Lecture 21

Instructor: Quan Zhou

The materials covered in this note are from the unpublished book of Cox [1]. For a textbook reference, see Chapter 1.5 of Shao [2].

21.1 Basic asymptotic notations

Definition 21.1. Let $\left\{a_{n}\right\}_{n \geq 1}$ be a sequence of positive real numbers and $\left\{b_{n}\right\}_{n \geq 1}$ be a sequence of real numbers.
(i) We write $b_{n}=O\left(a_{n}\right)$ if $\lim \sup _{n \rightarrow \infty}\left|b_{n}\right| / a_{n}<\infty$.
(ii) We write $b_{n}=o\left(a_{n}\right)$ if $\lim _{n \rightarrow \infty}\left|b_{n}\right| / a_{n}=0$.
(iii) For positive $\left\{b_{n}\right\}_{n \geq 1}$, we write $a_{n} \asymp b_{n}$ if $a_{n}=O\left(b_{n}\right)$ and $b_{n}=O\left(a_{n}\right)$.
(iv) For positive $\left\{b_{n}\right\}_{n \geq 1}$, we write $a_{n} \sim b_{n}$ if $\lim _{n \rightarrow \infty} a_{n} / b_{n}=1$.

Proposition 21.1. Informally, we have the following arithmetic rules ${ }^{1}$
(i) $O\left(a_{n}\right)+O\left(a_{n}\right)=O\left(a_{n}\right)$, and $o\left(a_{n}\right)+o\left(a_{n}\right)=o\left(a_{n}\right)$.
(ii) $O\left(O\left(a_{n}\right)\right)=O\left(a_{n}\right)$, and $o\left(o\left(a_{n}\right)\right)=o\left(a_{n}\right)$.
(iii) $O\left(o\left(a_{n}\right)\right)=o\left(a_{n}\right)$, and $o\left(O\left(a_{n}\right)\right)=o\left(a_{n}\right)$.
(iv) $O\left(a_{n}\right) O\left(b_{n}\right)=O\left(a_{n} b_{n}\right)$, and $o\left(a_{n}\right) o\left(b_{n}\right)=o\left(a_{n} b_{n}\right)$.
(v) $O\left(a_{n}\right) o\left(b_{n}\right)=o\left(a_{n} b_{n}\right)$.

Proof. Since limsup is subadditive, we have

$$
\limsup _{n \rightarrow \infty} \frac{\left|b_{n}\right|+\left|c_{n}\right|}{a_{n}} \leq \limsup _{n \rightarrow \infty} \frac{\left|b_{n}\right|}{a_{n}}+\limsup _{n \rightarrow \infty} \frac{\left|c_{n}\right|}{a_{n}}
$$

which immediately yields part (i). Next, for $a_{n}, b_{n}>0$,

$$
\limsup _{n \rightarrow \infty} \frac{\left|c_{n}\right|}{a_{n}}=\limsup _{n \rightarrow \infty} \frac{\left|c_{n}\right|}{b_{n}} \frac{b_{n}}{a_{n}} \leq \limsup _{n \rightarrow \infty} \frac{\left|c_{n}\right|}{b_{n}} \limsup _{n \rightarrow \infty} \frac{b_{n}}{a_{n}},
$$

[^0]provided that both supremums on the right-hand side are finite. Both parts (ii) and (iii) can be easily verified using the above inequality. Parts (iv) and (v) can be shown by analogous arguments.

Example 21.1. Suppose X_{1}, X_{2}, \ldots are i.i.d. with $E(X)=\mu, \operatorname{Var}(X)=$ $\sigma^{2}, E\left(X^{4}\right)<\infty$. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a Borel function such that all derivatives up to order 4 exist and the fourth order derivative is bounded. Then,

$$
E\left[f\left(\bar{X}_{n}\right)\right]=f(\mu)+\frac{\sigma^{2} f^{\prime \prime}(\mu)}{2 n}+O\left(n^{-2}\right),
$$

which can be proven using the Taylor expansion. The notation $O\left(n^{-2}\right)$ tells us the remainder term goes to zero at rate (not slower than) n^{-2}.

21.2 Probabilistic asymptotics

Definition 21.2. Let $\left\{X_{n}\right\}_{n \geq 1}$ be a sequence of random variables and $\left\{a_{n}\right\}_{n \geq 1}$ be a sequence of positive real numbers.
(i) We write $X_{n}=O_{p}\left(a_{n}\right)$ if for all $\delta>0$, there exist $M_{\delta}, N_{\delta}<\infty$ such that for all $n \geq N_{\delta}$,

$$
\mathrm{P}\left(\left|X_{n}\right| / a_{n} \leq M_{\delta}\right) \geq 1-\delta
$$

(ii) We write $X_{n}=o_{p}\left(a_{n}\right)$ if $X_{n} / a_{n} \xrightarrow{P}$, i.e. for all $\delta>0, \epsilon>0$, there exist $N_{\delta, \epsilon}<\infty$ such that for all $n \geq N_{\delta, \epsilon}$,

$$
\mathrm{P}\left(\left|X_{n}\right| / a_{n} \leq \epsilon\right) \geq 1-\delta
$$

Proposition 21.2. Informally, we have the following arithmetic rules:
(i) $O_{p}\left(a_{n}\right)+O_{p}\left(a_{n}\right)=O_{p}\left(a_{n}\right)$, and $o_{p}\left(a_{n}\right)+o_{p}\left(a_{n}\right)=o_{p}\left(a_{n}\right)$.
(ii) $O_{p}\left(O\left(a_{n}\right)\right)=O_{p}\left(a_{n}\right)$, and $o_{p}\left(o\left(a_{n}\right)\right)=o_{p}\left(a_{n}\right)$.
(iii) $O_{p}\left(o\left(a_{n}\right)\right)=o_{p}\left(a_{n}\right)$, and $o_{p}\left(O\left(a_{n}\right)\right)=o\left(a_{n}\right)$.
(iv) $O_{p}\left(a_{n}\right) O_{p}\left(b_{n}\right)=O_{p}\left(a_{n} b_{n}\right)$, and $o_{p}\left(a_{n}\right) o_{p}\left(b_{n}\right)=o_{p}\left(a_{n} b_{n}\right)$.
(v) $O_{p}\left(a_{n}\right) o_{p}\left(b_{n}\right)=o_{p}\left(a_{n} b_{n}\right)$.

Proof. The proof is more complicated than the deterministic case, though in principle the two proofs are very similar. To see this, note that $b_{n}=O\left(a_{n}\right)$ is also equivalent to saying that there exist $N, M<\infty$ such that for all $n \geq N$, $\left|b_{n}\right| / a_{n} \leq M$. Here we only prove some of the rules.

First, consider the first statement of part (i). Let $X_{n}=O_{p}\left(a_{n}\right)$ and $Y_{n}=O_{p}\left(a_{n}\right)$ and fix $\delta>0$. Then, by definition, there exist $M_{1}, M_{2}, N<\infty$ such that for all $n \geq N$,

$$
\mathrm{P}\left(\left|X_{n}\right| / a_{n} \leq M_{1}\right) \geq 1-\delta / 2, \quad \mathrm{P}\left(\left|Y_{n}\right| / a_{n} \leq M_{2}\right) \geq 1-\delta / 2
$$

By the union bound,
$\mathrm{P}\left\{\left(\left|X_{n}\right|+\left|Y_{n}\right|\right) / a_{n} \leq M_{1}+M_{2}\right\} \geq \mathrm{P}\left(\left|X_{n}\right| / a_{n} \leq M_{1},\left|Y_{n}\right| / a_{n} \leq M_{2}\right) \geq 1-\delta$,
which proves $X_{n}+Y_{n}=O_{p}\left(a_{n}\right)$.
Next, consider the first statement of part (ii). Our goal is to prove if $b_{n}>0, b_{n}=o\left(a_{n}\right)$ and $X_{n}=O_{p}\left(b_{n}\right)$, then $X_{n}=O_{p}\left(a_{n}\right)$. For any $\delta>0$, by definition, there exist $M_{\delta}, N_{\delta}, C$ such that for all $n \geq N_{\delta}$,

$$
b_{n} / a_{n} \leq C, \quad \mathrm{P}\left(\left|X_{n}\right| / b_{n} \leq M_{\delta}\right) \geq 1-\delta
$$

which immediately gives, for $n \geq N_{\delta}$,

$$
\mathrm{P}\left(\left|X_{n}\right| / a_{n} \leq C M_{\delta}\right) \geq 1-\delta
$$

Since δ is arbitrary, we obtain $X_{n}=O_{p}\left(a_{n}\right)$.
Finally, consider part (v). Let $X_{n}=O_{p}\left(a_{n}\right)$ and $Y_{n}=o_{p}\left(b_{n}\right)$. For all $\delta>0, \epsilon>0$, there exist $M_{\delta}, N<\infty$ such that for all $n \geq N$,

$$
\mathrm{P}\left(\left|X_{n}\right| / a_{n} \leq M_{\delta}\right) \geq 1-\delta / 2, \quad \mathrm{P}\left(\left|Y_{n}\right| / b_{n} \leq \epsilon / M_{\delta}\right) \geq 1-\delta / 2
$$

Apply the union bound we get

$$
\mathrm{P}\left(\frac{\left|X_{n} Y_{n}\right|}{a_{n} b_{n}} \leq \epsilon\right) \geq 1-\delta
$$

i.e. $X_{n} Y_{n} / a_{n} b_{n} \xrightarrow{P} 0$.

Example 21.2. If $X_{n} \xrightarrow{D} X$, then $X_{n}=O_{p}(1)$ (i.e. $\left\{F_{n}\right\}$ is tight where F_{n} denotes the distribution function of X_{n}). In particular, every random variable is $O_{p}(1)$. Sometimes we call an $O_{p}(1)$ term "stochastically bounded".

Example 21.3. If $E\left|X_{n}\right|=O\left(a_{n}\right)$, then $X_{n}=O_{p}\left(a_{n}\right)$. To prove this, first note that for sufficiently large n, we have $E\left|X_{n}\right| \leq C a_{n}$ for some $C<\infty$. For any $\delta>0$, letting $M_{\delta}=C / \delta$ and applying Markov inequality, we obtain

$$
\mathrm{P}\left(\left|X_{n}\right| / a_{n} \geq M_{\delta}\right) \leq \frac{E\left|X_{n}\right| \delta}{C a_{n}} \leq \delta
$$

Hence, $X_{n}=O_{p}\left(a_{n}\right)$.

References

[1] Dennis D. Cox. The Theory of Statistics and Its Applications. Unpublished.
[2] Jun Shao. Mathematical statistics. Springer Science \& Business Media, 2003.

[^0]: ${ }^{1}$ For example, the rule " $O\left(a_{n}\right)+O\left(a_{n}\right)=O\left(a_{n}\right)$ " actually means that if $b_{n}=O\left(a_{n}\right)$ and $c_{n}=O\left(a_{n}\right)$, then $b_{n}+c_{n}=O\left(a_{n}\right)$.

