Lecture 19

Instructor: Quan Zhou

For more details about the materials covered in this note, see Chapters 9.2 to 9.6 of Resnick [2] and Chapter 3.3 of Durrett [1].

19.1 Properties of the function e^{ix}

We use i to denote the imaginary unit.

Theorem 19.1 (Euler's formula). For any $x \in \mathbb{R}$, $e^{ix} = \cos x + i \sin x$.

Proof. One way to prove the formula is to use Taylor expansion. \Box

Theorem 19.2 (Taylor expansion of e^{ix}). For any $x \in \mathbb{R}$,

$$\left| e^{ix} - \sum_{k=0}^{n} \frac{(ix)^k}{k!} \right| \le \min \left\{ \frac{|x|^{n+1}}{(n+1)!}, \frac{2|x|^n}{n!} \right\}.$$

Proof. See the textbook.

Remark 19.1. Assume the moment generating function of |X| is finite in a neighborhood of 0, i.e. for some $\delta > 0$,

$$E[e^{t|X|}] = \sum_{n=0}^{\infty} \frac{t^n E|X|^n}{n!} < \infty, \quad \forall t \in (-\delta, \delta).$$

This implies $\lim_{n\to\infty} t^n E|X|^n/n! = 0$ for each $t \in (-\delta, \delta)$. By Theorem 19.2 and Jensen's inequality,

$$\left| E[e^{itX}] - \sum_{k=0}^{n} \frac{(it)^k}{k!} E[X^k] \right| \le \frac{2t^n E|X|^n}{n!}.$$

The right-hand side converges to zero as $n \to \infty$. That is,

$$E[e^{itX}] = \sum_{k=0}^{\infty} \frac{(it)^k}{k!} E[X^k], \qquad \forall t \in (-\delta, \delta).$$

19.2 Basic properties of characteristic functions

Definition 19.1. The characteristic function of a random variable X is

$$\phi_X(t) = E[e^{itX}], \quad t \in \mathbb{R}.$$

Example 19.1. Let $X \sim N(\mu, \sigma^2)$. Using contour integral, we can compute

$$\phi_X(t) = \exp\left(i\mu t - \frac{\sigma^2}{2}t^2\right).$$

There are other ways to show this. For example, Resnick uses Taylor expansion and the MGF while Durrett uses an ordinary differential equation.

Proposition 19.1 (Properties of characteristic functions). For any $t \in \mathbb{R}$:

- (i) $\phi_X(t) = E[\cos(tX)] + i E[\sin(tX)];$
- (ii) $|\phi_X(t)| \leq 1$ and in particular $\phi_X(0) = 1$;¹
- (iii) $\phi_X(-t) = \bar{\phi}_X(t)$ where $\bar{\phi}$ denotes the complex conjugate.
- (iv) $\phi_X(t)$ is uniformly continuous in t.

Proof. Part (i) and (iii) follow from Theorem 19.1. For part (ii), note that $g(x,y) = \sqrt{x^2 + y^2}$ is a convex function. Thus, by Jensen's inequality,

$$|\phi_X(t)| \le E|e^{itX}| = 1.$$

For part (iv), by Jensen's inequality and the convexity of the modulus,

$$|\phi_X(t+h) - \phi_X(t)| \le E|e^{i(t+h)X} - e^{itX}| = E|e^{ihX} - 1|$$

where in the last step we have used the fact that $|z_1z_2| = |z_1||z_2|$ for any complex numbers z_1, z_2 . By the bounded convergence theorem, $E|e^{ihX}-1| \to 0$ as $h \to 0$. Since this convergence does not depend on t, we obtain the uniform continuity of ϕ_X .

Proposition 19.2. Let X_1, X_2, \ldots be i.i.d. with characteristic function ϕ_X . Let $S_n = \sum_{i=1}^n (a_i X_i + b_i)$. Then, letting $c_n = \sum_{i=1}^n b_i$, we have

$$\phi_{S_n}(t) = e^{itc_n} \prod_{i=1}^n \phi_X(a_i t).$$

¹Here $|\cdot|$ denotes the modulus of a complex number: $|a+bi| = \sqrt{a^2 + b^2}$.

Proof. Try it yourself.

Proposition 19.3. If $E|X|^k < \infty$, then $\phi_X^{(k)}(0) = i^k E[X^k]$, where $\phi_X^{(k)}$ denotes the k-th derivative of ϕ_X .

Proof. This can be proven by induction. Let's first show that if $E|X| < \infty$,

$$\phi_X'(t) = E[iXe^{itX}], \quad \forall t \in \mathbb{R}.$$

Consider the "error"

$$\frac{\phi_X(t+h) - \phi_X(t)}{h} - E[iXe^{itX}] = E\left(\frac{e^{i(t+h)X} - e^{itX} - ihXe^{itX}}{h}\right)$$
$$= E\left(e^{itX}\frac{e^{ihX} - 1 - ihX}{h}\right).$$

It suffices to show that the above expression goes to zero as $h \downarrow 0$. By Theorem 19.2, we have (both bounds on the right-hand side are useful!)

$$\left| \frac{e^{ihX} - 1 - ihX}{h} \right| \le \min \left\{ 2|X|, \frac{h|X|^2}{2} \right\}.$$

Since $E|X| < \infty$ and $|e^{itX}| = 1$, by DCT.

$$\lim_{h\downarrow 0} E\left(e^{itX}\frac{e^{ihX}-1-ihX}{h}\right) = E\left(e^{itX}\lim_{h\downarrow 0}\frac{e^{ihX}-1-ihX}{h}\right) = 0.$$

Now let's assume that

if
$$E|X|^k < \infty$$
, then $\phi_X^{(k)}(t) = E[(iX)^k e^{itX}].$

Consider

$$\frac{\phi_X^{(k)}(t+h) - \phi_X^{(k)}(t)}{h} - E[(iX)^{k+1}e^{itX}] = E\left(e^{itX}(iX)^k \frac{e^{ihX} - 1 - ihX}{h}\right).$$

Apply the same argument to obtain that

$$\left| (iX)^k \frac{e^{ihX} - 1 - ihX}{h} \right| \le \min \left\{ 2|X|^{k+1}, \frac{h|X|^{k+2}}{2} \right\}.$$

Hence, for every fixed X = x, the left-hand side goes to zero as $h \downarrow 0$. If $E|X|^{k+1} < \infty$, one can apply DCT to conclude that

$$\phi_X^{(k+1)} = \lim_{h \downarrow 0} \frac{\phi_X^{(k)}(t+h) - \phi_X^{(k)}(t)}{h} = E[(iX)^{k+1}e^{itX}].$$

Letting t = 0, we obtain the asserted formula.

Example 19.2. Let X be a continuous random variable with density $f(x) = \mathbb{1}_{\{|x|>2\}} c/(x^2 \log |x|)$ where c is some normalization constant. The expectation does not exist since $\int_2^\infty 1/(x \log x) dx = \infty$. But it can be proven that $\phi_X'(0)$ exists and is equal to zero.

19.3 Uniqueness and continuity of characteristic functions

Theorem 19.3 (Inversion formula). Let $\phi(t) = \int e^{itx} \mu(dx)$ be the characteristic function for some distribution μ . For any a < b,

$$\lim_{T \to \infty} \frac{1}{2\pi} \int_{-T}^{T} \frac{e^{-ita} - e^{-itb}}{it} \phi(t) dt = \mu((a, b)) + \frac{1}{2} \mu(\{a, b\}).$$

Proof. Define

$$I_T = \int_{-T}^{T} \frac{e^{-ita} - e^{-itb}}{it} \phi(t) dt = \int_{-T}^{T} \frac{e^{-ita} - e^{-itb}}{it} \left(\int e^{itx} \mu(dx) \right) dt.$$

Note that $(e^{-ita} - e^{-itb})/(it) = \int_a^b e^{-ity} dy$ and thus

$$\left|\frac{e^{-ita}-e^{-itb}}{it}\phi(t)\right| = \left|\frac{e^{-ita}-e^{-itb}}{it}\right| = \left|\int_a^b e^{-ity}dy\right| \le \int_a^b |e^{-ity}|dy = b - a.$$

Hence, we can apply Fubini's theorem to get

$$I_T = \int_{\mathbb{R}} \left\{ \int_{-T}^{T} \frac{e^{it(x-a)} - e^{it(x-b)}}{it} dt \right\} \mu(dx).$$

Applying Euler's formula and noting that cos is an even function, we obtain

$$I_{T} = \int_{\mathbb{R}} \left\{ \int_{-T}^{T} \frac{\sin[t(x-a)] - \sin[t(x-b)]}{t} dt \right\} \mu(dx)$$

= $\int_{\mathbb{R}} \left\{ R(x-a,T) - R(x-b,T) \right\} \mu(dx),$

where we let

$$R(\theta, T) = \int_{-T}^{T} t^{-1} \sin(\theta t) dt = \int_{-\theta T}^{\theta T} u^{-1} \sin u \, du.$$

Define $h(u) = u^{-1} \sin u$. Note that $|h(u)| \leq 1$, for any $u \in \mathbb{R}$. Further, by Lemma 19.1 below, $\lim_{M \to \infty} \int_{-M}^{M} h(u) du = \pi$. Therefore, $\sup_{\theta} R(\theta, T) = C < \infty$ for some constant C. By bounded convergence theorem,

$$\lim_{T \to \infty} I_T = \int_{\mathbb{R}} \lim_{T \to \infty} [R(x - a, T) - R(x - b, T)] \mu(dx)$$
$$= 2\pi \mu((a, b)) + \pi \mu(\{a, b\})$$

where we have used

$$\lim_{T \to \infty} R(\theta, T) = \begin{cases} \pi & \theta > 0 \\ 0 & \theta = 0 \\ -\pi & \theta < 0, \end{cases}$$

which again follows from Lemma 19.1.

Lemma 19.1. The improper Riemann integral $\int_{-\infty}^{\infty} u^{-1} \sin u du = \pi$.

Proof. We omit the proof here. This integral is known as Dirichlet integral. The corresponding Lebesgue integral is not defined. \Box

Corollary 19.1. $\mu(\{a\}) = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} e^{-ita} \phi(t) dt$.

Proof. Try it yourself.

Corollary 19.2. If $\int |\phi(t)| dt < \infty$, then μ has a bounded and continuous density function given by

$$f(x) = \frac{1}{2\pi} \int e^{-itx} \phi(t) dt.$$

Proof. In the proof of Theorem 19.3, we have shown that for b > a,

$$\left| \frac{e^{-ita} - e^{-itb}}{it} \phi(t) \right| \le (b - a)|\phi(t)|.$$

Since $\int |\phi(t)|dt < \infty$, by the inversion formula,

$$\mu((a,b)) + \frac{1}{2}\mu(\{a,b\}) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{e^{-ita} - e^{-itb}}{it} \phi(t) dt \le \frac{b-a}{2\pi} \int_{-\infty}^{\infty} |\phi(t)| dt < \infty.$$

Letting $b \downarrow a$, we get $\mu(\{a\}) \leq \mu(\{a,b\}) \leq 0$ and thus $\mu \ll m$ (*m* denotes the Lebesgue measure.) Applying Fubini's theorem, we find that

$$\mu((a,b)) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \int_{a}^{b} e^{-ity} dy \phi(t) dt$$
$$= \int_{a}^{b} \left\{ \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-ity} \phi(t) dt \right\} dy.$$

Hence, $f(y) = (2\pi)^{-1} \int_{-\infty}^{\infty} e^{-ity} \phi(t) dt$ is the Radon-Nikodym derivative, which is essentially unique (i.e. unique up to a Lebesgue-null set). By the assumption $\int \phi(t) dt < \infty$, f is bounded; further, it is continuous due to DCT.

Example 19.3. Let X be a Cauchy random variable with density $f(x) = \pi^{-1}(1+x^2)^{-1}$. Direct calculation of its characteristic function seems difficult. However, for another random variable Y with density $f(y) = e^{-|y|}/2$, it is easy to compute $\phi_Y(t) = (1+t^2)^{-1}$. By the inversion formula, this implies

$$\frac{1}{2}e^{-|y|} = \frac{1}{2\pi} \int \frac{1}{1+t^2} e^{-ity} dt.$$

Hence,

$$\phi_X(t) = \int \frac{e^{-itx}}{\pi(1+x^2)} dx = e^{-|t|}.$$

Theorem 19.4 (Uniqueness theorem). The characteristic function uniquely determines the probability distribution.

Proof. By the inversion formula, the characteristic function uniquely determines the value of $\mu((a,b))$ for any a < b. By Dynkin's π - λ theorem, this means $\mu(B)$ is uniquely defined for any Borel set B.

Example 19.4. Consider a continuous random variable X with density

$$f(x) = \frac{1 - \cos x}{\pi x^2}, \quad x \in \mathbb{R}.$$

Consider another discrete random variable Y with

$$P(Y=0) = \frac{1}{2}, \quad P(Y=(2k-1)\pi) = \frac{2}{(2k-1)^2\pi^2}, \ k=0,\pm 1,\pm 2,\dots$$

²One can invoke π - λ theorem to show that $\mu(B) = \int_B f(y) dy$ for any Borel set B.

Then, the characteristic functions of X and Y are

$$\phi_X(t) = (1 - |t|) \mathbb{1}_{\{|t| \le 1\}},$$

$$\phi_Y(t) = \frac{1}{2} + \frac{4}{\pi^2} \sum_{k=1}^{\infty} \frac{\cos\{(2k-1)\pi t\}}{(2k-1)^2}.$$

Surprisingly, for any $t \in [-1, 1]$, we have $\phi_X(t) = \phi_Y(t)$.

Theorem 19.5 (Continuity theorem). Let $\{\mu_n\}_{n\geq 1}$ be probability distributions with characteristic function $\{\phi_n\}_{n\geq 1}$.

- (i) If μ_n converges weakly to some distribution μ , then $\phi_n(t) \to \phi(t)$ for every t where ϕ is the characteristic function of μ .
- (ii) If $\phi_n(t) \to \phi(t)$ for every t and ϕ is a function continuous at 0, then μ_n converges weakly to some distribution μ with characteristic function ϕ .

Proof. Since e^{itx} is a bounded and continuous function for every t, by Theorem 18.2, we immediately obtain part (i). The proof of part (ii) consists of two steps.

Step 1. We prove $\{\mu_n\}$ is tight, i.e. for any $\epsilon > 0$, there exist $C, N < \infty$ such that $\mu_n(\{x : |x| > C\}) \le \epsilon$ for every $n \ge N$. Let $\epsilon > 0$ be fixed. Since $\phi(0)$ is always 1 and ϕ is assumed to be continuous at zero, there exists δ such that $|1 - \phi(t)| < \epsilon/2$ for any $t \in (-\delta, \delta)$. Since $\phi_n(t) \to \phi(t)$, by BCT, there exists N such that for any $n \ge N$,

$$\left| \frac{1}{\delta} \int_{-\delta}^{\delta} (1 - \phi_n(t)) dt - \frac{1}{\delta} \int_{-\delta}^{\delta} (1 - \phi(t)) dt \right| < \epsilon,$$

which further yields that

$$\frac{1}{\delta} \int_{-\delta}^{\delta} (1 - \phi_n(t)) dt < 2\epsilon.$$

On the other hand,

$$\frac{1}{\delta} \int_{-\delta}^{\delta} (1 - \phi_n(t)) dt = 2 - \frac{1}{\delta} \int_{-\delta}^{\delta} \left\{ \int e^{itx} \mu_n(dx) \right\} dt$$

$$= 2 - \int_{\mathbb{R}} \left\{ \int_{-\delta}^{\delta} \frac{e^{itx}}{\delta} dt \right\} \mu_n(dx) \qquad \text{(by Fubini's theorem)}$$

$$= 2 - \int_{\mathbb{R}} \frac{2 \sin(\delta x)}{\delta x} \mu_n(dx) \qquad \text{(by Euler's formula)}$$

$$= 2 \int_{\mathbb{R}} \left\{ 1 - \frac{\sin(\delta x)}{\delta x} \right\} \mu_n(dx)$$

$$\geq 2 \int_{|x| > 2/\delta} \left\{ 1 - \frac{\sin(\delta x)}{\delta x} \right\} \mu_n(dx)$$

$$\geq 2 \int_{|x| > 2/\delta} \left\{ 1 - \frac{|\sin(\delta x)|}{|\delta x|} \right\} \mu_n(dx)$$

$$\geq 2 \int_{|x| > 2/\delta} \left\{ 1 - \frac{|\sin(\delta x)|}{|\delta x|} \right\} \mu_n(dx)$$

$$\geq \int_{|x| > 2/\delta} \mu_n(dx) = \mu_n(\{x : |x| > 2/\delta\}).$$

By choosing $C = 2/\delta$, we conclude that $\{\mu_n\}$ is tight.

Step 2. By Helly's selection theorem and the tightness of $\{\mu_n\}$, there exists a subsequence $\{\mu_{n_k}\}_{k\geq 1}$ such that μ_{n_k} converges weakly to some distribution μ . By part (i), the characteristic function of μ is ϕ .

Now we prove that μ_n converges to μ by contradiction. Let F_n and F be the distribution functions of μ_n and μ , respectively. If we don't have the asserted weak convergence, there exists some point x, which is a continuous point of F, such that $F_n(x)$ does not converge to F(x); that is, there exists some $\eta > 0$ and a subsequence $\{F_{m_k}\}_{k\geq 1}$ such that $|F_{m_k}(x) - F(x)| \geq \eta$. But by Helly's selection theorem and the tightness of $\{F_n\}$, there exists a subsequence of $\{F_{m_k}\}_{k\geq 1}$, say $\{F_{m_k(j)}\}_{j\geq 1}$, that converges to a proper distribution function, say F'. Let ϕ' be its characteristic function. However, the convergence of ϕ_n implies that $\phi'(t) = \phi(t)$ for every t, and by the uniqueness theorem we have F' = F, which gives the contradiction.

Example 19.5. Let μ_n be a normal distribution with mean zero and variance n, and thus $\phi_n(t) = e^{-nt^2/2}$. Clearly, for every $t \neq 0$, $\phi_n(t) \to 0$, i.e. the limit ϕ is not continuous at zero. The sequence $\{\mu_n\}$ does not converge weakly since $\mu_n((-\infty, x]) \to 1/2$ for every $x \in \mathbb{R}$.

References

[1] Rick Durrett. *Probability: Theory and Examples*, volume 49. Cambridge university press, 2019.

- [2] Sidney Resnick. A Probability Path. Springer, 2019.
- [3] Jordan M Stoyanov. Counterexamples in probability. Courier Corporation, 2013.