Lecture 20

Instructor: Quan Zhou

For more details about the materials covered in this note, see Chapters 9.7 and 9.8 of Resnick [2] and Chapter 3.4 of Durrett [1].

20.1 Auxiliary lemmas

Lemma 20.1. Let z_{1}, \ldots, z_{n} and w_{1}, \ldots, w_{n} be complex numbers with modulus bound (from above) by θ. Then,

$$
\left|\prod_{k=1}^{n} z_{k}-\prod_{k=1}^{n} w_{k}\right| \leq \theta^{n-1} \sum_{k=1}^{n}\left|z_{k}-w_{k}\right| .
$$

Proof. By triangle inequality,

$$
\begin{aligned}
\left|\prod_{k=1}^{n} z_{k}-\prod_{k=1}^{n} w_{k}\right| & \leq\left|\prod_{k=1}^{n} z_{k}-z_{1} \prod_{k=2}^{n} w_{k}\right|+\left|z_{1} \prod_{k=2}^{n} w_{k}-\prod_{k=1}^{n} w_{k}\right| \\
& \leq \theta\left|\prod_{k=2}^{n} z_{k}-\prod_{k=2}^{n} w_{k}\right|+\theta^{n-1}\left|z_{1}-w_{1}\right| .
\end{aligned}
$$

Hence, if the lemma is true for some fixed $n-1$, we have

$$
\left|\prod_{k=1}^{n} z_{k}-\prod_{k=1}^{n} w_{k}\right| \leq \theta^{n-1}\left(\sum_{k=2}^{n}\left|z_{k}-w_{k}\right|\right)+\theta^{n-1}\left|z_{1}-w_{1}\right| .
$$

That is, the lemma is also true for n. Since the case $n=1$ is obvious, we can use induction to conclude the proof.

Lemma 20.2. If $c_{n} \rightarrow c \in \mathbb{C}$, then $\left(1+c_{n} / n\right)^{n} \rightarrow e^{c}$.
Proof. For any complex number c with $|c| \leq 1$, we have $e^{c}=\sum_{k=0}^{\infty} b^{k} / k!$. Hence,

$$
\left|e^{c}-1-c\right| \leq \sum_{k=2}^{\infty} \frac{|c|^{k}}{k!} \leq|c|^{2} \sum_{k=2}^{\infty} \frac{1}{k!} \leq M|c|^{2}
$$

for some constant $M \in(0, \infty)$. In particular, it holds for $M=1$. Since $c_{n} \rightarrow c$, we can assume that for sufficiently large $n,\left|c_{n}\right| \leq K$ for some $K<\infty$. By Lemma 20.1 (let $z_{k}=1+c_{n} / n$ and $w_{k}=e^{c_{n} / n}$),

$$
\left|\left(1+\frac{c_{n}}{n}\right)^{n}-e^{c_{n}}\right| \leq e^{K / n} \sum_{k=1}^{n}\left|1+n^{-1} c_{n}-e^{c_{n} / n}\right| \leq \frac{e^{K(n-1) / n}\left|c_{n}\right|^{2}}{n} \leq \frac{K^{2} e^{K}}{n}
$$

which vanishes as $n \rightarrow \infty$. The result then follows by using $e^{c_{n}} \rightarrow e^{c}$ (exp is continuous in the complex plane).
Lemma 20.3. For a triangular array $\left\{c_{n, k} \in \mathbb{R}\right\}$, if $\max _{1 \leq k \leq n}\left|c_{n, k}\right| \rightarrow 0$, $\sum_{k=1}^{n} c_{n, k} \rightarrow \lambda$ and $\sup _{n} \sum_{k=1}^{n}\left|c_{n, k}\right|<\infty$, then $\prod_{k=1}^{n}\left(1+c_{n, k}\right) \rightarrow e^{\lambda}$.
Proof. Since $\max _{1 \leq k \leq n}\left|c_{n, k}\right| \rightarrow 0$, we may assume that $\left|c_{n, k}\right|<1 / 2$ for every n and k without loss of generality. For $|c|<1 / 2$, one can easily verify $c-c^{2} \leq \log (1+c) \leq c$. Hence,

$$
\limsup _{n \rightarrow \infty} \sum_{k=1}^{n} \log \left(1+c_{n, k}\right) \leq \limsup _{n \rightarrow \infty} \sum_{k=1}^{n} c_{n, k}=\lambda .
$$

For the other direction,

$$
\begin{aligned}
\liminf _{n \rightarrow \infty} \sum_{k=1}^{n} \log \left(1+c_{n, k}\right) & \geq \liminf _{n \rightarrow \infty} \sum_{k=1}^{n}\left(c_{n, k}-c_{n, k}^{2}\right)=\lambda-\limsup _{n \rightarrow \infty} \sum_{k=1}^{n} c_{n, k}^{2} \\
& \geq \lambda-\limsup _{n \rightarrow \infty} \max _{1 \leq k \leq n}\left|c_{n, k}\right| \sum_{k=1}^{n}\left|c_{n, k}\right|=\lambda
\end{aligned}
$$

Note that all the three assumptions have been used.
Remark 20.1. Consider the sub-array $\left\{c_{2 n, k}\right\}$ (that is, we only consider even rows). Let $c_{2 n, k}=1 / \sqrt{n}$ if k is odd, and $c_{2 n, k}=-1 / \sqrt{n}$ if k is even. Then, clearly $\lambda=\sum_{k=1}^{2 n} c_{2 n, k}=0$, and $\max _{1 \leq k \leq 2 n}\left|c_{2 n, k}\right| \rightarrow 0$. However, $\sup _{2 n} \sum_{k=1}^{2 n}\left|c_{2 n, k}\right|=\infty$ and $\prod_{k=1}^{2 n}\left(1+c_{2 n, k}\right) \rightarrow e^{-1}$.

20.2 Central limit theorem for i.i.d. sequences

Theorem 20.1. Let X_{1}, X_{2}, \ldots be i.i.d. random variables with mean μ and variance $\sigma^{2}<\infty$. Let $S_{n}=X_{1}+\cdots+X_{n}$. Then,

$$
\frac{S_{n}-n \mu}{\sigma \sqrt{n}} \xrightarrow{D} Z,
$$

where Z is a normal random variable with $E[Z]=0$ and $\operatorname{Var}(Z)=1$.

Proof. Without loss of generality, we can assume $\mu=0$. By Theorem 19.2 and Jensen's inequality,

$$
\left|E\left(e^{i t X_{1}}\right)-E\left(1+i t X-\frac{t^{2} X_{1}^{2}}{2}\right)\right| \leq E \min \left\{\frac{\left|t X_{1}\right|^{3}}{6},\left|t X_{1}\right|^{2}\right\}=: h(t) .
$$

Hence, letting ϕ_{X} denote the characteristic function of X_{1}, we get

$$
\phi_{X}(t)=1-\frac{\sigma^{2} t^{2}}{2}+r(t), \quad|r(t)| \leq h(t)
$$

By Proposition 19.2,

$$
E\left[e^{i t S_{n} /(\sigma \sqrt{n})}\right]=\phi_{X}\left(\frac{t}{\sigma \sqrt{n}}\right)^{n}=\left(1-\frac{t^{2}}{2 n}+r(t / \sigma \sqrt{n})\right)^{n}
$$

We claim that for every $t \in \mathbb{R}$,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} n h\left(\frac{t}{\sigma \sqrt{n}}\right)=0 \tag{1}
\end{equation*}
$$

This implies that $E\left[e^{i t S_{n} /(\sigma \sqrt{n})}\right] \rightarrow e^{-t^{2} / 2}$ by Lemma 20.2. The CLT then follows from the continuity and uniqueness theorems of characteristic functions. To verify (1), note that

$$
\frac{n}{t^{2}} h\left(\frac{t}{\sigma \sqrt{n}}\right)=E \min \left\{\frac{|t|\left|X_{1}\right|^{3}}{6 \sigma^{3} n^{1 / 2}}, \frac{\left|X_{1}\right|^{2}}{\sigma^{2}}\right\} \leq 1
$$

since $E X_{1}^{2}=\sigma^{2}$. Hence, by the dominated convergence theorem,

$$
\lim _{n \rightarrow \infty} \frac{n}{t^{2}} h\left(\frac{t}{\sigma \sqrt{n}}\right) \leq E\left[\lim _{n \rightarrow \infty} \frac{|t|\left|X_{1}\right|^{3}}{6 \sigma^{3} n^{1 / 2}}\right]=0
$$

for any $t \in \mathbb{R}$.
Remark 20.2. Consider the error term $h(t)$. Note that because $h(t) \leq$ $t^{2} E X_{1}^{2}<\infty$, we can apply DCT to show that $h(t)=o\left(t^{2}\right)$; that is, $h(t) / t^{2} \rightarrow$ 0 as $t \rightarrow 0$. Thus, we may write $\phi_{X}(t)=1-\sigma^{2} t^{2} / 2+o\left(t^{2}\right)$.

Example 20.1. Let X_{1}, X_{2}, \ldots be i.i.d. with $\mathrm{P}\left(X_{1}=1\right)=\mathrm{P}\left(X_{1}=-1\right)=$ $1 / 2$ and let $S_{n}=X_{1}+\cdots+X_{n}$. The De Moivre-Laplace theorem states that

$$
\lim _{n \rightarrow \infty} \mathrm{P}\left(a \leq S_{n} / \sqrt{n} \leq b\right)=\int_{a}^{b} \frac{e^{-x^{2} / 2}}{\sqrt{2 \pi}} d x
$$

for any $a<b$, i.e. S_{n} / \sqrt{n} converges in distribution to a standard normal random variable. Of course this is just a special case of the above central limit theorem, but it can be proven by straightforward calculations of the probability mass function of S_{n} using Stirling's formula:

$$
n!\sim n^{n} e^{-n} \sqrt{2 \pi n}, \quad \text { as } n \rightarrow \infty
$$

Example 20.2. Let ξ_{1}, ξ_{2}, \ldots be i.i.d. with $\mathrm{P}\left(\xi_{i}=1\right)=\mathrm{P}\left(\xi_{i}=-1\right)=1 / 2$. Define $\left\{X_{n}\right\}_{n \geq 1}$ as

$$
\begin{aligned}
& X_{1}=\xi_{1}, \quad X_{2}=\xi_{1} \xi_{2}, \quad X_{3}=\xi_{1} \xi_{3}, \quad X_{4}=\xi_{1} \xi_{2} \xi_{3}, \\
& X_{5}=X_{1} \xi_{4}, \quad X_{6}=X_{2} \xi_{4}, \quad X_{7}=X_{3} \xi_{4}, \quad X_{8}=X_{4} \xi_{4}, \quad \ldots
\end{aligned}
$$

That is, for $m=2^{n-1}+j$, where $0<j \leq 2^{n-1}$ and $n \geq 1$, we let $X_{m}=X_{j} \xi_{n+1}$. By construction, it is easy to check that all X_{i} 's are pairwise independent, which yields that $E\left[S_{n}\right]=0$ and $\operatorname{Var}\left(S_{n}\right)=n$. But the central limit theorem fails since

$$
S_{2^{n}}=\xi_{1}\left(1+\xi_{2}\right)\left(1+\xi_{3}\right) \cdots\left(1+\xi_{n+1}\right),
$$

which satisfies $\mathrm{P}\left(S_{2^{n}}=0\right)=1-2^{-n} \rightarrow 1$.

20.3 Lindeberg-Feller central limit theorem

Theorem 20.2 (Lindeberg-Feller CLT). Consider a triangular array of random variables $\left\{X_{n, k}: n \geq 1,1 \leq k \leq n\right\}$ where for each n, $X_{n, 1}, \ldots, X_{n, n}$ are independent with mean zero and finite variance. Suppose
(i) $\sum_{k=1}^{n} E X_{n, k}^{2} \rightarrow \sigma^{2} \in(0, \infty)$,
(ii) for all $\epsilon>0, \lim _{n \rightarrow \infty} \sum_{k=1}^{n} E\left(\left|X_{n, k}\right|^{2} \mathbb{1}_{\left\{\left|X_{n, k}\right|>\epsilon\right\}}\right)=0$.

Then $S_{n} / \sigma \xrightarrow{D} Z$ where Z has standard normal distribution and $S_{n}=X_{n, 1}+$ $\cdots+X_{n, n}$.
Proof. Let $\phi_{n, k}$ denote the characteristic function of $X_{n, k}$ and $\sigma_{n, k}^{2}=E X_{n, k}^{2}$. By Theorem 19.2,

$$
\begin{aligned}
\left|\phi_{n, k}(t)-1+\frac{t^{2} \sigma_{n, k}^{2}}{2}\right| & \leq E \min \left\{\frac{\left|t X_{n, k}\right|^{3}}{6},\left|t X_{n, k}\right|^{2}\right\} \\
& \leq E\left(\frac{\left|t X_{n, k}^{3}\right|^{3}}{6} \mathbb{1}_{\left\{\left|X_{n, k}\right| \leq \epsilon\right\}}\right)+E\left(t^{2} X_{n, k}^{2} \mathbb{1}_{\left\{\left|X_{n, k}\right|>\epsilon\right\}}\right) \\
& \leq \frac{\epsilon|t|^{3}}{6} E\left(X_{n, k}^{2} \mathbb{1}_{\left\{\left|X_{n, k}\right| \leq \epsilon\right\}}\right)+t^{2} E\left(X_{n, k}^{2} \mathbb{1}_{\left\{\left|X_{n, k}\right|>\epsilon\right\}}\right) .
\end{aligned}
$$

Summing over $k=1, \ldots, n$, we get

$$
\begin{aligned}
& \sum_{k=1}^{n}\left|\phi_{n, k}(t)-1+\frac{t^{2} \sigma_{n, k}^{2}}{2}\right| \\
\leq & \frac{\epsilon|t|^{3}}{6} \sum_{k=1}^{n} E\left(X_{n, k}^{2}\right)+t^{2} \sum_{k=1}^{n} E\left(X_{n, k}^{2} \mathbb{1}_{\left\{\left|X_{n, k}\right|>\epsilon\right\}}\right) \rightarrow \frac{\sigma^{2} \epsilon|t|^{3}}{6}
\end{aligned}
$$

by conditions (i) and (ii). Letting $\epsilon \downarrow 0$, we obtain that the left-hand side goes to zero as $n \rightarrow \infty$. Next, we notice that

$$
\max _{1 \leq k \leq n} \sigma_{n, k}^{2} \leq \epsilon^{2}+\max _{1 \leq k \leq n} E\left(X_{n, k}^{2} \mathbb{1}_{\left\{\left|X_{n, k}\right|>\epsilon\right\}}\right) \leq \epsilon^{2}+\sum_{k=1}^{n} E\left(X_{n, k}^{2} \mathbb{1}_{\left\{\left|X_{n, k}\right|>\epsilon\right\}}\right)
$$

Condition (ii) implies that $\lim \sup _{n \rightarrow \infty} \max _{k} \sigma_{n, k}^{2} \leq \epsilon^{2}$. Letting $\epsilon \downarrow 0$, we get $\max _{k} \sigma_{n, k}^{2} \rightarrow 0$. Hence, for any fixed t, there exists N such that for all $n \geq N$ and all $1 \leq k \leq n$, we have $1-t^{2} \sigma_{n, k}^{2} / 2 \geq-1$. So, we may apply Lemma 20.1 with $\theta=1$ to obtain

$$
\left|\prod_{k=1}^{n} \phi_{n, k}(t)-\prod_{k=1}^{n}\left(1-\frac{t^{2} \sigma_{n, k}^{2}}{2}\right)\right| \rightarrow 0
$$

By Lemma 20.3, for every t, as $n \rightarrow \infty$,

$$
\prod_{k=1}^{n}\left(1-\frac{t^{2} \sigma_{n, k}^{2}}{2}\right) \rightarrow e^{-t^{2} \sigma^{2} / 2}
$$

which yields the result.
Example 20.3. The CLT for i.i.d. sequences is just a special case. To see this, let Y_{1}, Y_{2}, \ldots be i.i.d. with mean zero and let $X_{n, k}=Y_{k} / \sqrt{n}$. Then $\sum_{k=1}^{n} E X_{n, k}^{2}=\sigma^{2}$ and Lindeberg's condition (i.e. the second condition in Theorem 20.2 can be verified by DCT.

Example 20.4. Define independent random variables $\left\{Y_{n}\right\}_{n \geq 1}$ by

$$
\mathrm{P}\left(Y_{n}= \pm 1\right)=\frac{1-c}{2}, \quad \mathrm{P}\left(Y_{n}= \pm n\right)=\frac{c}{2 n^{2}}, \quad \mathrm{P}\left(Y_{n}=0\right)=\frac{c\left(n^{2}-1\right)}{n^{2}}
$$

for some $c \in(0,1)$. It is easy to check that $E\left(Y_{n}\right)=0$ and $\operatorname{Var}\left(Y_{n}\right)=1$ for every n. Now define $X_{n, k}=Y_{k} / \sqrt{n}$. Then $\sum_{k=1}^{n} E X_{n, k}^{2}=1$. However, Lindeberg's condition is not satisfied since for any fixed $\epsilon>0$ and $n>\epsilon^{2}$,

$$
\begin{aligned}
& \sum_{k=1}^{n} E\left(\left|X_{n, k}\right|^{2} \mathbb{1}_{\left\{\left|X_{n, k}\right|>\epsilon\right\}}\right) \geq \sum_{k=\lceil\epsilon \sqrt{n}\rceil}^{n} E\left(\left|X_{n, k}\right|^{2} \mathbb{1}_{\left\{\left|X_{n, k}\right|>\epsilon\right\}}\right) \\
\geq & \sum_{k=\lceil\epsilon \sqrt{n}\rceil}^{n} E\left(\left|X_{n, k}\right|^{2} \mathbb{1}_{\left\{\left|X_{n, k}\right|=k / \sqrt{n}\right\}}\right)=c \frac{n-\lceil\epsilon \sqrt{n}\rceil}{n} \rightarrow c>0 .
\end{aligned}
$$

Further, though we do not prove here, $S_{n}=X_{n, 1}+\cdots+X_{n, n}$ does not converge in distribution to a standard normal.

References

[1] Rick Durrett. Probability: Theory and Examples, volume 49. Cambridge university press, 2019.
[2] Sidney Resnick. A Probability Path. Springer, 2019.
[3] Jordan M Stoyanov. Counterexamples in probability. Courier Corporation, 2013.

