
Lecture 19

Instructor: Quan Zhou

For more details about the materials covered in this note, see Chapters
9.2 to 9.6 of Resnick [2] and Chapter 3.3 of Durrett [1].

19.1 Properties of the function eix

We use i to denote the imaginary unit.

Theorem 19.1 (Euler’s formula). For any x ∈ R, eix = cosx+ i sinx.

Proof. One way to prove the formula is to use Taylor expansion.

Theorem 19.2 (Taylor expansion of eix). For any x ∈ R,∣∣∣∣∣eix −
n∑

k=0

(ix)k

k!

∣∣∣∣∣ ≤ min

{
|x|n+1

(n+ 1)!
,
2|x|n

n!

}
.

Proof. See the textbook.

Remark 19.1. Assume the moment generating function of |X| is finite in a
neighborhood of 0, i.e. for some δ > 0,

E[et|X|] =
∞∑
n=0

tnE|X|n

n!
< ∞, ∀ t ∈ (−δ, δ).

This implies limn→∞ tnE|X|n/n! = 0 for each t ∈ (−δ, δ). By Theorem 19.2
and Jensen’s inequality,∣∣∣∣∣E[eitX ]−

n∑
k=0

(it)k

k!
E[Xk]

∣∣∣∣∣ ≤ 2tnE|X|n

n!
.

The right-hand side converges to zero as n → ∞. That is,

E[eitX ] =
∞∑
k=0

(it)k

k!
E[Xk], ∀ t ∈ (−δ, δ).
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19.2 Basic properties of characteristic functions

Definition 19.1. The characteristic function of a random variable X is

ϕX(t) = E[eitX ], t ∈ R.

Example 19.1. Let X ∼ N(µ, σ2). Using contour integral, we can compute

ϕX(t) = exp

(
iµt− σ2

2
t2
)
.

There are other ways to show this. For example, Resnick uses Taylor expan-
sion and the MGF while Durrett uses an ordinary differential equation.

Proposition 19.1 (Properties of characteristic functions). For any t ∈ R:

(i) ϕX(t) = E[cos(tX)] + i E[sin(tX)];

(ii) |ϕX(t)| ≤ 1 and in particular ϕX(0) = 1;1

(iii) ϕX(−t) = ϕ̄X(t) where ϕ̄ denotes the complex conjugate.

(iv) ϕX(t) is uniformly continuous in t.

Proof. Part (i) and (iii) follow from Theorem 19.1. For part (ii), note that
g(x, y) =

√
x2 + y2 is a convex function. Thus, by Jensen’s inequality,

|ϕX(t)| ≤ E|eitX | = 1.

For part (iv), by Jensen’s inequality and the convexity of the modulus,

|ϕX(t+ h)− ϕX(t)| ≤ E|ei(t+h)X − eitX | = E|eihX − 1|

where in the last step we have used the fact that |z1z2| = |z1||z2| for any
complex numbers z1, z2. By the bounded convergence theorem, E|eihX−1| →
0 as h → 0. Since this convergence does not depend on t, we obtain the
uniform continuity of ϕX .

Proposition 19.2. Let X1, X2, . . . be i.i.d. with characteristic function ϕX .
Let Sn =

∑n
i=1(aiXi + bi). Then, letting cn =

∑n
i=1 bi, we have

ϕSn(t) = eitcn
n∏

i=1

ϕX(ait).

1Here | · | denotes the modulus of a complex number: |a+ bi| =
√
a2 + b2.
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Proof. Try it yourself.

Proposition 19.3. If E|X|k < ∞, then ϕ
(k)
X (0) = ikE[Xk], where ϕ

(k)
X de-

notes the k-th derivative of ϕX .

Proof. This can be proven by induction. Let’s first show that if E|X| < ∞,

ϕ′
X(t) = E[iXeitX ], ∀t ∈ R.

Consider the “error”

ϕX(t+ h)− ϕX(t)

h
− E[iXeitX ] = E

(
ei(t+h)X − eitX − ihXeitX

h

)
= E

(
eitX

eihX − 1− ihX

h

)
.

It suffices to show that the above expression goes to zero as h ↓ 0. By
Theorem 19.2, we have (both bounds on the right-hand side are useful!)∣∣∣∣eihX − 1− ihX

h

∣∣∣∣ ≤ min

{
2|X|, h|X|2

2

}
.

Since E|X| < ∞ and |eitX | = 1, by DCT,

lim
h↓0

E

(
eitX

eihX − 1− ihX

h

)
= E

(
eitX lim

h↓0

eihX − 1− ihX

h

)
= 0.

Now let’s assume that

if E|X|k < ∞, then ϕ
(k)
X (t) = E[(iX)keitX ].

Consider

ϕ
(k)
X (t+ h)− ϕ

(k)
X (t)

h
− E[(iX)k+1eitX ] = E

(
eitX(iX)k

eihX − 1− ihX

h

)
.

Apply the same argument to obtain that∣∣∣∣(iX)k
eihX − 1− ihX

h

∣∣∣∣ ≤ min

{
2|X|k+1,

h|X|k+2

2

}
.

Hence, for every fixed X = x, the left-hand side goes to zero as h ↓ 0. If
E|X|k+1 < ∞, one can apply DCT to conclude that

ϕ
(k+1)
X = lim

h↓0

ϕ
(k)
X (t+ h)− ϕ

(k)
X (t)

h
= E[(iX)k+1eitX ].

Letting t = 0, we obtain the asserted formula.
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Example 19.2. Let X be a continuous random variable with density f(x) =
1{|x|>2}c/(x

2 log |x|) where c is some normalization constant. The expectation
does not exist since

∫∞
2

1/(x log x)dx = ∞. But it can be proven that ϕ′
X(0)

exists and is equal to zero.

19.3 Uniqueness and continuity of characteristic func-
tions

Theorem 19.3 (Inversion formula). Let ϕ(t) =
∫
eitxµ(dx) be the charac-

teristic function for some distribution µ. For any a < b,

lim
T→∞

1

2π

∫ T

−T

e−ita − e−itb

it
ϕ(t)dt = µ((a, b)) +

1

2
µ({a, b}).

Proof. Define

IT =

∫ T

−T

e−ita − e−itb

it
ϕ(t)dt =

∫ T

−T

e−ita − e−itb

it

(∫
eitxµ(dx)

)
dt.

Note that (e−ita − e−itb)/(it) =
∫ b

a
e−itydy and thus∣∣∣∣e−ita − e−itb

it
ϕ(t)

∣∣∣∣ = ∣∣∣∣e−ita − e−itb

it

∣∣∣∣ = ∣∣∣∣∫ b

a

e−itydy

∣∣∣∣ ≤ ∫ b

a

|e−ity|dy = b− a.

Hence, we can apply Fubini’s theorem to get

IT =

∫
R

{∫ T

−T

eit(x−a) − eit(x−b)

it
dt

}
µ(dx).

Applying Euler’s formula and noting that cos is an even function, we obtain

IT =

∫
R

{∫ T

−T

sin[t(x− a)]− sin[t(x− b)]

t
dt

}
µ(dx)

=

∫
R
{R(x− a, T )−R(x− b, T )}µ(dx),

where we let

R(θ, T ) =

∫ T

−T

t−1 sin(θt)dt =

∫ θT

−θT

u−1 sinu du.
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Define h(u) = u−1 sinu. Note that |h(u)| ≤ 1, for any u ∈ R. Further, by

Lemma 19.1 below, limM→∞
∫M

−M
h(u)du = π. Therefore, supθ R(θ, T ) = C <

∞ for some constant C. By bounded convergence theorem,

lim
T→∞

IT =

∫
R
lim
T→∞

[R(x− a, T )−R(x− b, T )]µ(dx)

= 2πµ((a, b)) + πµ({a, b})

where we have used

lim
T→∞

R(θ, T ) =


π θ > 0
0 θ = 0
−π θ < 0,

which again follows from Lemma 19.1.

Lemma 19.1. The improper Riemann integral
∫∞
−∞ u−1 sinudu = π.

Proof. We omit the proof here. This integral is known as Dirichlet integral.
The corresponding Lebesgue integral is not defined.

Corollary 19.1. µ({a}) = limT→∞
1
2T

∫ T

−T
e−itaϕ(t)dt.

Proof. Try it yourself.

Corollary 19.2. If
∫
|ϕ(t)|dt < ∞, then µ has a bounded and continuous

density function given by

f(x) =
1

2π

∫
e−itxϕ(t)dt.

Proof. In the proof of Theorem 19.3, we have shown that for b > a,∣∣∣∣e−ita − e−itb

it
ϕ(t)

∣∣∣∣ ≤ (b− a)|ϕ(t)|.

Since
∫
|ϕ(t)|dt < ∞, by the inversion formula,

µ((a, b)) +
1

2
µ({a, b}) = 1

2π

∫ ∞

−∞

e−ita − e−itb

it
ϕ(t)dt ≤ b− a

2π

∫ ∞

−∞
|ϕ(t)|dt < ∞.
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Letting b ↓ a, we get µ({a}) ≤ µ({a, b}) ≤ 0 and thus µ ≪ m (m denotes
the Lebesgue measure.) Applying Fubini’s theorem, we find that

µ((a, b)) =
1

2π

∫ ∞

−∞

∫ b

a

e−itydyϕ(t)dt

=

∫ b

a

{
1

2π

∫ ∞

−∞
e−ityϕ(t)dt

}
dy.

Hence, f(y) = (2π)−1
∫∞
−∞ e−ityϕ(t)dt is the Radon-Nikodym derivative,2

which is essentially unique (i.e. unique up to a Lebesgue-null set). By the
assumption

∫
ϕ(t)dt < ∞, f is bounded; further, it is continuous due to

DCT.

Example 19.3. Let X be a Cauchy random variable with density f(x) =
π−1(1+x2)−1. Direct calculation of its characteristic function seems difficult.
However, for another random variable Y with density f(y) = e−|y|/2, it is
easy to compute ϕY (t) = (1 + t2)−1. By the inversion formula, this implies

1

2
e−|y| =

1

2π

∫
1

1 + t2
e−itydt.

Hence,

ϕX(t) =

∫
e−itx

π(1 + x2)
dx = e−|t|.

Theorem 19.4 (Uniqueness theorem). The characteristic function uniquely
determines the probability distribution.

Proof. By the inversion formula, the characteristic function uniquely deter-
mines the value of µ((a, b)) for any a < b. By Dynkin’s π-λ theorem, this
means µ(B) is uniquely defined for any Borel set B.

Example 19.4. Consider a continuous random variable X with density

f(x) =
1− cosx

πx2
, x ∈ R.

Consider another discrete random variable Y with

P(Y = 0) =
1

2
, P(Y = (2k − 1)π) =

2

(2k − 1)2π2
, k = 0,±1,±2, . . . .

2One can invoke π-λ theorem to show that µ(B) =
∫
B
f(y)dy for any Borel set B.
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Then, the characteristic functions of X and Y are

ϕX(t) = (1− |t|)1{|t|≤1},

ϕY (t) =
1

2
+

4

π2

∞∑
k=1

cos{(2k − 1)πt}
(2k − 1)2

.

Surprisingly, for any t ∈ [−1, 1], we have ϕX(t) = ϕY (t).

Theorem 19.5 (Continuity theorem). Let {µn}n≥1 be probability distribu-
tions with characteristic function {ϕn}n≥1.

(i) If µn converges weakly to some distribution µ, then ϕn(t) → ϕ(t) for
every t where ϕ is the characteristic function of µ.

(ii) If ϕn(t) → ϕ(t) for every t and ϕ is a function continuous at 0, then µn

converges weakly to some distribution µ with characteristic function ϕ.

Proof. Since eitx is a bounded and continuous function for every t, by The-
orem 18.2, we immediately obtain part (i). The proof of part (ii) consists of
two steps.

Step 1. We prove {µn} is tight, i.e. for any ϵ > 0, there exist C,N < ∞ such
that µn({x : |x| > C}) ≤ ϵ for every n ≥ N . Let ϵ > 0 be fixed. Since ϕ(0)
is always 1 and ϕ is assumed to be continuous at zero, there exists δ such
that |1− ϕ(t)| < ϵ/2 for any t ∈ (−δ, δ). Since ϕn(t) → ϕ(t), by BCT, there
exists N such that for any n ≥ N ,∣∣∣∣1δ

∫ δ

−δ

(1− ϕn(t))dt−
1

δ

∫ δ

−δ

(1− ϕ(t))dt

∣∣∣∣ < ϵ,

which further yields that

1

δ

∫ δ

−δ

(1− ϕn(t))dt < 2ϵ.
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On the other hand,

1

δ

∫ δ

−δ

(1− ϕn(t))dt = 2− 1

δ

∫ δ

−δ

{∫
eitxµn(dx)

}
dt

= 2−
∫
R

{∫ δ

−δ

eitx

δ
dt

}
µn(dx) (by Fubini’s theorem)

= 2−
∫
R

2 sin(δx)

δx
µn(dx) (by Euler’s formula)

= 2

∫
R

{
1− sin(δx)

δx

}
µn(dx)

≥ 2

∫
|x|>2/δ

{
1− sin(δx)

δx

}
µn(dx)

≥ 2

∫
|x|>2/δ

{
1− | sin(δx)|

|δx|

}
µn(dx)

≥
∫
|x|>2/δ

µn(dx) = µn({x : |x| > 2/δ}).

By choosing C = 2/δ, we conclude that {µn} is tight.

Step 2. By Helly’s selection theorem and the tightness of {µn}, there exists
a subsequence {µnk

}k≥1 such that µnk
converges weakly to some distribution

µ. By part (i), the characteristic function of µ is ϕ.
Now we prove that µn converges to µ by contradiction. Let Fn and F

be the distribution functions of µn and µ, respectively. If we don’t have the
asserted weak convergence, there exists some point x, which is a continuous
point of F , such that Fn(x) does not converge to F (x); that is, there exists
some η > 0 and a subsequence {Fmk

}k≥1 such that |Fmk
(x) − F (x)| ≥ η.

But by Helly’s selection theorem and the tightness of {Fn}, there exists a
subsequence of {Fmk

}k≥1, say {Fmk(j)}j≥1, that converges to a proper distri-
bution function, say F ′. Let ϕ′ be its characteristic function. However, the
convergence of ϕn implies that ϕ′(t) = ϕ(t) for every t, and by the uniqueness
theorem we have F ′ = F , which gives the contradiction.

Example 19.5. Let µn be a normal distribution with mean zero and variance
n, and thus ϕn(t) = e−nt2/2. Clearly, for every t ̸= 0, ϕn(t) → 0, i.e. the limit
ϕ is not continuous at zero. The sequence {µn} does not converge weakly
since µn((−∞, x]) → 1/2 for every x ∈ R.
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