
Lecture 15

Instructor: Quan Zhou

For more details about the materials covered in this note, see Chapter
7.2 of Resnick [2] and Chapter 2.2 of Durrett [1].

15.1 Weak law of large numbers for triangular arrays

Theorem 15.1 (WLLN for triangular arrays). Consider random variables
{Xn,k : 1 ≤ k ≤ n, n ≥ 1}, which is often called a triangular array. For each
n, assume that Xn,1, . . . , Xn,n are independent. Let bn > 0 with bn → ∞ and
let Yn,k = Xn,k1{|Xn,k|≤bn} (truncation). Suppose that as n → ∞,

(i)
∑n

k=1 P(|Xn,k| > bn) → 0;

(ii) 1
b2n

∑n
k=1E(Y 2

n,k) → 0.

Finally, let Sn = Xn,1 + · · ·+Xn,n and an =
∑n

k=1E(Yn,k), then

Sn − an
bn

P→ 0.

Proof. Let Tn = Yn,1 + · · ·+ Yn,n. Notice that

P

(∣∣∣Sn − an
bn

∣∣∣ > ϵ

)
≤ P(Sn ̸= Tn) + P

(∣∣∣Tn − an
bn

∣∣∣ > ϵ

)
,

by the union bound. Now we analyze the two terms on the r.h.s. separately.
For the first term, note that if Sn ̸= Tn, there is at least one k such that
Yn,k ̸= Xn,k. Thus, by union bound again,

P(Sn ̸= Tn) ≤ P (∪n
k=1 {Yn,k ̸= Xn,k}) ≤

n∑
k=1

P(|Xn,k| > bn) → 0,

by assumption (i). For the second term, apply Markov’s inequality and the
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inequality Var(X) ≤ EX2 to obtain that

P

(∣∣∣Tn − an
bn

∣∣∣ > ϵ

)
≤ 1

ϵ2
E
∣∣∣Tn − an

bn

∣∣∣2 = 1

ϵ2
Var

(
Tn

bn

)
=

Var(Tn)

ϵ2b2n
=

1

ϵ2b2n

n∑
k=1

Var(Yn,k)

≤ 1

ϵ2b2n

n∑
k=1

E|Yn,k|2 → 0,

where the last step follows from assumption (ii). Since ϵ > 0 is arbitrary, we
get the asserted convergence in probability.

Example 15.1 (St. Petersburg paradox). A casino offers the following game:
you keep flipping a (fair) coin until you get a tail and, the payout is 2k dollars
where k is the total number of flips. For example, if the first flip is a head and
the second is a tail, then you get 4 dollars. Let X be the payout. Clearly,
P(X = 2k) = 2−k and thus E[X] = ∞. What would be a fair price to
play this game? One possible solution is to use WLLN. Let X1, X2, . . . be
a sequence of i.i.d. random variables with the same distribution as X. One
can apply WLLN for triangular arrays with Xn,k = Xk,

an = n log2 n+ n log2(log2 n), bn = n log2 n

to show that Sn/(n log2 n)
P→ 1. (See Durrett’s book for details.) So if you

plan to play the game 1, 000 times, on average you will win log2 1000 ≈ 10
dollars each time and thus 10 dollars is arguably a fair price.

15.2 Special cases of WLLN

Theorem 15.2 (Feller’s WLLN). For an i.i.d. sequence of random variables
{Xn}n≥1 with limx→∞ xP(|X1| > x) = 0, we have

Sn

n
− E(X11{|X1|≤n})

P→ 0.

Proof. We apply the WLLN for triangular arrays with bn = n andXn,k = Xk.
By the i.i.d. assumption, condition (i) is automatically satisfied. Further,

2
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an/bn = E[X11|X1|≤n]. So we only need to verify condition (ii). For a non-
negative random variable Z and p > 0, we have E(Zp) =

∫∞
0

pzp−1P(Z >
z)dz. Thus, by letting Yn,1 = X11{|X1|≤n},

E[Y 2
n,1] =

∫ ∞

0

2yP(|X1|1{|X1|≤n} > y)dy

=

∫ n

0

2yP(|X1|1{|X1|≤n} > y)dy

≤
∫ n

0

2yP(|X1| > y)dy.

But by the assumption that yP(|X1| > y) → 0, we have

1

n

∫ n

0

2yP(|X1| > y)dy → 0, as n → ∞, (1)

which shows that condition (ii) in Theorem 15.1 is satisfied. Intuitively, (1)
is true because the l.h.s. can be interpreted as the average of 2yP(|X1| > y)
which goes to zero (you may recall Cesaro mean.) We present the complete
proof in the following lemma.

Lemma 15.1. Let g : [0,∞) → [0,∞) be a function such that limx→∞ g(x) =
0 and sup0≤x≤n g(x) < ∞ for every n. Then, n−1

∫ n

0
g(x)dx → 0 as n → ∞.

Proof. For any ϵ > 0, there exists K = K(ϵ) < ∞ such that g(x) ≤ ϵ for all
x ≥ K. Further, sup0≤x≤K g(x) = M(K) < ∞ by the assumption. Then,∫ n

0

g(x)dx =

∫ K

0

g(x)dx+

∫ n

K

g(x)dx

≤ KM + (n−K)ϵ.

Hence, n−1
∫ n

0
g(x)dx < n−1KM + ϵ. Note that both K and M only depend

on ϵ. We can taking lim sup on both sides and get

lim sup
n→∞

1

n

∫ n

0

g(x)dx < ϵ.

Since ϵ is arbitrary and g(x) ≥ 0, this means that n−1
∫ n

0
g(x)dx → 0.

3
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Example 15.2. Let X1, X2, . . . be a sequence of i.i.d. random variables such
that each follows the Cauchy distribution, i.e.

P(Xi ≤ x) =

∫ x

−∞

dt

π(1 + t2)
.

As x → ∞, we have

P(|Xi| > x) = 2

∫ ∞

x

dt

π(1 + t2)
∼ 2

π

∫ ∞

x

dt

t2
=

2

πx
.

The assumption of Feller’s WLLN does not hold, and in fact Sn/n does not
converge in probability.

Example 15.3. Let {Xn} be i.i.d. and symmetric random variables with
distribution function

1− F (x) =
e

2x log x
, for x ≥ e.

(This implies P(X ∈ (−e, e)) = 0.) One can check that E[X+] = E[X−] = ∞
and thus the expectation does not exist. However, limx→∞ nP(|X1| > n) =
e/ log n → 0, and thus the assumption of Feller’s WLLN is satisfied. Further,

E[X11{|X1|≤n}] = 0 for every n by symmetry. Hence, Sn/n
P→ 0.

Theorem 15.3 (Khintchin’s WLLN). For an i.i.d. sequence {Xn}n≥1 with

mean µ and E|X1| < ∞, we have Sn/n
P→ µ.

Proof. This is a special case of Feller’s WLLN. To prove this, note that
E|X1| < ∞ implies that

nP(|X1| > n) = E[n1{|X1|>n}] ≤ E[|X1|1{|X1|>n}] → 0,

by DCT. It also follows from DCT that E(X11{|X1|≤n}) → E[X1].

Theorem 15.4 (WLLN with finite variances). For an i.i.d. sequence {Xn}n≥1

with mean µ and variance σ2 < ∞, we have Sn/n
P→ µ.

Proof. This is just a special case of Khintchin’s WLLN since finite variance
implies that E|X1| < ∞.
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