Lecture 13

Instructor: Quan Zhou
For more details about the materials covered in this note, see Chapters 6.1, 6.2 and 8.5 of Resnick [1].

13.1 Convergence modes

Definition 13.1. Let $\left\{X_{n}\right\}_{n \geq 1}$ be a sequence of random variables defined on a probability space $(\Omega, \mathcal{F}, \overline{\mathrm{P}})$, and X be another random variable defined on the same space.
(i) We say X_{n} converges almost surely to X if $\mathrm{P}\left(\lim _{n \rightarrow \infty} X_{n}=X\right)=1$, and we write $X_{n} \xrightarrow{\text { a.s. }} X$.
(ii) We say X_{n} converges in probability to X if $\lim _{n \rightarrow \infty} \mathrm{P}\left(\left|X_{n}-X\right|>\epsilon\right)=0$ for any $\epsilon>0$, and we write $X_{n} \xrightarrow{P} X$.
(iii) We say X_{n} converges in L^{p} to X if $\lim _{n \rightarrow \infty} E\left|X_{n}-X\right|^{p}=0$, and we write $X_{n} \xrightarrow{L^{p}} X$.

Definition 13.2. Let X be a random variable with distribution function F, and $\left\{X_{n}\right\}_{n \geq 1}$ be a sequence of random variables where X_{n} has distribution function F_{n}. We say X_{n} converges in distribution (or converges weakly) to X if $\lim _{n \rightarrow \infty} F_{n}(x)=F(x)$, for every $x \in \mathbb{R}$ at which F is continuous. We write $X_{n} \xrightarrow{D} X$.

Remark 13.1. For convergence in distribution, random variables X, X_{1}, X_{2}, \ldots can be defined on different probability spaces.

Example 13.1. Let Z_{1}, Z_{2}, \ldots be i.i.d. Bernoulli random variables with $\mathrm{P}\left(Z_{i}=0\right)=p$ and $\mathrm{P}\left(Z_{i}=1\right)=1-p$, where $p \in(0,1)$. Define $X_{n}=$ $\max \left\{Z_{1}, \ldots, Z_{n}\right\}$. Then $X_{n} \xrightarrow{\text { a.s. }} 1$. Note that for any $n<\infty, \mathrm{P}\left(X_{n}<1\right)=$ $p^{n}>0$.

Example 13.2. Consider a sequence of random variables X_{1}, X_{2}, \ldots such that $\mathrm{P}\left(X_{n}=n\right)=1 / n$ and $\mathrm{P}\left(X_{n}=0\right)=1-1 / n$. Then $X_{n} \xrightarrow{P} 0$ since, for any $\epsilon>0, \mathrm{P}\left(\left|X_{n}\right|>\epsilon\right)=1 / n$ and converges to 0 . But $E\left[X_{n}\right]=1$ for every n. Hence, X_{n} does not converge to 0 in L^{1}. Indeed, X_{n} does not converge in L^{p} for any $p \geq 1$.

Example 13.3 (Continuation of Example 13.2). Recall how we constructed such a sequence of random variables in Example 5.1: consider the probability space $([0,1], \mathcal{B}([0,1]), m)$ where m denotes the Lebesgue measure and define

$$
X_{n}(\omega)=\left\{\begin{array}{lc}
n, & \text { if } \omega \in(0,1 / n) \\
0, & \text { otherwise }
\end{array}\right.
$$

Then for every ω, we have $\lim _{n \rightarrow \infty} X_{n}(\omega)=0$, i.e. $X_{n} \xrightarrow{\text { a.s. }} 0$.
Example 13.4 (Continuation of Example 13.2). However, if we assume X_{1}, X_{2}, \ldots are independent, then the sequence $\left\{X_{n}\right\}$ does not converge almost surely. We do not prove this claim here. Let's consider another construction which does not converge almost surely either. We still consider the probability space $([0,1], \mathcal{B}([0,1]), m)$. Let's construct X_{1}, X_{2}, \ldots as follows:

$$
X_{1}=\mathbb{1}_{(0,1)}, X_{2}=2 \mathbb{1}_{(0,1 / 2)}, X_{3}=3 \mathbb{1}_{(1 / 2,5 / 6)}, X_{4}=4\left(\mathbb{1}_{(5 / 6,1)}+\mathbb{1}_{(0,1 / 12)}\right) \ldots
$$

See the figure on the next page, which plots $X_{1}, X_{2}, \ldots, X_{50}$. So if $X_{n}(\omega)$ converges almost surely to zero, then there must exist some integer $N<\infty$ such that $\sum_{n=N}^{\infty} 1 / n<1$. But this is impossible.

Example 13.5. Consider the probability space $([0,1], \mathcal{B}([0,1]), m)$ again. This time let's define a sequence of random variables by

$$
\begin{gathered}
X_{1}=\mathbb{1}_{(0,1)}, \quad X_{2}=\mathbb{1}_{(1 / 2,1)}, \\
X_{3}=\mathbb{1}_{(0,1 / 3)}, \quad X_{4}=\mathbb{1}_{(1 / 3,2 / 3)}, \quad X_{5}=\mathbb{1}_{(2 / 3,1)}, \\
X_{6}=\mathbb{1}_{(0,1 / 4)}, \quad X_{7}=\mathbb{1}_{(1 / 4,1 / 2)}, \quad X_{8}=\mathbb{1}_{(1 / 2,3 / 4)}, \quad X_{9}=\mathbb{1}_{(3 / 4,1)} \ldots
\end{gathered}
$$

We do not plot these functions here, but one can check that X_{n} does not converge to 0 almost surely. However, for any $p \in(0, \infty), E\left|X_{n}\right|^{p}=\mathrm{P}\left(X_{n}=\right.$ $1) \rightarrow 0$; that is, $X_{n} \xrightarrow{L^{p}} 0$.

Example 13.6. Recall the Weak Law of Large Numbers (WLLN). If X_{1}, X_{2}, \ldots is an i.i.d. sequence of random variables with $E\left(X_{i}\right)=\mu$ and $\operatorname{Var}\left(X_{i}\right)=\sigma^{2}<$ ∞. Then $\bar{X}_{n} \xrightarrow{P} \mu$.

Example 13.7. Let F be a distribution function for some continuous random variable. Define $F_{n}(x)=F(x+n)$ (check this is a distribution function!) Clearly, $F_{n}(x) \rightarrow 1$ for every $x \in \mathbb{R}$ since $\lim _{x \rightarrow \infty} F(x)=1$. So $\left\{F_{n}\right\}$ is convergent but the limit is not a distribution function.

Example 13.8. Let X be a Bernoulli random variable with $\mathrm{P}(X=0)=$ $\mathrm{P}(X=1)=1 / 2$ and define a sequence of random variables X_{1}, X_{2}, \ldots by letting $X_{n}=X$. Clearly $X_{n} \xrightarrow{D} X$ (and it also converges in probability and almost surely.) Now let $Y=1-X$. Clearly, Y is another random variable with the same distribution as X and thus $X_{n} \xrightarrow{D} Y$. However, $\left\{X_{n}\right\}$ does not converge in probability to Y since $\left|X_{n}(\omega)-Y(\omega)\right|=1$ for any n and ω.

13.2 Relations among modes of convergence

Theorem 13.1. Let $\left\{X_{n}\right\}_{n \geq 1}, X$ be defined on the same probability space.
(i) If $X_{n} \xrightarrow{\text { a.s. }} X$, then $X_{n} \xrightarrow{P} X$.
(ii) If $X_{n} \xrightarrow{P} X$, then $X_{n} \xrightarrow{D} X$.
(iii) If $X_{n} \xrightarrow{L^{p}} X$ for some $p>0$, then $X_{n} \xrightarrow{P} X$.
(iv) If $X_{n} \xrightarrow{L^{p}} X$ for some $p>0$, then $X_{n} \xrightarrow{L^{r}} X$ for $0<r \leq p$.

Proof of part (i) . Almost sure convergence means that the event $\left\{\lim _{n \rightarrow \infty} X_{n}=\right.$ $X\}$ has probability 1 , which implies that, for any $\epsilon>0$, the event

$$
B_{\epsilon}=\left\{\left|X_{n}-X\right|>\epsilon \text { for infinitely many } X_{n}\right\}
$$

has probability zero. Recall that given a sequence of sets $\left\{A_{n}\right\}$, we have that $\omega \in \lim \sup _{n \rightarrow \infty} A_{n}$ if and only if ω occurs in infinitely many A_{n}. Hence, we can write $B_{\epsilon}=\lim \sup _{n \rightarrow \infty}\left\{\left|X_{n}-X\right|>\epsilon\right\}$ and obtain

$$
0=\mathrm{P}\left(\limsup _{n \rightarrow \infty}\left\{\left|X_{n}-X\right|>\epsilon\right\}\right)=\mathrm{P}\left(\bigcap_{n \geq 1} \bigcup_{k \geq n}\left\{\left|X_{k}-X\right|>\epsilon\right\}\right)
$$

By the continuity and monotonicity of measures,

$$
\begin{aligned}
\mathrm{P}\left(\bigcap_{n \geq 1} \bigcup_{k \geq n}\left\{\left|X_{k}-X\right|>\epsilon\right\}\right) & =\lim _{n \rightarrow \infty} \mathrm{P}\left(\bigcup_{k \geq n}\left\{\left|X_{k}-X\right|>\epsilon\right\}\right) \\
& \geq \limsup _{n \rightarrow \infty} \mathrm{P}\left(\left|X_{n}-X\right|>\epsilon\right) .
\end{aligned}
$$

Hence, for any $\epsilon>0$, we have $\lim \sup \mathrm{P}\left(\left|X_{n}-X\right|>\epsilon\right)=0$. But this means $X_{n} \xrightarrow{P} X$.

Proof of part (iin). Consider arbitrary $x \in \mathbb{R}$ and $\epsilon>0$. If $X_{n} \leq x$, then we have either $\left|X_{n}-X\right|>\epsilon$ or $X \leq x+\epsilon$. Hence,

$$
\left\{X_{n} \leq x\right\} \subset\{X-x \leq \epsilon\} \cup\left\{\left|X_{n}-X\right|>\epsilon\right\}
$$

This implies

$$
\begin{aligned}
F_{n}(x)=\mathrm{P}\left(X_{n} \leq x\right) & \leq \mathrm{P}(X-x \leq \epsilon)+\mathrm{P}\left(\left|X_{n}-X\right|>\epsilon\right) \\
& =F(x+\epsilon)+\mathrm{P}\left(\left|X_{n}-X\right|>\epsilon\right) .
\end{aligned}
$$

Similarly, $\{X \leq x-\epsilon\} \subset\left\{X_{n} \leq x\right\} \cup\left\{\left|X_{n}-X\right|>\epsilon\right\}$ and thus

$$
F(x-\epsilon) \leq F_{n}(x)+\mathrm{P}\left(\left|X_{n}-X\right|>\epsilon\right)
$$

Letting n go to infinity and using the assumption that $X_{n} \xrightarrow{P} X$, we obtain

$$
F(x-\epsilon) \leq \liminf _{n \rightarrow \infty} F_{n}(x) \leq \limsup _{n \rightarrow \infty} F_{n}(x) \leq F(x+\epsilon)
$$

If $F(x)$ is continuous at x, then $\lim _{\epsilon \rightarrow 0} F(x-\epsilon)=\lim _{\epsilon \rightarrow 0} F(x+\epsilon)=F(x)$, which yields

$$
F(x)=\lim _{n \rightarrow \infty} F_{n}(x)
$$

Hence, $X_{n} \xrightarrow{D} X$.
Proof of part (iii). By Markov inequality,

$$
\mathrm{P}\left(\left|X_{n}-X\right| \geq \epsilon\right)=\mathrm{P}\left(\left|X_{n}-X\right|^{p} \geq \epsilon^{p}\right) \leq \frac{E\left|X_{n}-X\right|^{p}}{\epsilon^{p}}
$$

which converges to zero for any given $\epsilon>0$. Hence, $X_{n} \xrightarrow{P} X$.
Proof of part (iv). Recall that for $p \geq r$ and a random variable Z, we have $\|Z\|_{L^{p}} \geq\|Z\|_{L^{r}}$ (see Example 10.3). Hence,

$$
E\left|X_{n}-X\right|^{p} \geq\left(E\left|X_{n}-X\right|^{r}\right)^{p / r} \geq 0
$$

Since $E\left|X_{n}-X\right|^{p} \rightarrow 0$, we have $E\left|X_{n}-X\right|^{r} \rightarrow 0$.

References

[1] Sidney Resnick. A Probability Path. Springer, 2019.
[2] Jordan M Stoyanov. Counterexamples in probability. Courier Corporation, 2013.

