Lecture 15

Instructor: Quan Zhou

For more details about the materials covered in this note, see Chapter 7.2 of Resnick [2] and Chapter 2.2 of Durrett [1].

15.1 Weak law of large numbers for triangular arrays

Theorem 15.1 (WLLN for triangular arrays). Consider random variables $\{X_{n,k}: 1 \leq k \leq n, n \geq 1\}$, which is often called a triangular array. For each n, assume that $X_{n,1}, \ldots, X_{n,n}$ are independent. Let $b_n > 0$ with $b_n \to \infty$ and let $Y_{n,k} = X_{n,k} \mathbb{1}_{\{|X_{n,k}| \leq b_n\}}$ (truncation). Suppose that as $n \to \infty$,

(i)
$$\sum_{k=1}^{n} P(|X_{n,k}| > b_n) \to 0;$$

(ii)
$$\frac{1}{b_n^2} \sum_{k=1}^n E(Y_{n,k}^2) \to 0.$$

Finally, let $S_n = X_{n,1} + \cdots + X_{n,n}$ and $a_n = \sum_{k=1}^n E(Y_{n,k})$, then

$$\frac{S_n - a_n}{b_n} \stackrel{P}{\to} 0.$$

Proof. Let $T_n = Y_{n,1} + \cdots + Y_{n,n}$. Notice that

$$P\left(\left|\frac{S_n - a_n}{b_n}\right| > \epsilon\right) \le P(S_n \ne T_n) + P\left(\left|\frac{T_n - a_n}{b_n}\right| > \epsilon\right),$$

by the union bound. Now we analyze the two terms on the r.h.s. separately. For the first term, note that if $S_n \neq T_n$, there is at least one k such that $Y_{n,k} \neq X_{n,k}$. Thus, by union bound again,

$$P(S_n \neq T_n) \le P(\bigcup_{k=1}^n \{Y_{n,k} \neq X_{n,k}\}) \le \sum_{k=1}^n P(|X_{n,k}| > b_n) \to 0,$$

by assumption (i). For the second term, apply Markov's inequality and the

Fall 2022 Quan Zhou

inequality $Var(X) \leq EX^2$ to obtain that

$$P\left(\left|\frac{T_n - a_n}{b_n}\right| > \epsilon\right) \le \frac{1}{\epsilon^2} E \left|\frac{T_n - a_n}{b_n}\right|^2 = \frac{1}{\epsilon^2} \operatorname{Var}\left(\frac{T_n}{b_n}\right)$$

$$= \frac{\operatorname{Var}(T_n)}{\epsilon^2 b_n^2} = \frac{1}{\epsilon^2 b_n^2} \sum_{k=1}^n \operatorname{Var}(Y_{n,k})$$

$$\le \frac{1}{\epsilon^2 b_n^2} \sum_{k=1}^n E |Y_{n,k}|^2 \to 0,$$

where the last step follows from assumption (ii). Since $\epsilon > 0$ is arbitrary, we get the asserted convergence in probability.

Example 15.1 (St. Petersburg paradox). A casino offers the following game: you keep flipping a (fair) coin until you get a tail and, the payout is 2^k dollars where k is the total number of flips. For example, if the first flip is a head and the second is a tail, then you get 4 dollars. Let X be the payout. Clearly, $P(X = 2^k) = 2^{-k}$ and thus $E[X] = \infty$. What would be a fair price to play this game? One possible solution is to use WLLN. Let X_1, X_2, \ldots be a sequence of i.i.d. random variables with the same distribution as X. One can apply WLLN for triangular arrays with $X_{n,k} = X_k$,

$$a_n = n \log_2 n + n \log_2(\log_2 n), \quad b_n = n \log_2 n$$

to show that $S_n/(n\log_2 n) \stackrel{P}{\to} 1$. (See Durrett's book for details.) So if you plan to play the game 1,000 times, on average you will win $\log_2 1000 \approx 10$ dollars each time and thus 10 dollars is arguably a fair price.

15.2 Special cases of WLLN

Theorem 15.2 (Feller's WLLN). For an i.i.d. sequence of random variables $\{X_n\}_{n\geq 1}$ with $\lim_{x\to\infty} x\mathsf{P}(|X_1|>x)=0$, we have

$$\frac{S_n}{n} - E(X_1 \mathbb{1}_{\{|X_1| \le n\}}) \stackrel{P}{\to} 0.$$

Proof. We apply the WLLN for triangular arrays with $b_n = n$ and $X_{n,k} = X_k$. By the i.i.d. assumption, condition (i) is automatically satisfied. Further,

Fall 2022 Quan Zhou

 $a_n/b_n=E[X_1\mathbbm{1}_{|X_1|\leq n}]$. So we only need to verify condition (ii). For a nonnegative random variable Z and p>0, we have $E(Z^p)=\int_0^\infty pz^{p-1}\mathsf{P}(Z>z)dz$. Thus, by letting $Y_{n,1}=X_1\mathbbm{1}_{\{|X_1|\leq n\}}$,

$$E[Y_{n,1}^2] = \int_0^\infty 2y \mathsf{P}(|X_1| \mathbb{1}_{\{|X_1| \le n\}} > y) dy$$
$$= \int_0^n 2y \mathsf{P}(|X_1| \mathbb{1}_{\{|X_1| \le n\}} > y) dy$$
$$\le \int_0^n 2y \mathsf{P}(|X_1| > y) dy.$$

But by the assumption that $yP(|X_1| > y) \to 0$, we have

$$\frac{1}{n} \int_0^n 2y \mathsf{P}(|X_1| > y) dy \to 0, \quad \text{as } n \to \infty,$$
 (1)

which shows that condition (ii) in Theorem 15.1 is satisfied. Intuitively, (1) is true because the l.h.s. can be interpreted as the average of $2yP(|X_1| > y)$ which goes to zero (you may recall Cesaro mean.) We present the complete proof in the following lemma.

Lemma 15.1. Let $g: [0, \infty) \to [0, \infty)$ be a function such that $\lim_{x \to \infty} g(x) = 0$ and $\sup_{0 \le x \le n} g(x) < \infty$ for every n. Then, $n^{-1} \int_0^n g(x) dx \to 0$ as $n \to \infty$.

Proof. For any $\epsilon > 0$, there exists $K = K(\epsilon) < \infty$ such that $g(x) \le \epsilon$ for all $x \ge K$. Further, $\sup_{0 \le x \le K} g(x) = M(K) < \infty$ by the assumption. Then,

$$\int_0^n g(x)dx = \int_0^K g(x)dx + \int_K^n g(x)dx$$

$$\leq KM + (n - K)\epsilon.$$

Hence, $n^{-1} \int_0^n g(x) dx < n^{-1}KM + \epsilon$. Note that both K and M only depend on ϵ . We can taking \limsup on both sides and get

$$\limsup_{n \to \infty} \frac{1}{n} \int_0^n g(x) dx < \epsilon.$$

Since ϵ is arbitrary and $g(x) \geq 0$, this means that $n^{-1} \int_0^n g(x) dx \to 0$.

Fall 2022 Quan Zhou

Example 15.2. Let X_1, X_2, \ldots be a sequence of i.i.d. random variables such that each follows the Cauchy distribution, i.e.

$$P(X_i \le x) = \int_{-\infty}^x \frac{dt}{\pi(1+t^2)}.$$

As $x \to \infty$, we have

$$P(|X_i| > x) = 2 \int_x^\infty \frac{dt}{\pi (1 + t^2)} \sim \frac{2}{\pi} \int_x^\infty \frac{dt}{t^2} = \frac{2}{\pi x}.$$

The assumption of Feller's WLLN does not hold, and in fact S_n/n does not converge in probability.

Example 15.3. Let $\{X_n\}$ be i.i.d. and symmetric random variables with distribution function

$$1 - F(x) = \frac{e}{2x \log x},$$
 for $x \ge e$.

(This implies $P(X \in (-e, e)) = 0$.) One can check that $E[X^+] = E[X^-] = \infty$ and thus the expectation does not exist. However, $\lim_{x\to\infty} nP(|X_1| > n) = e/\log n \to 0$, and thus the assumption of Feller's WLLN is satisfied. Further, $E[X_1\mathbb{1}_{\{|X_1|\leq n\}}] = 0$ for every n by symmetry. Hence, $S_n/n \stackrel{P}{\to} 0$.

Theorem 15.3 (Khintchin's WLLN). For an i.i.d. sequence $\{X_n\}_{n\geq 1}$ with mean μ and $E|X_1| < \infty$, we have $S_n/n \stackrel{P}{\to} \mu$.

Proof. This is a special case of Feller's WLLN. To prove this, note that $E|X_1| < \infty$ implies that

$$nP(|X_1| > n) = E[n\mathbb{1}_{\{|X_1| > n\}}] \le E[|X_1|\mathbb{1}_{\{|X_1| > n\}}] \to 0,$$

by DCT. It also follows from DCT that $E(X_1 \mathbb{1}_{\{|X_1| \leq n\}}) \to E[X_1]$.

Theorem 15.4 (WLLN with finite variances). For an i.i.d. sequence $\{X_n\}_{n\geq 1}$ with mean μ and variance $\sigma^2 < \infty$, we have $S_n/n \stackrel{P}{\to} \mu$.

Proof. This is just a special case of Khintchin's WLLN since finite variance implies that $E|X_1| < \infty$.

References

- [1] Rick Durrett. *Probability: Theory and Examples*, volume 49. Cambridge university press, 2019.
- [2] Sidney Resnick. A Probability Path. Springer, 2019.