} be the collection of all rectangles in \mathbb{R}^{d} including \emptyset, i.e.

$$
\mathcal{S}_{d}=\left\{\left(a_{1}, b_{1}\right] \times \cdots\left(a_{d}, b_{d}\right]:-\infty \leq a_{i} \leq b_{i}<\infty\right\}
$$

It can be shown that \mathcal{S}_{d} is a semi-algebra on \mathbb{R}^{d}. When $d=1$, we can choose an arbitrary distribution function and define $\mathrm{P}: \mathcal{S}_{1} \rightarrow[0,1]$ by letting $\mathrm{P}((a, b])=F(b)-F(a)$. Then, P has a unique extension $\overline{\mathrm{P}}$ on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ and $\overline{\mathrm{P}}$ is a probability measure. Indeed, for any set $A \in \mathcal{B}(\mathbb{R})$, we have $\overline{\mathrm{P}}(A)=m\left(\xi_{F}(A)\right)$ where m denotes the Lebesgue measure and $\xi_{F}(A)=\{x \in$ $\left.(0,1]: F^{-}(x) \in A\right\}$.

References

[1] Dennis D. Cox. The Theory of Statistics and Its Applications. Unpublished.
[2] Rick Durrett. Probability: Theory and Examples, volume 49. Cambridge university press, 2019.
[3] Sidney Resnick. A Probability Path. Springer, 2019.

[^0]: ${ }^{1}$ An example we will see later is the Lebesgue integral $\int_{A} f d \mu$ with $\mu(A)=0$ and $f \in$ $[0, \infty]$. One can use the definition of Lebesgue integrals to rigorous prove that $\int_{A} f d \mu=0$. This justifies a seemingly simpler argument: $\int_{A} f d \mu \leq \mu(A) \sup f=0 \cdot \infty=0$, which is not rigorous in the last step.

