
Lecture 20

Instructor: Quan Zhou

For more details about the materials covered in this note, see Chapters
9.7 and 9.8 of Resnick [2] and Chapter 3.4 of Durrett [1].

20.1 Auxiliary lemmas

Lemma 20.1. Let z1, . . . , zn and w1, . . . , wn be complex numbers with mod-
ulus bound (from above) by θ. Then,∣∣∣∣∣

n∏
k=1

zk −
n∏

k=1

wk

∣∣∣∣∣ ≤ θn−1

n∑
k=1

|zk − wk|.

Proof. By triangle inequality,∣∣∣∣∣
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wk
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∣∣∣∣∣+ θn−1|z1 − w1|.

Hence, if the lemma is true for some fixed n− 1, we have∣∣∣∣∣
n∏

k=1

zk −
n∏

k=1

wk

∣∣∣∣∣ ≤ θn−1

(
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|zk − wk|

)
+ θn−1|z1 − w1|.

That is, the lemma is also true for n. Since the case n = 1 is obvious, we
can use induction to conclude the proof.

Lemma 20.2. If cn → c ∈ C, then (1 + cn/n)
n → ec.

Proof. For any complex number c with |c| ≤ 1, we have ec =
∑∞

k=0 b
k/k!.

Hence,

|ec − 1− c| ≤
∞∑
k=2

|c|k

k!
≤ |c|2

∞∑
k=2

1

k!
≤ M |c|2
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for some constant M ∈ (0,∞). In particular, it holds for M = 1. Since
cn → c, we can assume that for sufficiently large n, |cn| ≤ K for some
K < ∞. By Lemma 20.1 (let zk = 1 + cn/n and wk = ecn/n),∣∣∣(1 + cn

n

)n
− ecn

∣∣∣ ≤ eK/n

n∑
k=1

|1 + n−1cn − ecn/n| ≤ eK(n−1)/n|cn|2

n
≤ K2eK

n
,

which vanishes as n → ∞. The result then follows by using ecn → ec (exp is
continuous in the complex plane).

Lemma 20.3. For a triangular array {cn,k ∈ R}, if max1≤k≤n |cn,k| → 0,∑n
k=1 cn,k → λ and supn

∑n
k=1 |cn,k| < ∞, then

∏n
k=1(1 + cn,k) → eλ.

Proof. Since max1≤k≤n |cn,k| → 0, we may assume that |cn,k| < 1/2 for every
n and k without loss of generality. For |c| < 1/2, one can easily verify
c− c2 ≤ log(1 + c) ≤ c. Hence,

lim sup
n→∞

n∑
k=1

log(1 + cn,k) ≤ lim sup
n→∞

n∑
k=1

cn,k = λ.

For the other direction,

lim inf
n→∞

n∑
k=1

log(1 + cn,k) ≥ lim inf
n→∞

n∑
k=1

(cn,k − c2n,k) = λ− lim sup
n→∞

n∑
k=1

c2n,k

≥ λ− lim sup
n→∞

max
1≤k≤n

|cn,k|
n∑

k=1

|cn,k| = λ.

Note that all the three assumptions have been used.

Remark 20.1. Consider the sub-array {c2n,k} (that is, we only consider
even rows). Let c2n,k = 1/

√
n if k is odd, and c2n,k = −1/

√
n if k is even.

Then, clearly λ =
∑2n

k=1 c2n,k = 0, and max1≤k≤2n |c2n,k| → 0. However,
sup2n

∑2n
k=1 |c2n,k| = ∞ and

∏2n
k=1(1 + c2n,k) → e−1.

20.2 Central limit theorem for i.i.d. sequences

Theorem 20.1. Let X1, X2, . . . be i.i.d. random variables with mean µ and
variance σ2 < ∞. Let Sn = X1 + · · ·+Xn. Then,

Sn − nµ

σ
√
n

D→ Z,

where Z is a normal random variable with E[Z] = 0 and Var(Z) = 1.
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Proof. Without loss of generality, we can assume µ = 0. By Theorem 19.2
and Jensen’s inequality,∣∣∣∣E(eitX1)− E

(
1 + itX − t2X2

1

2

)∣∣∣∣ ≤ Emin

{
|tX1|3

6
, |tX1|2

}
=: h(t).

Hence, letting ϕX denote the characteristic function of X1, we get

ϕX(t) = 1− σ2t2

2
+ r(t), |r(t)| ≤ h(t).

By Proposition 19.2,

E[eitSn/(σ
√
n)] = ϕX

(
t

σ
√
n

)n

=

(
1− t2

2n
+ r(t/σ

√
n)

)n

We claim that for every t ∈ R,

lim
n→∞

nh

(
t

σ
√
n

)
= 0. (1)

This implies that E[eitSn/(σ
√
n)] → e−t2/2 by Lemma 20.2. The CLT then fol-

lows from the continuity and uniqueness theorems of characteristic functions.
To verify (1), note that

n

t2
h

(
t

σ
√
n

)
= Emin

{
|t||X1|3

6σ3n1/2
,
|X1|2

σ2

}
≤ 1,

since EX2
1 = σ2. Hence, by the dominated convergence theorem,

lim
n→∞

n

t2
h

(
t

σ
√
n

)
≤ E

[
lim
n→∞

|t||X1|3

6σ3n1/2

]
= 0,

for any t ∈ R.

Remark 20.2. Consider the error term h(t). Note that because h(t) ≤
t2EX2

1 < ∞, we can apply DCT to show that h(t) = o(t2); that is, h(t)/t2 →
0 as t → 0. Thus, we may write ϕX(t) = 1− σ2t2/2 + o(t2).

Example 20.1. Let X1, X2, . . . be i.i.d. with P(X1 = 1) = P(X1 = −1) =
1/2 and let Sn = X1+ · · ·+Xn. The De Moivre-Laplace theorem states that

lim
n→∞

P(a ≤ Sn/
√
n ≤ b) =

∫ b

a

e−x2/2

√
2π

dx,
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for any a < b, i.e. Sn/
√
n converges in distribution to a standard normal

random variable. Of course this is just a special case of the above central
limit theorem, but it can be proven by straightforward calculations of the
probability mass function of Sn using Stirling’s formula:

n! ∼ nne−n
√
2πn, as n → ∞.

Example 20.2. Let ξ1, ξ2, . . . be i.i.d. with P(ξi = 1) = P(ξi = −1) = 1/2.
Define {Xn}n≥1 as

X1 = ξ1, X2 = ξ1ξ2, X3 = ξ1ξ3, X4 = ξ1ξ2ξ3,

X5 = X1ξ4, X6 = X2ξ4, X7 = X3ξ4, X8 = X4ξ4, . . .

That is, form = 2n−1+j, where 0 < j ≤ 2n−1 and n ≥ 1, we letXm = Xjξn+1.
By construction, it is easy to check that all Xi’s are pairwise independent,
which yields that E[Sn] = 0 and Var(Sn) = n. But the central limit theorem
fails since

S2n = ξ1(1 + ξ2)(1 + ξ3) · · · (1 + ξn+1),

which satisfies P(S2n = 0) = 1− 2−n → 1.

20.3 Lindeberg-Feller central limit theorem

Theorem 20.2 (Lindeberg-Feller CLT). Consider a triangular array of ran-
dom variables {Xn,k : n ≥ 1, 1 ≤ k ≤ n} where for each n, Xn,1, . . . , Xn,n

are independent with mean zero and finite variance. Suppose

(i)
∑n

k=1 EX2
n,k → σ2 ∈ (0,∞),

(ii) for all ϵ > 0, limn→∞
∑n

k=1E
(
|Xn,k|21{|Xn,k|>ϵ}

)
= 0.

Then Sn/σ
D→ Z where Z has standard normal distribution and Sn = Xn,1 +

· · ·+Xn,n.

Proof. Let ϕn,k denote the characteristic function of Xn,k and σ2
n,k = EX2

n,k.
By Theorem 19.2,∣∣∣∣ϕn,k(t)− 1 +

t2σ2
n,k

2

∣∣∣∣ ≤ Emin

{
|tXn,k|3

6
, |tXn,k|2

}
≤ E

(
|tXn,k|3

6
1{|Xn,k|≤ϵ}

)
+ E

(
t2X2

n,k1{|Xn,k|>ϵ}
)

≤ ϵ|t|3

6
E
(
X2

n,k1{|Xn,k|≤ϵ}
)
+ t2E

(
X2

n,k1{|Xn,k|>ϵ}
)
.
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Summing over k = 1, . . . , n, we get

n∑
k=1

∣∣∣∣ϕn,k(t)− 1 +
t2σ2

n,k

2

∣∣∣∣
≤ ϵ|t|3

6

n∑
k=1

E
(
X2

n,k

)
+ t2

n∑
k=1

E
(
X2

n,k1{|Xn,k|>ϵ}
)
→ σ2ϵ|t|3

6

by conditions (i) and (ii). Letting ϵ ↓ 0, we obtain that the left-hand side
goes to zero as n → ∞. Next, we notice that

max
1≤k≤n

σ2
n,k ≤ ϵ2 + max

1≤k≤n
E
(
X2

n,k1{|Xn,k|>ϵ}
)
≤ ϵ2 +

n∑
k=1

E
(
X2

n,k1{|Xn,k|>ϵ}
)
.

Condition (ii) implies that lim supn→∞maxk σ
2
n,k ≤ ϵ2. Letting ϵ ↓ 0, we get

maxk σ
2
n,k → 0. Hence, for any fixed t, there exists N such that for all n ≥ N

and all 1 ≤ k ≤ n, we have 1−t2σ2
n,k/2 ≥ −1. So, we may apply Lemma 20.1

with θ = 1 to obtain∣∣∣∣∣
n∏

k=1

ϕn,k(t)−
n∏

k=1

(
1−

t2σ2
n,k

2

)∣∣∣∣∣→ 0.

By Lemma 20.3, for every t, as n → ∞,

n∏
k=1

(
1−

t2σ2
n,k

2

)
→ e−t2σ2/2,

which yields the result.

Example 20.3. The CLT for i.i.d. sequences is just a special case. To see
this, let Y1, Y2, . . . be i.i.d. with mean zero and let Xn,k = Yk/

√
n. Then∑n

k=1 EX2
n,k = σ2 and Lindeberg’s condition (i.e. the second condition in

Theorem 20.2) can be verified by DCT.

Example 20.4. Define independent random variables {Yn}n≥1 by

P(Yn = ±1) =
1− c

2
, P(Yn = ±n) =

c

2n2
, P(Yn = 0) =

c(n2 − 1)

n2
,
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for some c ∈ (0, 1). It is easy to check that E(Yn) = 0 and Var(Yn) = 1
for every n. Now define Xn,k = Yk/

√
n. Then

∑n
k=1EX2

n,k = 1. However,
Lindeberg’s condition is not satisfied since for any fixed ϵ > 0 and n > ϵ2,

n∑
k=1

E
(
|Xn,k|21{|Xn,k|>ϵ}

)
≥

n∑
k=⌈ϵ

√
n⌉

E
(
|Xn,k|21{|Xn,k|>ϵ}

)
≥

n∑
k=⌈ϵ

√
n⌉

E
(
|Xn,k|21{|Xn,k|=k/

√
n}
)
= c

n− ⌈ϵ
√
n⌉

n
→ c > 0.

Further, though we do not prove here, Sn = Xn,1 + · · · + Xn,n does not
converge in distribution to a standard normal.
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