
Lecture 16

Instructor: Quan Zhou

For more details about the materials covered in this note, see Chapter
4.5 of Resnick [2] and Chapters 2.3 abd 2.4 of Durrett [1].

16.1 Borel-Cantelli lemmas

Theorem 16.1 (Borel-Cantelli lemma). If
∑∞

n=1 P(An) < ∞, then1

P(An, i.o.) = P(lim sup
n→∞

An) = 0.

Proof. Recall that lim supn→∞ An = {ω :
∑

1An(ω) = ∞}. Hence, by letting
N(ω) =

∑∞
n=1 1An(ω), we only need to show N(ω) < ∞ with probability 1.

By MCT,

E[N ] =

∫ ∞∑
n=1

1AndP =
∞∑
n=1

∫
1AndP =

∞∑
n=1

P(An) < ∞,

which implies that P(N < ∞) = 1.

Theorem 16.2 (Second Borel-Cantelli lemma). If the events An are indepen-
dent, then

∑∞
n=1 P(An) = ∞ implies P(An, i.o.) = P(lim supn→∞An) = 1.

Proof. Let M < N < ∞. Using ex > 1 + x we get

P
(
∩N

n=MAc
n

)
=

N∏
n=M

(1− P(An)) ≤
N∏

n=M

exp(−P(An)) → 0, as N → ∞.

Since
(
∩N

n=MAc
n

)c
= ∪N

n=MAn, we get P(∪∞
n=MAn) = 1, which is true for every

M . Thus, by the continuity of probability measures,

P(lim sup
n→∞

An) = P
(

lim
M→∞

(∪∞
n=MAn)

)
= lim

M→∞
P(∪∞

n=MAn) = 1,

which completes the proof.

1“i.o.” means infinitely often.
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Example 16.1. Consider a sequence of random variables X1, X2, . . . such

that P(Xn = n) = 1/n and P(Xn = 0) = 1 − 1/n. Recall that Xn
P→ 0.

If we further assume X1, X2, . . . are independent, then by the second Borel-
Cantelli lemma, they do not converge almost surely, since

∞∑
n=1

P(Xn ≥ 1) =
∞∑
n=1

1

n
= ∞.

Example 16.2. Let X1, X2, . . . be i.i.d. exponential random variables with
density function f(x) = e−x on [0,∞). Note that P(Xn/ log n > ϵ) = n−ϵ →
0 for every ϵ > 0. Hence, Xn/ log n

P→ 0. However, when ϵ ∈ (0, 1), by
the two Borel-Cantelli lemmas, we have P(Xn/ log n > 1 − ϵ, i.o.) = 1 and
P(Xn/ log n > 1 + ϵ, i.o.) = 0. This further implies, by choosing a sequence
ϵk ↓ 0, that P(lim supn→∞ Xn/ log n = 1) = 1.

Proposition 16.1. Let X1, X2, . . . be i.i.d. with E|Xi| = ∞, and Sn =
X1 + · · ·+Xn. Then P(limn→∞ Sn/n exists and is finite) = 0.

Proof. Observe that for any x ∈ [n, n+1], we have P(|X1| > x) ≤ P(X1 > n).
Hence,

∞ = E|X1| =
∫ ∞

0

P(|X1| > x)dx ≤
∞∑
n=0

P(|X1| > n).

(This is a useful trick. An integral of a monotone function can be bounded
from above and from below by the summation.) Therefore, by the second
Borel-Cantelli lemma, P(|Xn| > n, i.o.) = 1. Next, we study the increment
|Sn+1/(n+ 1)− Sn/n|. Note that

Dn =
Sn+1

n+ 1
− Sn

n
− =

n(Sn+1 − Sn)− Sn

n(n+ 1)
=

Xn+1

n+ 1
− Sn

n(n+ 1)
.

Let C = {ω : Sn/n converges to a finite limit} and A = {ω : |Xn| > n, i.o.}.
We prove by contradiction that A ∩ C = ∅. Suppose that ω ∈ A ∩ C. we
clearly have Sn/n(n+ 1) → 0 and thus there exists N < ∞ such that for all
n ≥ N , we have |Sn/n(n+ 1)| < ϵ ∈ (0, 1). But ω ∈ A also implies that

∞∑
n=N+1

1{|Xn|>n}(ω) =
∞∑

n=N+1

1{|Xn|/n>1}(ω) = ∞.
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For n > N , |Xn|/n > 1 yields |Dn−1| ≥ 1−ϵ. Therefore, |Dn| ≥ 1−ϵ infinitely
often, which by Cauchy criterion implies that Sn/n does not converge. So,
this yields the contradiction and we conclude that P(A ∩ C) = 0. By the
union bound, 0 = P(A ∩ C) ≥ P(A) + P(C)− 1 = P(C).

Theorem 16.3 (SLLN with finite fourth moments). Let X1, X2, . . . be i.i.d.
with mean µ and E[X4

1 ] < ∞, and Sn =
∑n

i=1Xi. Then Sn/n
a.s.→ 0.

Proof. Without loss of generality, assume µ = 0.

E[S4
n] = E

∑
1≤i,j,k,l≤n

XiXjXkXl.

Due to independence and the assumption E[Xi] = 0, we have

E[S4
n] = nE(X4

1 ) + 3n(n− 1)
(
E[X2

1 ]
)2 ≤ Cn2

for some C ∈ (0,∞). (Check it!) Hence, by Markov’s inequality,

P(|Sn|/n ≥ ϵ) ≤ 1

n4ϵ4
ES4

n <
C

n2ϵ4
.

The series
∑∞

n=1 n
−2 converges and thus by the Borel-Cantelli lemma,

P(|Sn|/n ≥ ϵ i.o.) = 0.

Now let’s choose ϵk = 1/k for k = 1, 2, . . . . Then, by the countable sub-
additivity of measures,

P(∪k≥1{|Sn|/n ≥ ϵk i.o.}) = 0,

which implies P(A) = 1 where

A =
⋂
k≥1

{|Sn|/n ≥ ϵk finitely often}.

This gives the almost sure convergence we want to prove. To see this, fix an
arbitrary ω ∈ A. The definition of A means that for any k ≥ 1, we can find
N(ϵk, ω) < ∞ such that for any n ≥ N(ϵk, ω), we have |Sn(ω)|/n < ϵk; that
is, |Sn(ω)|/n → 0.
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16.2 Strong law of large numbers

Theorem 16.4 (Etemadi’s SLLN). Let X1, X2, . . . be pairwise independent
identically distributed random variables with E|X1| < ∞ and mean µ. Let
Sn =

∑n
i=1Xi. Then Sn/n

a.s.→ µ.

Proof. See the next section.

Remark 16.1. If we replace “pairwise independence” with “mutual inde-
pendence”, this result is known as Kolmogorov’s SLLN. Of course, Etemadi’s
result is better. Etemadi’s paper was published in 1981.

Corollary 16.1. Let X1, X2, . . . be i.i.d. with E(X+
i ) = ∞ and E(X−

i ) <
∞. Let Sn = X1 + · · ·+Xn. We have Sn/n → ∞ almost surely.

Proof. Choose an arbitrary m > 0, and let Yi(m) = Xi ∧ m. Clearly,
Y1(m), Y2(m), . . . are still i.i.d. andE|Y1(m)| < ∞. Let Tn(m) =

∑n
i=1 Yi(m).

Then by SLLN, Tn/n converges to EY1 a.s. Since Xi ≥ Yi for each i,

lim inf
n→∞

Sn

n
≥ lim inf

n→∞

Tn(m)

n
= lim

n→∞

Tn(m)

n
= E[Y1(m)].

By MCT, limm→∞E[Y1(m)] = E[limm→∞ Y1(m)] = E[X1] = ∞. That is,
lim infn→∞ Sn/n ≥ ∞, which yields the asserted result.

Example 16.3 (Glivenko-Cantelli theorem). Let X1, X2, . . . be i.i.d. with
distribution function F and let

Fn(x) =
1

n

n∑
i=1

1{Xm≤x},

which is called the empirical distribution function. Let x be fixed and Yn =
1{Xn≤x}. Clearly, Y1, Y2, . . . , Yn are also i.i.d. with expectation F (x). SLLN

implies that (
∑n

i=1 Yi)/n
a.s.→ F (x). Actually, with some extra work, one can

show that as n → ∞,

sup
x

|Fn(x)− F (x)| a.s.→ 0.

4
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16.3 Proof of Etemadi’s SLLN

We first prove three lemmas.

Lemma 16.1. Let Yk = Xk1{|Xk|≤k} and Tn = Y1 + · · · + Yn. Etemadi’s

SLLN would hold if Tn/n
a.s.→ µ.

Proof. Since
∑∞

k=1 P(|Xk| > k) ≤
∫∞
0

P(|X1| > t)dt = E|X1| < ∞, we have
P(Xk ̸= Yk, i.o.) = 0 by Borel-Cantelli lemma. Hence, almost surely there
exists a finite upper bound for |Sn − Tn|.

Lemma 16.2. If y ≥ 0, then 2y
∑

k>y k
−2 ≤ 4.

Proof. If m ≥ 2, then ∑
k≥m

1

k2
≤
∫ ∞

m−1

1

x2
dx =

1

m− 1
.

If y ≥ 1, then the smallest integer k > y is 2 and thus

2y
∑
k>y

1

k2
≤ 2y

⌊y⌋
< 4.

For 0 ≤ y < 1, we have

2y
∑
k>y

1

k2
≤ 2 + 2y

∞∑
k=2

1

k2
< 2

(
1 +

∞∑
k=2

1

k2

)
≤ 4.

Recall that
∑∞

n=1 n
−2 = π2/6.

Lemma 16.3.
∑∞

k=1Var(Yk)/k
2 ≤ 4E|X1| < ∞.

Proof. Note that Var(Yk) ≤
∫ k

0
2yP(|X1| > y)dy (recall how we proved

Feller’s WLLN). Hence, by Fubini’s theorem and Lemma 16.2,

∞∑
k=1

Var(Yk)

k2
≤

∞∑
k=1

1

k2

∫ ∞

0

1(−∞,k)(y) 2y P(|X1| > y)dy

=

∫ ∞

0

{
2y

∞∑
k=1

k−2
1{y<k}

}
P(|X1| > y)dy

≤ 4

∫ ∞

0

P(|X1| > y)dy = 4E|X1|.

That is,
∑∞

k=1Var(Yk)/k
2 < ∞.
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Proof of Theorem 16.4. Since {X+
n } and {X−

n } both satisfy the assumptions
of the theorem and Xn = X+

n −X−
n , we can without loss of generality assume

that Xn ≥ 0 for all n and then prove the claim made in Lemma 16.1. Let
k(n) = ⌊αn⌋ for some α > 1. By Markov’s inequality, for ϵ > 0,

∞∑
n=1

P
(
|Tk(n) − E[Tk(n)]| > ϵk(n)

)
≤ 1

ϵ2

∞∑
n=1

Var(Tk(n))

k(n)2
.

By the pairwise independence of X1, X2, . . . ,

Var(Tk(n)) = Var
(
Y1 + · · ·+ Yk(n)

)
=

k(n)∑
m=1

Var(Ym).

Then, by Fubini’s theorem,

∞∑
n=1

Var(Tk(n))

k(n)2
=

∞∑
m=1

Var(Ym)
∑

n:k(n)≥m

1

k(n)2
.

Using k(n) = ⌊αn⌋ and ⌊αn⌋ ≥ αn/2 for n ≥ 1,∑
n:k(n)≥m

1

k(n)2
=

∑
n:⌊αn⌋≥m

1

⌊αn⌋2
≤ 4

∑
n:αn≥m

1

α2n
≤ 4

m2(1− α−2)
.

Hence, by Lemma 16.3,

∞∑
n=1

P
(
|Tk(n) − E[Tk(n)]| > ϵk(n)

)
≤ 4

ϵ2(1− α−2)

∞∑
m=1

Var(Ym)

m2
< ∞.

Since ϵ is arbitrary, by Borel-Cantelli lemma, we get [Tk(n)−E(Tk(n))]/k(n)
a.s.→

0. By DCT, E[Yk] → E[X1] as k → ∞ and thus E[Tk(n)]/k(n) → E[X1],

which yields Tk(n)
a.s.→ µ. To establish the a.s. convergence for the entire

sequence, observe that for k(n) ≤ m < k(n+ 1), we have

Tk(n)

k(n+ 1)
≤ Tm

m
≤

Tk(n+1)

k(n)

by the non-negativity of {Yn}. Since k(n + 1)/k(n) → α, using the a.s.
convergence of {Tk(n)} we get

1

α
E(X1) ≤ lim inf

n→∞

Tm

m
≤ lim sup

n→∞

Tm

m
≤ αE(X1).

Letting α ↓ 1, we get the asserted SLLN.
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