Lecture 15

Instructor: Quan Zhou

For more details about the materials covered in this note, see Chapter 7.2 of Resnick [2] and Chapter 2.2 of Durrett [1].

15.1 Weak law of large numbers for triangular arrays

Theorem 15.1 (WLLN for triangular arrays). Consider random variables $\left\{X_{n, k}: 1 \leq k \leq n, n \geq 1\right\}$, which is often called a triangular array. For each n, assume that $X_{n, 1}, \ldots, X_{n, n}$ are independent. Let $b_{n}>0$ with $b_{n} \rightarrow \infty$ and let $Y_{n, k}=X_{n, k} \mathbb{1}_{\left\{\left|X_{n, k}\right| \leq b_{n}\right\}}$ (truncation). Suppose that as $n \rightarrow \infty$,
(i) $\sum_{k=1}^{n} \mathrm{P}\left(\left|X_{n, k}\right|>b_{n}\right) \rightarrow 0$;
(ii) $\frac{1}{b_{n}^{2}} \sum_{k=1}^{n} E\left(Y_{n, k}^{2}\right) \rightarrow 0$.

Finally, let $S_{n}=X_{n, 1}+\cdots+X_{n, n}$ and $a_{n}=\sum_{k=1}^{n} E\left(Y_{n, k}\right)$, then

$$
\frac{S_{n}-a_{n}}{b_{n}} \xrightarrow{P} 0
$$

Proof. Let $T_{n}=Y_{n, 1}+\cdots+Y_{n, n}$. Notice that

$$
\mathrm{P}\left(\left|\frac{S_{n}-a_{n}}{b_{n}}\right|>\epsilon\right) \leq \mathrm{P}\left(S_{n} \neq T_{n}\right)+\mathrm{P}\left(\left|\frac{T_{n}-a_{n}}{b_{n}}\right|>\epsilon\right),
$$

by the union bound. Now we analyze the two terms on the r.h.s. separately. For the first term, note that if $S_{n} \neq T_{n}$, there is at least one k such that $Y_{n, k} \neq X_{n, k}$. Thus, by union bound again,

$$
\mathrm{P}\left(S_{n} \neq T_{n}\right) \leq \mathrm{P}\left(\cup_{k=1}^{n}\left\{Y_{n, k} \neq X_{n, k}\right\}\right) \leq \sum_{k=1}^{n} \mathrm{P}\left(\left|X_{n, k}\right|>b_{n}\right) \rightarrow 0
$$

by assumption (i). For the second term, apply Markov's inequality and the
inequality $\operatorname{Var}(X) \leq E X^{2}$ to obtain that

$$
\begin{aligned}
\mathrm{P}\left(\left|\frac{T_{n}-a_{n}}{b_{n}}\right|>\epsilon\right) & \leq \frac{1}{\epsilon^{2}} E\left|\frac{T_{n}-a_{n}}{b_{n}}\right|^{2}=\frac{1}{\epsilon^{2}} \operatorname{Var}\left(\frac{T_{n}}{b_{n}}\right) \\
& =\frac{\operatorname{Var}\left(T_{n}\right)}{\epsilon^{2} b_{n}^{2}}=\frac{1}{\epsilon^{2} b_{n}^{2}} \sum_{k=1}^{n} \operatorname{Var}\left(Y_{n, k}\right) \\
& \leq \frac{1}{\epsilon^{2} b_{n}^{2}} \sum_{k=1}^{n} E\left|Y_{n, k}\right|^{2} \rightarrow 0,
\end{aligned}
$$

where the last step follows from assumption (ii). Since $\epsilon>0$ is arbitrary, we get the asserted convergence in probability.

Example 15.1 (St. Petersburg paradox). A casino offers the following game: you keep flipping a (fair) coin until you get a tail and, the payout is 2^{k} dollars where k is the total number of flips. For example, if the first flip is a head and the second is a tail, then you get 4 dollars. Let X be the payout. Clearly, $\mathrm{P}\left(X=2^{k}\right)=2^{-k}$ and thus $E[X]=\infty$. What would be a fair price to play this game? One possible solution is to use WLLN. Let X_{1}, X_{2}, \ldots be a sequence of i.i.d. random variables with the same distribution as X. One can apply WLLN for triangular arrays with $X_{n, k}=X_{k}$,

$$
a_{n}=n \log _{2} n+n \log _{2}\left(\log _{2} n\right), \quad b_{n}=n \log _{2} n
$$

to show that $S_{n} /\left(n \log _{2} n\right) \xrightarrow{P}$ 1. (See Durrett's book for details.) So if you plan to play the game 1,000 times, on average you will win $\log _{2} 1000 \approx 10$ dollars each time and thus 10 dollars is arguably a fair price.

15.2 Special cases of WLLN

Theorem 15.2 (Feller's WLLN). For an i.i.d. sequence of random variables $\left\{X_{n}\right\}_{n \geq 1}$ with $\lim _{x \rightarrow \infty} x \mathrm{P}\left(\left|X_{1}\right|>x\right)=0$, we have

$$
\frac{S_{n}}{n}-E\left(X_{1} \mathbb{1}_{\left\{\left|X_{1}\right| \leq n\right\}}\right) \xrightarrow{P} 0 .
$$

Proof. We apply the WLLN for triangular arrays with $b_{n}=n$ and $X_{n, k}=X_{k}$. By the i.i.d. assumption, condition (i) is automatically satisfied. Further,
$a_{n} / b_{n}=E\left[X_{1} \mathbb{1}_{\left|X_{1}\right| \leq n}\right]$. So we only need to verify condition (ii). For a nonnegative random variable Z and $p>0$, we have $E\left(Z^{p}\right)=\int_{0}^{\infty} p z^{p-1} \mathrm{P}(Z>$ $z) d z$. Thus, by letting $Y_{n, 1}=X_{1} \mathbb{1}_{\left\{\left|X_{1}\right| \leq n\right\}}$,

$$
\begin{aligned}
E\left[Y_{n, 1}^{2}\right] & =\int_{0}^{\infty} 2 y \mathrm{P}\left(\left|X_{1}\right| \mathbb{1}_{\left\{\left|X_{1}\right| \leq n\right\}}>y\right) d y \\
& =\int_{0}^{n} 2 y \mathrm{P}\left(\left|X_{1}\right| \mathbb{1}_{\left\{\left|X_{1}\right| \leq n\right\}}>y\right) d y \\
& \leq \int_{0}^{n} 2 y \mathrm{P}\left(\left|X_{1}\right|>y\right) d y
\end{aligned}
$$

But by the assumption that $y \mathrm{P}\left(\left|X_{1}\right|>y\right) \rightarrow 0$, we have

$$
\begin{equation*}
\frac{1}{n} \int_{0}^{n} 2 y \mathrm{P}\left(\left|X_{1}\right|>y\right) d y \rightarrow 0, \quad \text { as } n \rightarrow \infty \tag{1}
\end{equation*}
$$

which shows that condition (ii) in Theorem 15.1 is satisfied. Intuitively, (1) is true because the l.h.s. can be interpreted as the average of $2 y \mathrm{P}\left(\left|X_{1}\right|>y\right)$ which goes to zero (you may recall Cesaro mean.) We present the complete proof in the following lemma.

Lemma 15.1. Let $g:[0, \infty) \rightarrow[0, \infty)$ be a function such that $\lim _{x \rightarrow \infty} g(x)=$ 0 and $\sup _{0 \leq x \leq n} g(x)<\infty$ for every n. Then, $n^{-1} \int_{0}^{n} g(x) d x \rightarrow 0$ as $n \rightarrow \infty$.

Proof. For any $\epsilon>0$, there exists $K=K(\epsilon)<\infty$ such that $g(x) \leq \epsilon$ for all $x \geq K$. Further, $\sup _{0 \leq x \leq K} g(x)=M(K)<\infty$ by the assumption. Then,

$$
\begin{aligned}
\int_{0}^{n} g(x) d x & =\int_{0}^{K} g(x) d x+\int_{K}^{n} g(x) d x \\
& \leq K M+(n-K) \epsilon
\end{aligned}
$$

Hence, $n^{-1} \int_{0}^{n} g(x) d x<n^{-1} K M+\epsilon$. Note that both K and M only depend on ϵ. We can taking limsup on both sides and get

$$
\limsup _{n \rightarrow \infty} \frac{1}{n} \int_{0}^{n} g(x) d x<\epsilon
$$

Since ϵ is arbitrary and $g(x) \geq 0$, this means that $n^{-1} \int_{0}^{n} g(x) d x \rightarrow 0$.

Example 15.2. Let X_{1}, X_{2}, \ldots be a sequence of i.i.d. random variables such that each follows the Cauchy distribution, i.e.

$$
\mathrm{P}\left(X_{i} \leq x\right)=\int_{-\infty}^{x} \frac{d t}{\pi\left(1+t^{2}\right)}
$$

As $x \rightarrow \infty$, we have

$$
\mathrm{P}\left(\left|X_{i}\right|>x\right)=2 \int_{x}^{\infty} \frac{d t}{\pi\left(1+t^{2}\right)} \sim \frac{2}{\pi} \int_{x}^{\infty} \frac{d t}{t^{2}}=\frac{2}{\pi x}
$$

The assumption of Feller's WLLN does not hold, and in fact S_{n} / n does not converge in probability.
Example 15.3. Let $\left\{X_{n}\right\}$ be i.i.d. and symmetric random variables with distribution function

$$
1-F(x)=\frac{e}{2 x \log x}, \quad \text { for } x \geq e
$$

(This implies $\mathrm{P}(X \in(-e, e))=0$.) One can check that $E\left[X^{+}\right]=E\left[X^{-}\right]=\infty$ and thus the expectation does not exist. However, $\lim _{x \rightarrow \infty} n \mathrm{P}\left(\left|X_{1}\right|>n\right)=$ $e / \log n \rightarrow 0$, and thus the assumption of Feller's WLLN is satisfied. Further, $E\left[X_{1} \mathbb{1}_{\left\{\left|X_{1}\right| \leq n\right\}}\right]=0$ for every n by symmetry. Hence, $S_{n} / n \xrightarrow{P} 0$.
Theorem 15.3 (Khintchin's WLLN). For an i.i.d. sequence $\left\{X_{n}\right\}_{n \geq 1}$ with mean μ and $E\left|X_{1}\right|<\infty$, we have $S_{n} / n \xrightarrow{P} \mu$.
Proof. This is a special case of Feller's WLLN. To prove this, note that $E\left|X_{1}\right|<\infty$ implies that

$$
n \mathrm{P}\left(\left|X_{1}\right|>n\right)=E\left[n \mathbb{1}_{\left\{\left|X_{1}\right|>n\right\}}\right] \leq E\left[\left|X_{1}\right| \mathbb{1}_{\left\{\left|X_{1}\right|>n\right\}}\right] \rightarrow 0,
$$

by DCT. It also follows from DCT that $E\left(X_{1} \mathbb{1}_{\left\{\left|X_{1}\right| \leq n\right\}}\right) \rightarrow E\left[X_{1}\right]$.
Theorem 15.4 (WLLN with finite variances). For an i.i.d. sequence $\left\{X_{n}\right\}_{n \geq 1}$ with mean μ and variance $\sigma^{2}<\infty$, we have $S_{n} / n \xrightarrow{P} \mu$.
Proof. This is just a special case of Khintchin's WLLN since finite variance implies that $E\left|X_{1}\right|<\infty$.

References

[1] Rick Durrett. Probability: Theory and Examples, volume 49. Cambridge university press, 2019.
[2] Sidney Resnick. A Probability Path. Springer, 2019.

