Lecture 15
Instructor: Quan Zhou

For more details about the materials covered in this note, see Chapter
7.2 of Resnick [2] and Chapter 2.2 of Durrett [I].

15.1 Weak law of large numbers for triangular arrays

Theorem 15.1 (WLLN for triangular arrays). Consider random variables
{Xnr: 1<k<mn,n>1}, whichis often called a triangular array. For each
n, assume that X, 1,..., X, are independent. Let b, > 0 with b, — oo and
let Yo = Xnrl{x, o<ba} (truncation). Suppose that as n — oo,

(Z) ZZ:1 P(|Xn,k’| > bn) — O;
(1) é >kt E(Y) — 0.
Finally, let S, = X1+ + Xy and a, =Y ) E(Yo ), then

Sn—an P
b = 0.

Proof. Let T,, =Y, 1 +---+Y,,. Notice that

al > e,

by the union bound. Now we analyze the two terms on the r.h.s. separately.
For the first term, note that if S, # T, there is at least one k such that
Y, r # Xn k. Thus, by union bound again,

S, — G
bn

_an

bn

>e) gP(Sn;éTn)JrP(T”

P(Sn # Tn) < P (Uiy {Yor # Xuxd) < ) P(IXnsl > ba) = 0,
k=1

by assumption (i). For the second term, apply Markov’s inequality and the
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inequality Var(X) < FX? to obtain that

1
€

:VM(Tn) _ zn:Var(Ynk)

Tn — Qp
bn

T, — ay,|?
by, n

€2b? by,
1 n
2
< 2 ;E|Yn7k| -0,

where the last step follows from assumption (ii). Since € > 0 is arbitrary, we
get the asserted convergence in probability. O]

Example 15.1 (St. Petersburg paradox). A casino offers the following game:
you keep flipping a (fair) coin until you get a tail and, the payout is 2¥ dollars
where k is the total number of flips. For example, if the first flip is a head and
the second is a tail, then you get 4 dollars. Let X be the payout. Clearly,
P(X = 2F) = 27% and thus E[X] = oo. What would be a fair price to
play this game? One possible solution is to use WLLN. Let X7, Xs,... be
a sequence of i.i.d. random variables with the same distribution as X. One
can apply WLLN for triangular arrays with X,, , = Xj,

a, = nlogyn + nlogy(logan), b, =nlogyn

to show that S, /(nlog,n) 5 (See Durrett’s book for details.) So if you
plan to play the game 1,000 times, on average you will win log, 1000 ~ 10
dollars each time and thus 10 dollars is arguably a fair price.

15.2 Special cases of WLLN

Theorem 15.2 (Feller’'s WLLN). For an i.i.d. sequence of random variables
{ X a1 with lim, o 2P (| X1| > ) = 0, we have

S
— — BXiLgx<ay) 5 0.
Proof. We apply the WLLN for triangular arrays with b,, = n and X, ;, = Xj.
By the i.i.d. assumption, condition (i) is automatically satisfied. Further,
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an/by, = E[X11x,/<p]). So we only need to verify condition (ii). For a non-
negative random variable Z and p > 0, we have E(Z?) = [~ pzF"'P(Z >
Z)dZ. Thus, by letting Y,,; = X11{|X1|§n}7

B2 = [ 20P(Xiltxuico > w)dy
0
= / 2yP(IX0[ L i<y > y)dy
0
< / 2yP(1X1| > y)dy.
0
But by the assumption that yP(|X;| > y) — 0, we have
1 n
—/ 2yP (| X1| > y)dy — 0, as n — 0o, (1)
nJo

which shows that condition (ii) in Theorem is satisfied. Intuitively, (1))
is true because the Lh.s. can be interpreted as the average of 2yP(|X1| > y)
which goes to zero (you may recall Cesaro mean.) We present the complete
proof in the following lemma. O

Lemma 15.1. Let g: [0,00) — [0,00) be a function such that lim, . g(x) =
0 and supy<,<, 9(z) < oo for every n. Then, n=* [" g(z)dx — 0 as n — oc.

Proof. For any € > 0, there exists K = K(¢) < oo such that g(z) < € for all
x > K. Further, supyc,<x g(z) = M(K) < oo by the assumption. Then,

/On g(x)dr = /OK g(x)dz + /Kng(:r;)dx
< KM+ (n— K)e.

Hence, n™* [[" g(z)dx < n™'K'M + ¢. Note that both K and M only depend
on €. We can taking lim sup on both sides and get

1 n
lim sup —/ g(x)dx < e.
0

n—oo TN

Since € is arbitrary and g(x) > 0, this means that n=* [ g(2)dz — 0. O
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Example 15.2. Let X;, X5, ... be asequence of i.i.d. random variables such
that each follows the Cauchy distribution, i.e.

v dt
Xi<2) /_oo (1 +2)
As © — 00, we have

o dt 2 [ dt 2
PIX,|>2)=2 [ % 2 [ Z%_=2
(1] > @) /m (1 +t2) W/x 2 7

The assumption of Feller’s WLLN does not hold, and in fact S,,/n does not
converge in probability.

Example 15.3. Let {X,} be ii.d. and symmetric random variables with
distribution function

| — F() ‘

for x > e.

ey log z’
(This implies P(X € (—e,e)) = 0.) One can check that E[XT] = E[X | =
and thus the expectation does not exist. However, lim,_,o, nP(|X1| > n)
e/logn — 0, and thus the assumption of Feller’s WLLN is satisfied. Further,

E[X11yx,|<n}) = 0 for every n by symmetry. Hence, S, /n .
Theorem 15.3 (Khintchin’s WLLN). For an i.i.d. sequence {X,,}n>1 with
mean p and E|X,| < oo, we have S, /n 5o

Proof. This is a special case of Feller’s WLLN. To prove this, note that
E|X1| < oo implies that

nP(IX1| > n) = Elnljx,>n] < E[|X1[L{x, 5] = 0,
by DCT. It also follows from DCT that E(X11qx,<n) — E[X4]. O
Theorem 15.4 (WLLN with finite variances). For an i.i.d. sequence { X, }n>1

. : P
with mean p and variance 0® < 0o, we have Sy, /n — u.

I8

Proof. This is just a special case of Khintchin’s WLLN since finite variance
implies that F|X;| < oo. O
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