Lecture 19

Instructor: Quan Zhou

For more details about the materials covered in this note, see Chapters
9.2 to 9.6 of Resnick [2] and Chapter 3.3 of Durrett [I].

19.1 Properties of the function e

We use ¢ to denote the imaginary unit.
Theorem 19.1 (Euler’s formula). For any z € R, €™ = cosx + isin .
Proof. One way to prove the formula is to use Taylor expansion. ]

Theorem 19.2 (Taylor expansion of ¢**). For any r € R,

e N () M 20
=D | < min n+ ) al [

k=0
Proof. See the textbook. O]

Remark 19.1. Assume the moment generating function of | X| is finite in a
neighborhood of 0, i.e. for some § > 0,

Bl =% PEXP 0o,  Vte (=6,0).

n!
n=0

This implies lim,,_, t"E|X|"/n! = 0 for each ¢ € (=4, 6). By Theorem [19.2)
and Jensen’s inequality,
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Ele™X] - Z o L EIX")| < —
k=0

The right-hand side converges to zero as n — oo. That is,

zX N ( )k k
t ZTEX Vt e (=4,0).
k=0
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19.2 Basic properties of characteristic functions
Definition 19.1. The characteristic function of a random variable X is
ox(t) = Ele™™], teR.

Example 19.1. Let X ~ N(u,0?). Using contour integral, we can compute

dx(t) = exp (iut - U;tz) :

There are other ways to show this. For example, Resnick uses Taylor expan-
sion and the MGF while Durrett uses an ordinary differential equation.

Proposition 19.1 (Properties of characteristic functions). For any t € R:
(i) ¢x(t) = Elcos(tX)] + i E[sin(tX)];

(ii) |6x(t)| < 1 and in particular ¢x(0) = 1[]

(iii) ¢x(—t) = ¢x(t) where ¢ denotes the complex conjugate.

(iv) ¢x(t) is uniformly continuous in t.

Proof. Part (i) and (iii) follow from Theorem [19.1} For part (ii), note that
g(x,y) = /22 + y? is a convex function. Thus, by Jensen’s inequality,

lox(t)] < Ele™™| = 1.
For part (iv), by Jensen’s inequality and the convexity of the modulus,
lox(t+h) — ox(t)] < E‘ei(tJrh)X _ eitXl _ E|ez‘hX —1

where in the last step we have used the fact that |z125| = |z1||22| for any
complex numbers z1, 2o. By the bounded convergence theorem, E|ei"X —1| —
0 as h — 0. Since this convergence does not depend on ¢, we obtain the
uniform continuity of ¢x. O

Proposition 19.2. Let X1, X5, ... be i.i.d. with characteristic function ¢x.
Let S, = Y"1 (a;X; 4+ b;). Then, letting ¢, =Y ., b, we have

¢s,(t) = " [ [ ox(ait).
=1

'Here | - | denotes the modulus of a complex number: |a + bi| = Va2 + b2.
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Proof. Try it yourself. O

Proposition 19.3. If E|X|* < oo, then gbg';)(o) — i*E[X*], where gbg];) de-
notes the k-th derivative of ¢x.

Proof. This can be proven by induction. Let’s first show that if F|X| < oo,
¢ (t) = E[iXe"™™], VteR.
Consider the “error”

ox(t+h) — dx(t)

' EHR)X _ gitX _ i1 X eitX
- — E[iXeX] = E <e ‘ - nac >
X 1 inX
- F itx € .
()

It suffices to show that the above expression goes to zero as h | 0. By
Theorem [19.2} we have (both bounds on the right-hand side are useful!)

hX 1 —ihX h| X |?
¢ . ! ‘gmin{2|X|, |2| }

Since E|X| < oo and || =1, by DCT,

ihX 1 ' ihX 1 s
lim £ (eitxe 1 ZhX) =F <e”X lim € ! ZhX) =0.

hl0 h R0 h
Now let’s assume that

if E|X|k < oo, then gbg];)(t) _ E[(Z'X)keitx],

Consider
¢x(t+ hg — k(1) _ E[iX)" X = F (e“X(z'X)’“eihX — 2 - ihX) .
Apply the same argument to obtain that
(Z,X)kez’hX_l—ihX gmin{2|X|k+1,h|Xle+2}.

Hence, for every fixed X = x, the left-hand side goes to zero as h | 0. If
E| X[k < 0o, one can apply DCT to conclude that

(k) _ &) .
gbg];H) _ l,gf)l ¢X (t + h})L X (t) _ E[(Z-X)k—‘rleti].

Letting ¢ = 0, we obtain the asserted formula. O
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Example 19.2. Let X be a continuous random variable with density f(z) =
1yz>23¢/ (2% log |z|) where ¢ is some normalization constant. The expectation
does not exist since [;° 1/(zloga)dx = co. But it can be proven that ¢y (0)
exists and is equal to zero.

19.3 Uniqueness and continuity of characteristic func-
tions

Theorem 19.3 (Inversion formula). Let ¢(t) = [ e pu(dx) be the charac-
teristic function for some distribution p. For any a < b,

€ — €

T _—ita —1th
fim o [ ot = (e b) + ulla. b)),

T—o0 27T -T /lt

Proof. Define

T _—ita _ ,—itd T _—ita _ _—itbh ]
Ip = / £ —C  smydt= / SR ( / emu(dw)) dt.
T it T it

Note that (e~ — =) /(it) = f; e~ dy and thus

b b
/ e“ydy‘ < / le”™|dy = b — a.

Hence, we can apply Fubini’s theorem to get

T _it(z—a) _ it(x—b)
Ir = /{/ c € dt} p(dx).
R \J-T it

Applying Euler’s formula and noting that cos is an even function, we obtain

I /R { /_YT‘ sinft(z — a)] . sinft(z — b)] dt} (o)

- / {R(z —a,T) = R(x —b,T)} u(dx),

672ta o efztb

1t

efzta - efztb

1t

o0 -

where we let

T oT
R(@,T):/ t1 sin(Ht)dt:/ u™ ! sinu du.

=T —-0T
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Define h(u) = v~ 'sinu. Note that |h(u)| < 1, for any u € R. Further, by

Lemma [19.1) below, lim;_, 0 f_MM h(u)du = 7. Therefore, sup, R(0,T) = C <
oo for some constant C'. By bounded convergence theorem,

lim I = /R lim [R(z — a,T) — R(x — b,T)|u(dx)

T—o0 T—o0

= 2mp((a, b)) + mp({a, b})

where we have used

T 0>0
lim R(0,T) = 0 0=0
T—o0
-7 0 <0,
which again follows from Lemma [19.1] [

Lemma 19.1. The improper Riemann integral ffooo wlsinudu = .

Proof. We omit the proof here. This integral is known as Dirichlet integral.
The corresponding Lebesgue integral is not defined. O]

Corollary 19.1. p({a}) = limp_ 5= [T e~ #¢(t)dt.
Proof. Try it yourself. O]

Corollary 19.2. If [|¢(t)|dt < oo, then p has a bounded and continuous
density function given by

1 .
fla) = 5= [ e o
2
Proof. In the proof of Theorem [19.3] we have shown that for b > a,
e—ita o e—itb
—S600) < 0= ool

Since [ |p(t)|dt < 0o, by the inversion formula,

a0+ utta i) = o= [ e < =0 [ 1o < o

2 J_ it 2m .



Fall 2022 Quan Zhou

Letting b | a, we get pu({a}) < u({a,b}) < 0 and thus p < m (m denotes
the Lebesgue measure.) Applying Fubini’s theorem, we find that

(a.0) = o / / e W dye(t)
AL %O}

Hence, f(y) = (2m)~' [Z2_ e ™¢(t)dt is the Radon-Nikodym derivative

which is essentially unique (i.e. unique up to a Lebesgue-null set). By the
assumption [ ¢(t)dt < oo, f is bounded; further, it is continuous due to
DCT. O

Example 19.3. Let X be a Cauchy random variable with density f(z) =

7 (14 2?)~!. Direct calculation of its characteristic function seems difficult.

However, for another random variable Y with density f(y) = e /2, it is

easy to compute ¢y (t) = (1 +t*)~!. By the inversion formula, this implies
1 1 1

7 - *itydt'
26 27 ) 1+ t2€

Hence,

e—itx
t)y= | ———dx=el.
ox(t) / (14 z?)
Theorem 19.4 (Uniqueness theorem). The characteristic function uniquely
determines the probability distribution.

Proof. By the inversion formula, the characteristic function uniquely deter-
mines the value of u((a,b)) for any a < b. By Dynkin’s 7-A theorem, this
means p(B) is uniquely defined for any Borel set B. n

Example 19.4. Consider a continuous random variable X with density

1—-coszx
= — € R.
fla)=—3= a

Consider another discrete random variable Y with

1 2

2One can invoke 7-A theorem to show that pu(B) = [ f 5 f(y)dy for any Borel set B.
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Then, the characteristic functions of X and Y are

ox(t) = (1 —[t]) Ly<y,
1 4 N cos{(2k — 1wt
=5+ 5 3

Surprisingly, for any t € [—1, 1], we have ¢x(t) = ¢y (t).

Theorem 19.5 (Continuity theorem). Let {i,}n>1 be probability distribu-
tions with characteristic function {¢y,}n>1.

(i) If p, converges weakly to some distribution p, then ¢,(t) — ¢(t) for
every t where ¢ is the characteristic function of .

(11) If o (t) — &(t) for every t and ¢ is a function continuous at 0, then p,

converges weakly to some distribution p with characteristic function ¢.
Proof. Since € is a bounded and continuous function for every ¢, by The-
orem 18.2, we immediately obtain part (i). The proof of part (ii) consists of
two steps.

Step 1. We prove {u,} is tight, i.e. for any € > 0, there exist C, N < oo such
that pu,({z : |z] > C}) < € for every n > N. Let € > 0 be fixed. Since ¢(0)
is always 1 and ¢ is assumed to be continuous at zero, there exists § such
that |1 — ¢(t)] < €/2 for any t € (—0,0). Since ¢,,(t) — ¢(t), by BCT, there
exists N such that for any n > N,

\%/7&wam&—§/?&wwm4<a

—6 —6

which further yields that

%/ (1= 6u(t))dt < 2¢.

=
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On the other hand,

5/ (1 — (1) _2—%/_2{/&”%(@)}&

6 itz
o / {/ 65 dt} pn(di) (by Fubini’s theorem)
R )

2sin(d
—_9_ / Mun(dl’) (by Euler’s formula)
R

fn (d)

o)
> 2/ { fin(d
|z|>2/8 5»’1?
| sin(dz)| }
2 / { fn(d
|z|>2/6 ’537’

> /| ) =l Jal > 2/6)).

Il
[\
T
—N
—_
|
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/-\
\_/
’_\H/—’
3

v

By choosing C' = 2/4, we conclude that {u,} is tight.

Step 2. By Helly’s selection theorem and the tightness of {u,}, there exists
a subsequence {fi,, }x>1 such that p,, converges weakly to some distribution
u. By part (i), the characteristic function of p is ¢.

Now we prove that u, converges to pu by contradiction. Let F,, and F'
be the distribution functions of u, and p, respectively. If we don’t have the
asserted weak convergence, there exists some point z, which is a continuous
point of F', such that F,,(x) does not converge to F'(x); that is, there exists
some n > 0 and a subsequence {F},, }x>1 such that |F,, (z) — F(x)| > .
But by Helly’s selection theorem and the tightness of {F,}, there exists a
subsequence of {F,,, }x>1, say {Fp, () };>1, that converges to a proper distri-
bution function, say F’. Let ¢’ be its characteristic function. However, the
convergence of ¢, implies that ¢'(t) = ¢(t) for every ¢, and by the uniqueness
theorem we have F' = F', which gives the contradiction. O

Example 19.5. Let p,, be a normal distribution with mean zero and variance
n, and thus ¢, (t) = e~"/2. Clearly, for every t # 0, ¢,(t) — 0, i.e. the limit
¢ is not continuous at zero. The sequence {u,} does not converge weakly
since p, ((—o0, z]) — 1/2 for every z € R.
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