Lecture 16
Instructor: Quan Zhou

For more details about the materials covered in this note, see Chapter
4.5 of Resnick [2] and Chapters 2.3 abd 2.4 of Durrett [I].

16.1 Borel-Cantelli lemmas
Theorem 16.1 (Borel-Cantelli lemma). If Y7 | P(A,) < oo, ther]

P(A,, i.0.) =P(limsup A,) = 0.

n—00

Proof. Recall that limsup,,_,., A, = {w: > 14, (w) = co}. Hence, by letting
N(w) =>7",14,(w), we only need to show N(w) < oo with probability 1.
By MCT,

n=1 n=1 n=1

which implies that P(N < oco0) = 1. O

Theorem 16.2 (Second Borel-Cantelli lemma). If the events A,, are indepen-
dent, then Y~ °  P(A,) = oo implies P(A,, i.0.) = P(limsup,_,. A,) = 1.

Proof. Let M < N < oo. Using ¥ > 1+ = we get
N N
P (N2 A;) = H (1-P(4,)) < H exp(—P(A4,)) =0, as N — oc.
n=M n=M

Since (NA_,,A42)" = UN_,, A, we get P(U2 ), A,,) = 1, which is true for every
M. Thus, by the continuity of probability measures,

P(limsup A,) = P ( lim (uf;;MAn)) = lim P(UX,,A4,) =1,

n—00 M—r00 M—r00

which completes the proof. O

1w ”

i.0.” means infinitely often.
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Example 16.1. Consider a sequence of random variables X, X, ... such
that P(X,, = n) = 1/n and P(X,, = 0) = 1 — 1/n. Recall that X,, = 0.
If we further assume X, X5, ... are independent, then by the second Borel-
Cantelli lemma, they do not converge almost surely, since

(e.) [o.¢] 1
P(X,>1) 2= 0.

> P =2 =

n=1 n=1
Example 16.2. Let X, Xs,... be ii.d. exponential random variables with
density function f(z) = e ® on [0,00). Note that P(X,,/logn >¢€) =n"° —
0 for every ¢ > 0. Hence, X, /logn 0. However, when ¢ € (0,1), by
the two Borel-Cantelli lemmas, we have P(X,,/logn > 1 —¢, i.0.) = 1 and
P(X,/logn > 1+¢, i.0.) = 0. This further implies, by choosing a sequence
er 4 0, that P(limsup,,_,. X,/logn=1) = 1.

Proposition 16.1. Let X, Xs,... be i.i.d. with E|X;| = oo, and S, =
X1+ -+ X,. Then P(lim, o Sp/n ezists and is finite) = 0.

Proof. Observe that for any x € [n,n+1|, we have P(|.X;| > z) < P(X; > n).
Hence,

[e.e]

oo:E|X1]:/ P(1X1| > 2)dr <Y P(|X1] > n).
0

n=0

(This is a useful trick. An integral of a monotone function can be bounded
from above and from below by the summation.) Therefore, by the second
Borel-Cantelli lemma, P(|X,,| > n, i.0.) = 1. Next, we study the increment
|Snt1/(n+ 1) — S, /n|. Note that

Sn+1 Sn o n(‘sn—l—l - Sn) - Sn o Xn+1 Sn

"Tn+l on n(n+1) T n+1 nn41)

Let C' = {w: S, /n converges to a finite limit} and A = {w: | X,| > n, i.0.}.
We prove by contradiction that AN C = (). Suppose that w € ANC. we
clearly have S,,/n(n+ 1) — 0 and thus there exists N < oo such that for all
n > N, we have |S,/n(n+1)| < e € (0,1). But w € A also implies that

Z L{x, >np (W Z Lgix, ) m>13(w) =

n=N-+1 n=N+1
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Forn > N, |X,|/n > 1yields |D,,_1| > 1—e¢. Therefore, |D,| > 1—¢ infinitely
often, which by Cauchy criterion implies that S,,/n does not converge. So,
this yields the contradiction and we conclude that P(A N C) = 0. By the
union bound, 0 = P(ANC) >P(A)+P(C) —1=P(C). O

Theorem 16.3 (SLLN with finite fourth moments). Let X, Xs,... be i.i.d.
with mean p and E[X{] < oo, and S, = Y7, X;. Then S,/n =3 0.

Proof. Without loss of generality, assume p = 0.
ES=E > XXX, X,
1<i g,k <n
Due to independence and the assumption E[X;] = 0, we have
E[SY] = nE(X}) + 3n(n — 1) (E[X?))* < Cn?
for some C' € (0,00). (Check it!) Hence, by Markov’s inequality,

LE}S’4 < g

n

P(ISnl/n =€) <

net n2et’

The series Y 2 n~? converges and thus by the Borel-Cantelli lemma,
P(|Sn|/n > €i.0.) =0.

Now let’s choose ¢, = 1/k for k = 1,2,.... Then, by the countable sub-
additivity of measures,

P(Uk>1{|Sn|/n > € 1.0.}) =0,
which implies P(A) = 1 where

A= ﬂ{|5n\/n > ¢ finitely often}.

k>1

This gives the almost sure convergence we want to prove. To see this, fix an
arbitrary w € A. The definition of A means that for any k£ > 1, we can find
N (e, w) < oo such that for any n > N(eg,w), we have |S,(w)|/n < €; that
is, [Sp(w)|/n — 0. O
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16.2 Strong law of large numbers

Theorem 16.4 (Etemadi’s SLLN). Let X, X, ... be pairwise independent
identically distributed random variables with E|X,| < oo and mean p. Let
Sp=>"1,X;. Then S,/n "3 p.

Proof. See the next section. m

Remark 16.1. If we replace “pairwise independence” with “mutual inde-
pendence”, this result is known as Kolmogorov’s SLLN. Of course, Etemadi’s
result is better. Etemadi’s paper was published in 1981.

Corollary 16.1. Let X, Xo,... be i.i.d. with BE(X;") = oo and E(X;) <
o0o. Let S, = X1+ -+ X,,. We have S,,/n — oo almost surely.

Proof. Choose an arbitrary m > 0, and let Y;(m) = X; A m. Clearly,
Yi(m),Ya(m),. .. arestilliid. and E|Y;(m)| < oo. Let T,,(m) = >, Yi(m).
Then by SLLN, T,,/n converges to EY] a.s. Since X; >Y; for each i,

T, (m)

T,
lim inf & > liminf ———= = lim M
n—oo N n—o0 n n—o0 n

= E[Y1(m)].

By MCT, lim,, .. E[Y1(m)] = E[lim,,_, Y1(m)] = E[X;] = co. That is,
liminf, . S,/n > oo, which yields the asserted result. ]

Example 16.3 (Glivenko-Cantelli theorem). Let X, Xs,... be i.i.d. with
distribution function F' and let

1 n
Fn(ZL‘) = E Z ]]_{Xmgx},
=1

which is called the empirical distribution function. Let = be fixed and Y,, =
Lix,<z3- Clearly, Y1,Y5,...,Y,, are also i.i.d. with expectation F'(x). SLLN
implies that (3.1, Yi)/n =¥ F(x). Actually, with some extra work, one can
show that as n — oo,

a.s

sgp |F(z) — F(z)| = 0.
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16.3 Proof of Etemadi’s SLLN

We first prove three lemmas.

Lemma 16.1. Let Y, = Xplyx, <k and T,, = Yy + --- +Y,. Etemad:i’s
SLLN would hold if T,,/n “3 p.

Proof. Since Y7 P(|Xy| > k) < [77P(|X1| > t)dt = E|X1| < oo, we have
P(Xy # Yy, i.0.) =0 by Borel Cantelli lemma. Hence, almost surely there
exists a finite upper bound for |S,, — T,,|. O

Lemma 16.2. Ify >0, then 2yy", k=% < 4.
Proof. If m > 2, then

1 <1 1
S wte

If y > 1, then the smallest integer k > y is 2 and thus

2yzk2_—<4

k>y

For 0 <y < 1, we have

2y2%§2+2y;%<2<1+;$> <4
=2 =2

k>y
Recall that > >7  n~2 = 72/6. O
Lemma 16.3. Y ;- Var(Y;)/k* < 4FE|X;| < cc.

Proof. Note that Var(Yy) < fok 2yP(|X1| > y)dy (recall how we proved
Feller’s WLLN). Hence, by Fubini’s theorem and Lemma [16.2]

Var Yk
S 25 [T 2Pl > i
k=1
= / {Zka:_Qll{y<k}} P(|X1| > y)dy
0 k=1

<t [ PX| > )y = 4BIX |
0

That is, >, , Var(Y)/k* < co. O
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Proof of Theorem[16.4 Since {X, '} and {X,, } both satisfy the assumptions
of the theorem and X,, = X7 — X, we can without loss of generality assume
that X,, > 0 for all n and then prove the claim made in Lemma [16.1} Let
k(n) = [a"] for some o > 1. By Markov’s inequality, for ¢ > 0,

1 ad Var (Tk(n) )

P T, E[T, <
Z ‘ k(n k(n ” > Ek( )) = 2 ot k,(n)Q
By the pairwise independence of Xy, X, ...,
Var(Tyn)) = Var (Y1 4 Yim) Z Var(Y,
Then, by Fubini’s theorem,
Var Tk(n) 1
Z Var(Y, k(n)2
n=1 n:k(n)>m

Using k(n) = "] and |a™] > a”/2 forn > 1,

1 4
Z k(n)? Z Lan <4 Z a?n—Ta—Q)'

n:k(n)>m n:la”|>m n:an>m

Hence, by Lemma [16.3

4 = Var(Y;,)
ZP Tem) — BTk > €k(n)) < 0 5 <.
m=1

Since e is arbitrary, by Borel-Cantelli lemma, we get [Ty(m)— E(Tim))]/k(n) <3
0. By DCT, E[Y;] — E[Xi] as k — oo and thus E[Tj, ]/k( ) — E[Xy],
which yields T}, “% u. To establish the a.s. convergence for the entire
sequence, observe that for k(n) < m < k(n + 1), we have
Ti(n) < In T, < Tk(n+1)
kn+1) — m — k(n)

by the non-negativity of {Y,}. Since k(n + 1)/k(n) — «, using the a.s.
convergence of {Tj)} we get

1 T . T,
—FE(X;) <liminf — < limsup — < aE(X)).
a m

n—oo 1M n—00

Letting a | 1, we get the asserted SLLN. O

6
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