
Lecture 18

Instructor: Quan Zhou

For more details about the materials covered in this note, see Chapters
8.2 to 8.6 and 9.6 of Resnick [3] and Chapter 3.2 of Durrett [2].

18.1 More about convergence in distribution

Theorem 18.1 (Skorohod’s representation theorem). If {Xn}n≥0 is a se-

quence of random variables defined on (Ω,F ,P) and Xn
D→ X0. Then there

exist random variables {Yn}n≥0 defined on ([0, 1],B([0, 1]),m) where m de-

notes the Lebesgue measure such that for every n ≥ 0, Xn
D
= Yn (i.e. Xn, Yn

have the same distribution) and Yn
a.s.→ Y0.

Proof. See the textbook.

Example 18.1 (Delta method). Given i.i.d. observations X1, X2, . . . with

mean µ and finite variance σ2, by central limit theorem
√
n(X̄n − µ)/σ

D→
N(0, 1) where X̄n denotes the average of the first n observations and N(0, 1)
is a standard normal random variable. Skorohod’s representation theorem
can be used to prove the following result which is widely used in statistics.
If g is a Borel function with non-zero derivative at µ, then

√
n
[
g(X̄n)− g(µ)

]
σg′(µ)

D→ N(0, 1).

Theorem 18.2. Xn
D→ X if and only if for every bounded continuous func-

tion h, we have E[h(Xn)] → E[h(X)].

Proof. By Skorohod’s representation theorem, we may let {Yn} be a sequence
of random variables such that Yn

a.s.→ Y , Xn
D
= Yn and X

D
= Y . By the

continuous mapping theorem for almost sure convergence, we have h(Yn)
a.s.→

h(Y ), and the bounded convergence theorem implies that

E[h(Xn)] = E[h(Yn)] → E[h(Y )] = E[h(X)].
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To prove the converse, fix an arbitrary x ∈ R and let

hx,ϵ(y) =


1 y ≤ x
0 y ≥ x+ ϵ

linear x ≤ y ≤ x+ ϵ,

which is continuous and bounded and thus E[hx,ϵ(Xn)] → E[hx,ϵ(X)]. So,

lim sup
n→∞

P(Xn ≤ x) ≤ lim sup
n→∞

E[hx,ϵ(Xn)] = E[hx,ϵ(X)] ≤ P(X ≤ x+ ϵ).

Letting ϵ ↓ 0, we get lim supn→∞ P(Xn ≤ x) ≤ P(X ≤ x). Similarly,

lim inf
n→∞

P(Xn ≤ x) ≥ lim inf
n→∞

E[hx−ϵ,ϵ(Xn)] = E[hx−ϵ,ϵ(X)] ≥ P(X ≤ x− ϵ).

Letting ϵ ↓ 0, we get lim infn→∞ P(Xn ≤ x) ≥ P(X ≤ x) for any x at which
FX (the distribution function of X) is continuous. Combining the lim sup

and lim inf inequalities, we conclude that Xn
D→ X.

Theorem 18.3 (Continuous mapping theorem). Let g : R → R be a mea-
surable function and denote the set of discontinuity points by Dg = {x ∈
R : g is discontinuous at x}. If Xn

D→ X and P(X ∈ Dg) = 0, then g(Xn)
D→

g(X). If in addition g is bounded, then E[g(Xn)] → E[g(X)].

Proof. Let {Yn} be a sequence of random variables such that Yn
a.s.→ Y ,

Xn
D
= Yn and X

D
= Y . Define two events A = {ω : Yn(ω) → Y (ω)} and

B = {ω : Y (ω) ∈ Dc
g}. Then, P(A) = 1, and P(B) = P(Y ∈ Dc

g) =
(P ◦ Y −1)(Dc

g) = (P ◦ X−1)(Dc
g) = P(X ∈ Dc

g) = 1. By the union bound,
P(A ∩ B) = 1. But note that for any ω ∈ A ∩ B, g(Yn(ω)) → g(Y (ω)).

Thus, g(Xn)
D
= g(Yn)

a.s.→ g(Y )
D
= g(X). The second conclusion follows from

bounded convergence theorem.

Proposition 18.1. If Xn
D→ c where c is a constant, then Xn

P→ c (provided
that X1, X2, . . . are defined on the same space.)

Proof. Since Xn
D→ c, we have P(Xn ≤ x) → 0 if x < c and P(Xn ≤ x) → 1

if x > c (note that we may not have the convergence at x = c.) This implies,
for any ϵ > 0,

P(|Xn − c| > ϵ) = P(Xn > c+ ϵ) + P(Xn < c− ϵ)

≤ 1− P(Xn ≤ c+ ϵ) + P(Xn ≤ c− ϵ) → 0.

That is, Xn
P→ c.
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Theorem 18.4 (Slutsky’s theorem). Suppose Xn
D→ X and Yn

D→ c where c

is a constant. Then Xn + Yn
D→ X + c, XnYn

D→ cX and Xn/Yn
D→ X/c (if

c ̸= 0).

Proof. See the textbook.

18.2 Limits of distribution functions

Theorem 18.5 (Helly’s selection theorem). Let {Fn}n≥1 be a sequence of
distribution functions. There exists a subsequence {Fn(k)}k≥1 and a right-
continuous non-decreasing function F such that limk→∞ Fn(k)(y) = F (y) at
all continuity points y of F .

Proof. See Resnick [3, Theorem 9.6.1].

Theorem 18.6 (Tightness). Let {Fn}n≥1 be a sequence of distribution func-
tions. Then every subsequential limit is the distribution function of a prob-
ability measure if and only if {Fn} is tight, i.e. for any ϵ > 0, there exists
Mϵ < ∞ such that lim infn→∞ µn([−Mϵ,Mϵ]) ≥ 1 − ϵ, where µn denotes the
distribution corresponding to Fn.

Proof. See Resnick [3, Theorem 9.6.2].

Example 18.2. If Xn
D→ X, then the sequence {Fn} is tight where Fn is

the distribution function of Xn. To prove this, first note that since a random
variable is real-valued, for any ϵ, there exists Cϵ such that P(|X| > Cϵ) < ϵ/2.
Since there are at most countably many discontinuity points of F , we can
pick Mϵ ≥ Cϵ such that ±Mϵ are both continuity points of F and thus
P(|Xn| > Mϵ) → P(|X| > Mϵ) < ϵ/2, i.e. there exists N < ∞ such that
infn≥N P(|Xn| ≤ Mϵ) ≥ 1− ϵ.

Example 18.3. Let µn be the distribution of a normal random variable with
mean n and variance 1. Then µn([−M,M ]) < 1/2 for any n > M . That is,
{µn}n≥1 is not a tight collection of measures.

18.3 More about the convergence of probability mea-
sures

Theorem 18.7 (Portmanteau theorem). Let µ1, µ2, . . . and µ be distribu-
tions on (Rd,B(Rd)). The following statements are equivalent.
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(i) µn converges weakly to µ.

(ii) Xn
D→ X where Xn has distribution µn and X has distribution µ.

(iii) For any bounded and continuous function f ,
∫
fdµn →

∫
fdµ.

(iv) For any bounded and Lipschitz function f ,
∫
fdµn →

∫
fdµ.

(v) For any open sets G, lim infn→∞ µn(G) ≥ µ(G).

(vi) For any closed sets K, lim supn→∞ µn(K) ≤ µ(K).

(vii) For any Borel sets A with µ(∂A) = 0, limn→∞ µn(A) = µ(A).

Proof. See Durrett [2, Theorem 3.2.1].

Definition 18.1. The total variation distance between two probability mea-
sures µ, ν on (Ω,F) is defined as

dTV(µ, ν) = ||µ− ν||TV = sup
A∈F

|µ(A)− ν(A)|.

We say µn converges to µ in total variation distance if ||µn − µ||TV → 0.

Proposition 18.2. Let {µn} and µ be probability measures on (R,B(R)). If
||µn − µ||TV → 0, then µn converges weakly to µ.

Proof. This follows from the definition.

Example 18.4. Let µn = δ1/n, i.e. a unit point mass on the point n−1. It is
easy to see that the corresponding distribution function converges pointwise
to F (x) = 1[0,∞)(x) except at the discontinuity point x = 0. Hence, µn

converges weakly to µ = δ0. However, ||µn − µ||TV = 1 for every n.

Theorem 18.8 (Scheffe’s lemma). Let {µn} and µ be probability distributions
absolutely continuous w.r.t. some measure λ on (R,B(R)). Let fn and f be
the corresponding Radon-Nikodym densities. If fn → f λ-a.e., then

∫
|fn −

f |dλ → 0 and ||µn − µ||TV → 0.

Proof. First, since Radon-Nikodym derivatives are non-negative by defini-
tion, ∫

|fn − f |dλ ≤
∫
(fn + f)dλ = 2
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That is, by letting gn = fn + f , we have gn ≥ |fn − f | and
∫
gndλ →∫

limn→∞ gn dλ. So, by DCT,1∫
|fn − f |dλ →

∫
lim
n→∞

|fn − f |dλ = 0.

The second conclusion follows from Theorem 14.4. We replicate that proof
here (just in different notation). For any A ∈ B(R),

|µn(A)− µ(A)| =
∣∣∣∣∫

A

(fn − f)dλ

∣∣∣∣ ≤ ∫
A

|fn − f |dλ ≤
∫

|fn − f |dλ.

Hence,
∫
|fn − f |dλ → 0 implies that |µn(A)− µ(A)| → 0 uniformly over all

Borel sets A. That is, ||µn − µ||TV → 0.

Proposition 18.3. Let {µn} and µ be probability measures on (Z,P(Z))
where Z denotes the set of all integers. Then ||µn − µ||TV → 0 if and only if
µn converges weakly to µ.

Proof. Use Scheffe’s lemma.
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1Here we are applying a general version of DCT where we have a sequence of dominat-
ing functions {gn} which converges pointwise and

∫
gndλ →

∫
(lim gn)dλ. You can check

that the proof is almost the same as that for the original one (Theorem 5.3).
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