Lecture 21

Instructor: Quan Zhou

The materials covered in this note are from the unpublished book of Cox [1]. For a textbook reference, see Chapter 1.5 of Shao [2].

21.1 Basic asymptotic notations

Definition 21.1. Let $\{a_n\}_{n\geq 1}$ be a sequence of *positive* real numbers and $\{b_n\}_{n\geq 1}$ be a sequence of real numbers.

- (i) We write $b_n = O(a_n)$ if $\limsup_{n \to \infty} |b_n|/a_n < \infty$.
- (ii) We write $b_n = o(a_n)$ if $\lim_{n \to \infty} |b_n|/a_n = 0$.
- (iii) For positive $\{b_n\}_{n\geq 1}$, we write $a_n \simeq b_n$ if $a_n = O(b_n)$ and $b_n = O(a_n)$.
- (iv) For positive $\{b_n\}_{n\geq 1}$, we write $a_n \sim b_n$ if $\lim_{n\to\infty} a_n/b_n = 1$.

Proposition 21.1. Informally, we have the following arithmetic rules:¹

- (i) $O(a_n) + O(a_n) = O(a_n)$, and $o(a_n) + o(a_n) = o(a_n)$.
- (*ii*) $O(O(a_n)) = O(a_n)$, and $o(o(a_n)) = o(a_n)$.
- (*iii*) $O(o(a_n)) = o(a_n)$, and $o(O(a_n)) = o(a_n)$.
- (*iv*) $O(a_n)O(b_n) = O(a_nb_n)$, and $o(a_n)o(b_n) = o(a_nb_n)$.
- $(v) \ O(a_n)o(b_n) = o(a_nb_n).$

Proof. Since lim sup is subadditive, we have

$$\limsup_{n \to \infty} \frac{|b_n| + |c_n|}{a_n} \le \limsup_{n \to \infty} \frac{|b_n|}{a_n} + \limsup_{n \to \infty} \frac{|c_n|}{a_n},$$

which immediately yields part (i). Next, for $a_n, b_n > 0$,

$$\limsup_{n \to \infty} \frac{|c_n|}{a_n} = \limsup_{n \to \infty} \frac{|c_n|}{b_n} \frac{b_n}{a_n} \le \limsup_{n \to \infty} \frac{|c_n|}{b_n} \limsup_{n \to \infty} \frac{b_n}{a_n}$$

¹For example, the rule " $O(a_n) + O(a_n) = O(a_n)$ " actually means that if $b_n = O(a_n)$ and $c_n = O(a_n)$, then $b_n + c_n = O(a_n)$.

provided that both supremums on the right-hand side are finite. Both parts (ii) and (iii) can be easily verified using the above inequality. Parts (iv) and (v) can be shown by analogous arguments. \Box

Example 21.1. Suppose X_1, X_2, \ldots are i.i.d. with $E(X) = \mu$, $Var(X) = \sigma^2$, $E(X^4) < \infty$. Let $f : \mathbb{R} \to \mathbb{R}$ be a Borel function such that all derivatives up to order 4 exist and the fourth order derivative is bounded. Then,

$$E[f(\bar{X}_n)] = f(\mu) + \frac{\sigma^2 f''(\mu)}{2n} + O(n^{-2}),$$

which can be proven using the Taylor expansion. The notation $O(n^{-2})$ tells us the remainder term goes to zero at rate (not slower than) n^{-2} .

21.2 Probabilistic asymptotics

Definition 21.2. Let $\{X_n\}_{n\geq 1}$ be a sequence of random variables and $\{a_n\}_{n\geq 1}$ be a sequence of *positive* real numbers.

(i) We write $X_n = O_p(a_n)$ if for all $\delta > 0$, there exist $M_{\delta}, N_{\delta} < \infty$ such that for all $n \ge N_{\delta}$,

$$\mathsf{P}(|X_n|/a_n \le M_\delta) \ge 1 - \delta.$$

(ii) We write $X_n = o_p(a_n)$ if $X_n/a_n \xrightarrow{P} 0$, i.e. for all $\delta > 0$, $\epsilon > 0$, there exist $N_{\delta,\epsilon} < \infty$ such that for all $n \ge N_{\delta,\epsilon}$,

$$\mathsf{P}(|X_n|/a_n \le \epsilon) \ge 1 - \delta,$$

Proposition 21.2. Informally, we have the following arithmetic rules:

- (i) $O_p(a_n) + O_p(a_n) = O_p(a_n)$, and $o_p(a_n) + o_p(a_n) = o_p(a_n)$.
- (*ii*) $O_p(O(a_n)) = O_p(a_n)$, and $o_p(o(a_n)) = o_p(a_n)$.
- (*iii*) $O_p(o(a_n)) = o_p(a_n)$, and $o_p(O(a_n)) = o(a_n)$.
- (*iv*) $O_p(a_n)O_p(b_n) = O_p(a_nb_n)$, and $o_p(a_n)o_p(b_n) = o_p(a_nb_n)$.
- $(v) \ O_p(a_n)o_p(b_n) = o_p(a_nb_n).$

Proof. The proof is more complicated than the deterministic case, though in principle the two proofs are very similar. To see this, note that $b_n = O(a_n)$ is also equivalent to saying that there exist $N, M < \infty$ such that for all $n \ge N$, $|b_n|/a_n \le M$. Here we only prove some of the rules.

First, consider the first statement of part (i). Let $X_n = O_p(a_n)$ and $Y_n = O_p(a_n)$ and fix $\delta > 0$. Then, by definition, there exist $M_1, M_2, N < \infty$ such that for all $n \ge N$,

$$\mathsf{P}(|X_n|/a_n \le M_1) \ge 1 - \delta/2, \qquad \mathsf{P}(|Y_n|/a_n \le M_2) \ge 1 - \delta/2,$$

By the union bound,

$$\mathsf{P}\{(|X_n| + |Y_n|)/a_n \le M_1 + M_2\} \ge \mathsf{P}(|X_n|/a_n \le M_1, |Y_n|/a_n \le M_2) \ge 1 - \delta,$$

which proves $X_n + Y_n = O_p(a_n)$.

Next, consider the first statement of part (ii). Our goal is to prove if $b_n > 0$, $b_n = o(a_n)$ and $X_n = O_p(b_n)$, then $X_n = O_p(a_n)$. For any $\delta > 0$, by definition, there exist $M_{\delta}, N_{\delta}, C$ such that for all $n \ge N_{\delta}$,

$$b_n/a_n \le C$$
, $\mathsf{P}(|X_n|/b_n \le M_\delta) \ge 1 - \delta$,

which immediately gives, for $n \geq N_{\delta}$,

$$\mathsf{P}(|X_n|/a_n \le CM_\delta) \ge 1 - \delta.$$

Since δ is arbitrary, we obtain $X_n = O_p(a_n)$.

Finally, consider part (v). Let $X_n = O_p(a_n)$ and $Y_n = o_p(b_n)$. For all $\delta > 0$, $\epsilon > 0$, there exist M_{δ} , $N < \infty$ such that for all $n \ge N$,

$$\mathsf{P}(|X_n|/a_n \le M_{\delta}) \ge 1 - \delta/2, \qquad \mathsf{P}(|Y_n|/b_n \le \epsilon/M_{\delta}) \ge 1 - \delta/2.$$

Apply the union bound we get

$$\mathsf{P}\left(\frac{|X_nY_n|}{a_nb_n} \le \epsilon\right) \ge 1 - \delta$$

i.e. $X_n Y_n / a_n b_n \xrightarrow{P} 0.$

Example 21.2. If $X_n \xrightarrow{D} X$, then $X_n = O_p(1)$ (i.e. $\{F_n\}$ is tight where F_n denotes the distribution function of X_n). In particular, every random variable is $O_p(1)$. Sometimes we call an $O_p(1)$ term "stochastically bounded".

Example 21.3. If $E|X_n| = O(a_n)$, then $X_n = O_p(a_n)$. To prove this, first note that for sufficiently large n, we have $E|X_n| \leq Ca_n$ for some $C < \infty$. For any $\delta > 0$, letting $M_{\delta} = C/\delta$ and applying Markov inequality, we obtain

$$\mathsf{P}(|X_n|/a_n \ge M_{\delta}) \le \frac{E|X_n|\delta}{Ca_n} \le \delta.$$

Hence, $X_n = O_p(a_n)$.

References

- [1] Dennis D. Cox. *The Theory of Statistics and Its Applications*. Unpublished.
- [2] Jun Shao. Mathematical statistics. Springer Science & Business Media, 2003.