Lecture 1

Instructor: Quan Zhou
For more details about the materials covered in this note, see Chapters 1.3 to 1.8 and 2.1 of Resnick [1].

1.1 Set-theoretic limits

Definition 1.1. Limits of sets.
(i) $\inf _{k \geq n} A_{k}=\bigcap_{k=n}^{\infty} A_{k}, \quad \sup _{k \geq n} A_{k}=\bigcup_{k=n}^{\infty} A_{k}$.
(ii) $\liminf \operatorname{in}_{n \rightarrow \infty} A_{n}=\bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} A_{k}, \quad \limsup \sup _{n \rightarrow \infty} A_{n}=\bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_{k}$.
(iii) We write $\lim _{n \rightarrow \infty} A_{n}=A$ iff $\limsup _{n \rightarrow \infty} A_{n}=\liminf _{n \rightarrow \infty} A_{n}=A$.

Example 1.1. Let $A_{n}=(-1 / n, 1-1 / n]$. Then $\lim _{n \rightarrow \infty} A_{n}=[0,1)$.
Example 1.2. Define a sequence of sets by $A_{2 k-1}=[0,1], A_{2 k}=[0,2]$ for $k=1,2, \ldots$. Then $\liminf _{n \rightarrow \infty} A_{n}=[0,1]$ and $\lim \sup _{n \rightarrow} A_{n}=[0,2]$.

Proposition 1.1. Monotone sequences of sets.
(i) We say $\left\{A_{n}\right\}$ is monotone non-decreasing if $A_{1} \subset A_{2} \subset \cdots$. For such a sequence, $\lim _{n \rightarrow \infty} A_{n}=\bigcup_{n=1}^{\infty} A_{n}$.
(ii) We say $\left\{A_{n}\right\}$ is monotone non-increasing if $A_{1} \supset A_{2} \supset \cdots$. For such a sequence, $\lim _{n \rightarrow \infty} A_{n}=\bigcap_{n=1}^{\infty} A_{n}$.

Proof. Try it yourself.
Definition 1.2. Indicator function:

$$
\mathbb{1}_{A}(\omega)= \begin{cases}1, & \text { if } \omega \in A \\ 0, & \text { if } \omega \notin A\end{cases}
$$

Other common notation: $I_{A}(\omega), \mathbb{1}\{\omega \in A\}, I(\omega \in A)$, etc.
Proposition 1.2. liminf and limsup of sets can also be expressed by

$$
\begin{aligned}
& \liminf _{n \rightarrow \infty} A_{n}=\left\{\omega \in \Omega: \liminf _{n \rightarrow \infty} \mathbb{1}_{A_{n}}(\omega)=1\right\}=\left\{\omega \in \Omega: \sum_{n \geq 1} \mathbb{1}_{A_{n}^{c}}(\omega)<\infty\right\}, \\
& \limsup _{n \rightarrow \infty} A_{n}=\left\{\omega \in \Omega: \limsup _{n \rightarrow \infty} \mathbb{1}_{A_{n}}(\omega)=1\right\}=\left\{\omega \in \Omega: \sum_{n \geq 1} \mathbb{1}_{A_{n}}(\omega)=\infty\right\} .
\end{aligned}
$$

Proof. Try it yourself.
Proposition 1.3. Properties of liminf and limsup.
(i) $\liminf _{n \rightarrow \infty} A_{n} \subset \limsup \sup _{n \rightarrow \infty} A_{n}$.
(ii) $\left(\liminf _{n \rightarrow \infty} A_{n}\right)^{c}=\limsup \operatorname{sum}_{n \rightarrow \infty} A_{n}^{c}$.
(iii) $\liminf _{n \rightarrow \infty} A_{n}=\lim _{n \rightarrow \infty}\left(\inf _{k \geq n} A_{k}\right)$.
(iv) $\limsup \sup _{n \rightarrow \infty} A_{n}=\lim _{n \rightarrow \infty}\left(\sup _{k \geq n} A_{k}\right)$.

Proof. Try it yourself.

1.2 Probability triple

Definition 1.3. A probability space is a triple $(\Omega, \mathcal{F}, \mathrm{P})$ where

- Ω is the sample space, a set of all possible outcomes;
- \mathcal{F} is a σ-algebra on Ω (a collection of subsets of Ω), a set of events;
- $\mathrm{P}: \mathcal{F} \rightarrow[0,1]$ is a probability measure.

We will define " σ-algebra" and "probability measure" later, but the following two examples may be self-explanatory.

Example 1.3. Consider only one flip of a fair coin. Then

$$
\begin{aligned}
\Omega=\{H, T\}, & \mathcal{F}=\{\emptyset,\{H\},\{T\},\{H, T\}\}, \\
\mathrm{P}(\{H\})=\mathrm{P}(\{T\})=0.5, & \mathrm{P}(\emptyset)=0, \quad \mathrm{P}(\{H, T\})=1 .
\end{aligned}
$$

Example 1.4. Consider two flips of a fair coin. Then $\Omega=\{H H, H T, T H, T T\}$. Each outcome has probability 0.25.

$1.3 \quad \sigma$-algebra

Definition 1.4. \mathcal{F} is a σ-algebra (or σ-field) on Ω if it satisfies

- $\Omega \in \mathcal{F}$;
- $\forall A \in \mathcal{F}$, we have $A^{c} \in \mathcal{F}$;
- if $A_{1}, A_{2}, \ldots, \in \mathcal{F}$, then $\cup_{i=1}^{\infty} A_{i} \in \mathcal{F}$.

Equivalently, we can say that a σ-algebra \mathcal{F} is a non-empty collection of subsets of Ω closed under countable union, countable intersection and complementation.

Definition 1.5. Let \mathcal{C} be a collection of subsets of Ω. The σ-algebra generated by \mathcal{C}, denoted by $\sigma(\mathcal{C})$, is a σ-algebra that satisfies

- $\mathcal{C} \subset \sigma(\mathcal{C})$;
- if \mathcal{G} is another σ-algebra such that $\mathcal{C} \subset \mathcal{G}$, then $\sigma(\mathcal{C}) \subset \mathcal{G}$.

Theorem 1.1. Let \mathcal{C} be an arbitrary collection of subsets of Ω. There is always a unique minimal σ-algebra that contains \mathcal{C}, i.e. $\sigma(\mathcal{C})$ is well defined.

Proof. First, there always exists some σ-algebra that contains \mathcal{C} since $\mathcal{C} \subset$ $\mathcal{P}(\Omega)$ (see Example 1.5). Complete the proof yourself by taking intersection of all σ-algebras that contain \mathcal{C}.

Example 1.5. Examples of σ-algebra.
(i) $\mathcal{P}(\Omega)$: The power set of Ω; that is, the set of all subsets of Ω.
(ii) $\{\Omega, \emptyset\}$ is the trivial σ-algebra.
(iii) For any $A \subset \Omega$ such that $A \neq \emptyset$ and $A \neq \Omega,\left\{\Omega, A, A^{c}, \emptyset\right\}$ is a σ-algebra.
(iv) $\mathcal{B}(\Omega)$: The Borel σ-algebra is the σ-algebra generated by all the open subsets (or equivalently, all the closed subsets) of Ω.

1.4 Borel sets on \mathbb{R}

Using the notation defined in Example 1.5 , we let $\mathcal{B}(\mathbb{R})=\sigma($ open subsets of $\mathbb{R})$.
Theorem 1.2. The Borel sets on \mathbb{R} can be equivalently defined as

$$
\begin{aligned}
\mathcal{B}(\mathbb{R}) & =\sigma(\{(a, b):-\infty \leq a \leq b \leq \infty\}) \\
& =\sigma(\{[a, b):-\infty<a \leq b \leq \infty\}) \\
& =\sigma(\{[a, b]:-\infty<a \leq b<\infty\}) \\
& =\sigma(\{(-\infty, b]:-\infty<b<\infty\}) .
\end{aligned}
$$

Proof. See the textbook.
Theorem 1.3. The Borel σ-algebra on the interval $(0,1]$ satisfies $\mathcal{B}((0,1])=$ $\mathcal{B}(\mathbb{R}) \cap(0,1]$, i.e. $\mathcal{B}((0,1])=\{A \cap(0,1]: A \in \mathcal{B}(\mathbb{R})\}$.

Proof. It can be shown that $\mathcal{B}((0,1])=\sigma(\{(a, b]: 0 \leq a \leq b \leq 1\})$. Then, the result follows from Theorem 1.4 by letting $\Omega=\mathbb{R}, \Lambda=(0,1]$ and \mathcal{S} be the collection of all the intervals of the form $(a, b]$ for $-\infty \leq a \leq b<\infty$.

Theorem 1.4. Let \mathcal{S} be a collection of subsets of Ω, and $\Lambda \subset \Omega$. Define $\mathcal{S} \cap \Lambda=\{A \cap \Lambda: A \in \mathcal{S}\}$. Then,

$$
\sigma(\mathcal{S} \cap \Lambda)=\sigma(\mathcal{S}) \cap \Lambda=\{A \cap \Lambda: A \in \sigma(\mathcal{S})\}
$$

where $\sigma(\mathcal{S} \cap \Lambda)$ is understood as a σ-algebra on Λ and $\sigma(\mathcal{S})$ is a σ-algebra on Ω.

Proof. Note that $\mathcal{S} \cap \Lambda, \sigma(\mathcal{S}) \cap \Lambda$ are collections of sets. The use of the intersection symbol \cap here is not most standard, but it is convenient. Since $\sigma(\mathcal{S} \cap \Lambda)$ and $\sigma(\mathcal{S})$ are σ-algebras defined on different spaces, we will write $\Omega \backslash A$ (or $\Lambda \backslash A$) instead of A^{c} (which could be ambiguous).

Step 1. It can be shown that $\sigma(\mathcal{S}) \cap \Lambda$ is a σ-algebra on Λ (see below). Further, because $\mathcal{S} \subset \sigma(\mathcal{S})$, we have $\mathcal{S} \cap \Lambda \subset \sigma(\mathcal{S}) \cap \Lambda$. Hence, by the minimality of $\sigma(\mathcal{S} \cap \Lambda)$, we have $\sigma(\mathcal{S} \cap \Lambda) \subset \sigma(\mathcal{S}) \cap \Lambda$.

Step 2. Define $\mathcal{G}=\{A \subset \Omega: A \cap \Lambda \in \sigma(S \cap \Lambda)\}$. Again, we can show \mathcal{G} is a σ-algebra (see below). For any set $B \in \mathcal{S}, B \cap \Lambda \in \mathcal{S} \cap \Lambda$ (by definition) and thus $B \cap \Lambda \in \sigma(\mathcal{S} \cap \Lambda)$. Hence, $\mathcal{S} \cap \Lambda \subset \sigma(\mathcal{S} \cap \Lambda)$ and $\mathcal{S} \subset \mathcal{G}$. By the minimality of $\sigma(\mathcal{S}), \sigma(\mathcal{S}) \subset \mathcal{G}$. By the definition of $\mathcal{G}, \sigma(\mathcal{S}) \cap \Lambda \subset \sigma(\mathcal{S} \cap \Lambda)$.

Step 3. Since $\sigma(\mathcal{S} \cap \Lambda) \subset \sigma(\mathcal{S}) \cap \Lambda \subset \sigma(\mathcal{S} \cap \Lambda)$, we conclude that $\sigma(\mathcal{S}) \cap \Lambda=$ $\sigma(\mathcal{S} \cap \Lambda)$.

To prove $\sigma(\mathcal{S}) \cap \Lambda$ is a σ-algebra on Λ, we check the three postulates in the definition. First, $\Lambda=\Omega \cap \Lambda \in \sigma(\mathcal{S}) \cap \Lambda$ since $\Omega \in \sigma(\mathcal{S})$. Second, if $B \in \sigma(\mathcal{S}) \cap \Lambda$, we can write $B=A \cap \Lambda$ for some $A \in \sigma(\mathcal{S})$. Then $\Lambda \backslash B=\Lambda \backslash(A \cap \Lambda)=(\Omega \backslash A) \cap \Lambda \in \sigma(\mathcal{S}) \cap \Lambda$ since $\Omega \backslash A \in \sigma(\mathcal{S})$. Lastly, if $B_{1}, B_{2}, \cdots \in \sigma(\mathcal{S}) \cap \Lambda$, we can write $B_{i}=A_{i} \cap \Lambda$ for some $A_{i} \in \sigma(\mathcal{S})$. Then,
by the distributive law of sets, $\cup B_{i}=\cup\left(A_{i} \cap \Lambda\right)=\left(\cup A_{i}\right) \cap \Lambda \in \sigma(\mathcal{S}) \cap \Lambda$ since $\cup A_{i} \in \sigma(\mathcal{S})$.

Finally, we prove \mathcal{G} is a σ-algebra on Ω. To simplify the notation, let $\mathcal{H}=\sigma(\mathcal{S} \cap \Lambda)$. First, $\Omega \in \mathcal{G}$ since $\Omega \cap \Lambda=\Lambda \in \mathcal{H}$ (recall \mathcal{H} is a σ-algebra on Λ.) Second, if $A \in \mathcal{G}, A \cap \Lambda \in \mathcal{H}$. Then, $(\Omega \backslash A) \cap \Lambda=\Lambda \backslash(A \cap \Lambda) \in \mathcal{H}$. By the definition of \mathcal{G}, this means $\Omega \backslash A \in \mathcal{G}$. Lastly, if $A_{1}, A_{2}, \cdots \in \mathcal{G}$, then $A_{i} \cap \Lambda \in \mathcal{H}$. This implies that $\left(\cup_{i} A_{i}\right) \cap \Lambda=\cup_{i}\left(A_{i} \cap \Lambda\right) \in \mathcal{H}$; that is, $\cup_{i} A_{i} \in \mathcal{G}$.

References

[1] Sidney Resnick. A Probability Path. Springer, 2019.

