Lecture 20

Instructor: Quan Zhou

For more details about the materials covered in this note, see Chapters 9.7 and 9.8 of Resnick [2] and Chapter 3.4 of Durrett [1].

20.1 Auxiliary lemmas

Lemma 20.1. Let z_1, \ldots, z_n and w_1, \ldots, w_n be complex numbers with modulus bound (from above) by θ . Then,

$$\left|\prod_{k=1}^{n} z_{k} - \prod_{k=1}^{n} w_{k}\right| \le \theta^{n-1} \sum_{k=1}^{n} |z_{k} - w_{k}|.$$

Proof. By triangle inequality,

$$\left| \prod_{k=1}^{n} z_{k} - \prod_{k=1}^{n} w_{k} \right| \leq \left| \prod_{k=1}^{n} z_{k} - z_{1} \prod_{k=2}^{n} w_{k} \right| + \left| z_{1} \prod_{k=2}^{n} w_{k} - \prod_{k=1}^{n} w_{k} \right|$$
$$\leq \theta \left| \prod_{k=2}^{n} z_{k} - \prod_{k=2}^{n} w_{k} \right| + \theta^{n-1} |z_{1} - w_{1}|.$$

Hence, if the lemma is true for some fixed n-1, we have

$$\left|\prod_{k=1}^{n} z_{k} - \prod_{k=1}^{n} w_{k}\right| \leq \theta^{n-1} \left(\sum_{k=2}^{n} |z_{k} - w_{k}|\right) + \theta^{n-1} |z_{1} - w_{1}|.$$

That is, the lemma is also true for n. Since the case n = 1 is obvious, we can use induction to conclude the proof.

Lemma 20.2. If $c_n \to c \in \mathbb{C}$, then $(1 + c_n/n)^n \to e^c$.

Proof. For any complex number c with $|c| \leq 1$, we have $e^c = \sum_{k=0}^{\infty} b^k / k!$. Hence,

$$|e^{c} - 1 - c| \le \sum_{k=2}^{\infty} \frac{|c|^{k}}{k!} \le |c|^{2} \sum_{k=2}^{\infty} \frac{1}{k!} \le M|c|^{2}$$

for some constant $M \in (0, \infty)$. In particular, it holds for M = 1. Since $c_n \to c$, we can assume that for sufficiently large n, $|c_n| \leq K$ for some $K < \infty$. By Lemma 20.1 (let $z_k = 1 + c_n/n$ and $w_k = e^{c_n/n}$),

$$\left| \left(1 + \frac{c_n}{n} \right)^n - e^{c_n} \right| \le e^{K/n} \sum_{k=1}^n |1 + n^{-1}c_n - e^{c_n/n}| \le \frac{e^{K(n-1)/n} |c_n|^2}{n} \le \frac{K^2 e^K}{n},$$

which vanishes as $n \to \infty$. The result then follows by using $e^{c_n} \to e^c$ (exp is continuous in the complex plane).

Lemma 20.3. For a triangular array $\{c_{n,k} \in \mathbb{R}\}$, if $\max_{1 \le k \le n} |c_{n,k}| \to 0$, $\sum_{k=1}^{n} c_{n,k} \to \lambda$ and $\sup_n \sum_{k=1}^{n} |c_{n,k}| < \infty$, then $\prod_{k=1}^{n} (1 + c_{n,k}) \to e^{\lambda}$.

Proof. Since $\max_{1 \le k \le n} |c_{n,k}| \to 0$, we may assume that $|c_{n,k}| < 1/2$ for every n and k without loss of generality. For |c| < 1/2, one can easily verify $c - c^2 \le \log(1+c) \le c$. Hence,

$$\limsup_{n \to \infty} \sum_{k=1}^{n} \log(1 + c_{n,k}) \le \limsup_{n \to \infty} \sum_{k=1}^{n} c_{n,k} = \lambda.$$

For the other direction,

$$\liminf_{n \to \infty} \sum_{k=1}^{n} \log(1 + c_{n,k}) \ge \liminf_{n \to \infty} \sum_{k=1}^{n} (c_{n,k} - c_{n,k}^2) = \lambda - \limsup_{n \to \infty} \sum_{k=1}^{n} c_{n,k}^2$$
$$\ge \lambda - \limsup_{n \to \infty} \max_{1 \le k \le n} |c_{n,k}| \sum_{k=1}^{n} |c_{n,k}| = \lambda.$$

Note that all the three assumptions have been used.

Remark 20.1. Consider the sub-array $\{c_{2n,k}\}$ (that is, we only consider even rows). Let $c_{2n,k} = 1/\sqrt{n}$ if k is odd, and $c_{2n,k} = -1/\sqrt{n}$ if k is even. Then, clearly $\lambda = \sum_{k=1}^{2n} c_{2n,k} = 0$, and $\max_{1 \le k \le 2n} |c_{2n,k}| \to 0$. However, $\sup_{2n} \sum_{k=1}^{2n} |c_{2n,k}| = \infty$ and $\prod_{k=1}^{2n} (1 + c_{2n,k}) \to e^{-1}$.

20.2 Central limit theorem for i.i.d. sequences

Theorem 20.1. Let X_1, X_2, \ldots be *i.i.d.* random variables with mean μ and variance $\sigma^2 < \infty$. Let $S_n = X_1 + \cdots + X_n$. Then,

$$\frac{S_n - n\mu}{\sigma\sqrt{n}} \xrightarrow{D} Z$$

where Z is a normal random variable with E[Z] = 0 and Var(Z) = 1.

Proof. Without loss of generality, we can assume $\mu = 0$. By Theorem 19.2 and Jensen's inequality,

$$\left| E(e^{itX_1}) - E\left(1 + itX - \frac{t^2X_1^2}{2}\right) \right| \le E \min\left\{ \frac{|tX_1|^3}{6}, |tX_1|^2 \right\} \eqqcolon h(t).$$

Hence, letting ϕ_X denote the characteristic function of X_1 , we get

$$\phi_X(t) = 1 - \frac{\sigma^2 t^2}{2} + r(t), \qquad |r(t)| \le h(t).$$

By Proposition 19.2,

$$E[e^{itS_n/(\sigma\sqrt{n})}] = \phi_X \left(\frac{t}{\sigma\sqrt{n}}\right)^n = \left(1 - \frac{t^2}{2n} + r(t/\sigma\sqrt{n})\right)^n$$

We claim that for every $t \in \mathbb{R}$,

$$\lim_{n \to \infty} n h\left(\frac{t}{\sigma\sqrt{n}}\right) = 0.$$
(1)

This implies that $E[e^{itS_n/(\sigma\sqrt{n})}] \rightarrow e^{-t^2/2}$ by Lemma 20.2. The CLT then follows from the continuity and uniqueness theorems of characteristic functions. To verify (1), note that

$$\frac{n}{t^2}h\left(\frac{t}{\sigma\sqrt{n}}\right) = E\min\left\{\frac{|t||X_1|^3}{6\sigma^3 n^{1/2}}, \frac{|X_1|^2}{\sigma^2}\right\} \le 1,$$

since $EX_1^2 = \sigma^2$. Hence, by the dominated convergence theorem,

$$\lim_{n \to \infty} \frac{n}{t^2} h\left(\frac{t}{\sigma\sqrt{n}}\right) \le E\left[\lim_{n \to \infty} \frac{|t||X_1|^3}{6\sigma^3 n^{1/2}}\right] = 0,$$

for any $t \in \mathbb{R}$.

Remark 20.2. Consider the error term h(t). Note that because $h(t) \leq t^2 E X_1^2 < \infty$, we can apply DCT to show that $h(t) = o(t^2)$; that is, $h(t)/t^2 \rightarrow 0$ as $t \rightarrow 0$. Thus, we may write $\phi_X(t) = 1 - \sigma^2 t^2/2 + o(t^2)$.

Example 20.1. Let X_1, X_2, \ldots be i.i.d. with $\mathsf{P}(X_1 = 1) = \mathsf{P}(X_1 = -1) = 1/2$ and let $S_n = X_1 + \cdots + X_n$. The De Moivre-Laplace theorem states that

$$\lim_{n \to \infty} \mathsf{P}(a \le S_n / \sqrt{n} \le b) = \int_a^b \frac{e^{-x^2/2}}{\sqrt{2\pi}} dx,$$

for any a < b, i.e. S_n/\sqrt{n} converges in distribution to a standard normal random variable. Of course this is just a special case of the above central limit theorem, but it can be proven by straightforward calculations of the probability mass function of S_n using Stirling's formula:

$$n! \sim n^n e^{-n} \sqrt{2\pi n}, \qquad \text{as } n \to \infty.$$

Example 20.2. Let ξ_1, ξ_2, \ldots be i.i.d. with $\mathsf{P}(\xi_i = 1) = \mathsf{P}(\xi_i = -1) = 1/2$. Define $\{X_n\}_{n \ge 1}$ as

$$X_1 = \xi_1, \quad X_2 = \xi_1 \xi_2, \quad X_3 = \xi_1 \xi_3, \quad X_4 = \xi_1 \xi_2 \xi_3,$$

$$X_5 = X_1 \xi_4, \quad X_6 = X_2 \xi_4, \quad X_7 = X_3 \xi_4, \quad X_8 = X_4 \xi_4,$$

That is, for $m = 2^{n-1} + j$, where $0 < j \le 2^{n-1}$ and $n \ge 1$, we let $X_m = X_j \xi_{n+1}$. By construction, it is easy to check that all X_i 's are pairwise independent, which yields that $E[S_n] = 0$ and $Var(S_n) = n$. But the central limit theorem fails since

$$S_{2^n} = \xi_1 (1 + \xi_2) (1 + \xi_3) \cdots (1 + \xi_{n+1}),$$

which satisfies $\mathsf{P}(S_{2^n} = 0) = 1 - 2^{-n} \to 1$.

20.3 Lindeberg-Feller central limit theorem

Theorem 20.2 (Lindeberg-Feller CLT). Consider a triangular array of random variables $\{X_{n,k}: n \ge 1, 1 \le k \le n\}$ where for each $n, X_{n,1}, \ldots, X_{n,n}$ are independent with mean zero and finite variance. Suppose

- (i) $\sum_{k=1}^{n} EX_{n,k}^2 \to \sigma^2 \in (0,\infty),$
- (*ii*) for all $\epsilon > 0$, $\lim_{n \to \infty} \sum_{k=1}^{n} E\left(|X_{n,k}|^2 \mathbb{1}_{\{|X_{n,k}| > \epsilon\}} \right) = 0$.

Then $S_n/\sigma \xrightarrow{D} Z$ where Z has standard normal distribution and $S_n = X_{n,1} + \cdots + X_{n,n}$.

Proof. Let $\phi_{n,k}$ denote the characteristic function of $X_{n,k}$ and $\sigma_{n,k}^2 = E X_{n,k}^2$. By Theorem 19.2,

$$\begin{aligned} \left| \phi_{n,k}(t) - 1 + \frac{t^2 \sigma_{n,k}^2}{2} \right| &\leq E \min\left\{ \frac{|tX_{n,k}|^3}{6}, |tX_{n,k}|^2 \right\} \\ &\leq E\left(\frac{|tX_{n,k}|^3}{6} \mathbb{1}_{\{|X_{n,k}| \leq \epsilon\}}\right) + E\left(t^2 X_{n,k}^2 \mathbb{1}_{\{|X_{n,k}| > \epsilon\}}\right) \\ &\leq \frac{\epsilon |t|^3}{6} E\left(X_{n,k}^2 \mathbb{1}_{\{|X_{n,k}| \leq \epsilon\}}\right) + t^2 E\left(X_{n,k}^2 \mathbb{1}_{\{|X_{n,k}| > \epsilon\}}\right).\end{aligned}$$

Summing over $k = 1, \ldots, n$, we get

$$\begin{split} & \sum_{k=1}^{n} \left| \phi_{n,k}(t) - 1 + \frac{t^{2} \sigma_{n,k}^{2}}{2} \right| \\ & \leq \frac{\epsilon |t|^{3}}{6} \sum_{k=1}^{n} E\left(X_{n,k}^{2}\right) + t^{2} \sum_{k=1}^{n} E\left(X_{n,k}^{2} \mathbb{1}_{\{|X_{n,k}| > \epsilon\}}\right) \to \frac{\sigma^{2} \epsilon |t|^{3}}{6} \end{split}$$

by conditions (i) and (ii). Letting $\epsilon \downarrow 0$, we obtain that the left-hand side goes to zero as $n \to \infty$. Next, we notice that

$$\max_{1 \le k \le n} \sigma_{n,k}^2 \le \epsilon^2 + \max_{1 \le k \le n} E\left(X_{n,k}^2 \mathbb{1}_{\{|X_{n,k}| > \epsilon\}}\right) \le \epsilon^2 + \sum_{k=1}^n E\left(X_{n,k}^2 \mathbb{1}_{\{|X_{n,k}| > \epsilon\}}\right).$$

Condition (ii) implies that $\limsup_{n\to\infty} \max_k \sigma_{n,k}^2 \leq \epsilon^2$. Letting $\epsilon \downarrow 0$, we get $\max_k \sigma_{n,k}^2 \to 0$. Hence, for any fixed t, there exists N such that for all $n \geq N$ and all $1 \leq k \leq n$, we have $1 - t^2 \sigma_{n,k}^2/2 \geq -1$. So, we may apply Lemma 20.1 with $\theta = 1$ to obtain

$$\left|\prod_{k=1}^{n} \phi_{n,k}(t) - \prod_{k=1}^{n} \left(1 - \frac{t^2 \sigma_{n,k}^2}{2}\right)\right| \to 0.$$

By Lemma 20.3, for every t, as $n \to \infty$,

$$\prod_{k=1}^{n} \left(1 - \frac{t^2 \sigma_{n,k}^2}{2} \right) \to e^{-t^2 \sigma^2/2},$$

which yields the result.

Example 20.3. The CLT for i.i.d. sequences is just a special case. To see this, let Y_1, Y_2, \ldots be i.i.d. with mean zero and let $X_{n,k} = Y_k/\sqrt{n}$. Then $\sum_{k=1}^{n} E X_{n,k}^2 = \sigma^2$ and Lindeberg's condition (i.e. the second condition in Theorem 20.2) can be verified by DCT.

Example 20.4. Define independent random variables $\{Y_n\}_{n\geq 1}$ by

$$\mathsf{P}(Y_n = \pm 1) = \frac{1-c}{2}, \quad \mathsf{P}(Y_n = \pm n) = \frac{c}{2n^2}, \quad \mathsf{P}(Y_n = 0) = \frac{c(n^2 - 1)}{n^2},$$

for some $c \in (0,1)$. It is easy to check that $E(Y_n) = 0$ and $\operatorname{Var}(Y_n) = 1$ for every n. Now define $X_{n,k} = Y_k/\sqrt{n}$. Then $\sum_{k=1}^n EX_{n,k}^2 = 1$. However, Lindeberg's condition is not satisfied since for any fixed $\epsilon > 0$ and $n > \epsilon^2$,

$$\sum_{k=1}^{n} E\left(|X_{n,k}|^2 \mathbb{1}_{\{|X_{n,k}|>\epsilon\}}\right) \ge \sum_{k=\lceil\epsilon\sqrt{n}\rceil}^{n} E\left(|X_{n,k}|^2 \mathbb{1}_{\{|X_{n,k}|>\epsilon\}}\right)$$
$$\ge \sum_{k=\lceil\epsilon\sqrt{n}\rceil}^{n} E\left(|X_{n,k}|^2 \mathbb{1}_{\{|X_{n,k}|=k/\sqrt{n}\}}\right) = c\frac{n-\lceil\epsilon\sqrt{n}\rceil}{n} \to c > 0.$$

Further, though we do not prove here, $S_n = X_{n,1} + \cdots + X_{n,n}$ does not converge in distribution to a standard normal.

References

- [1] Rick Durrett. *Probability: Theory and Examples*, volume 49. Cambridge university press, 2019.
- [2] Sidney Resnick. A Probability Path. Springer, 2019.
- [3] Jordan M Stoyanov. *Counterexamples in probability*. Courier Corporation, 2013.