
Lecture 12

Instructor: Quan Zhou

For more details about the materials covered in this note, see Chapter
10.4 of Resnick [3] and Chapter 4.2 of Durrett [2].

12.1 Martingales

Let (Ω,F ,P) be a probability space.

Definition 12.1. {Fi}i≥1 is called a filtration, if it is an non-decreasing
sequence of σ-algebras, i.e. each Fi is a σ-algebra on Ω and F1 ⊂ F2 ⊂ · · · ⊂
F . We often assume the index i starts from 0 and let F0 = {∅,Ω}.

Definition 12.2. A sequence of random variables {Xi}i≥1 is said to be
adapted to {Fi}i≥1 if Xi ∈ Fi for each i.

Definition 12.3. A sequence of random variables {Xi}i≥1 adapted to {Fi}i≥1

is said to be a martingale w.r.t. {Fi}i≥1, if for each i, we have (i) E|Xi| < ∞;
(ii) E[Xi+1 | Fi] = Xi.

Example 12.1. Consider tossing a coin infinitely many times. The sample
space is Ω = {ω = (ω1, ω2, . . . ) : ωi ∈ {H,T}}. We can define a filtration
{Fn}n≥1 by letting Fn be the σ-algebra “generated by” the first n tosses;
i.e., Fn represents the information we have after observing n tosses. By
convention, we often let F0 = {∅,Ω} to represent no information. To simplify
the notation, let AH denote the set of all sequences beginning with H, i.e.

AH = {ω = (ω1, ω2, . . . ) : ω1 = H}.

AT , AHH , AHT , . . . are defined similarly. Then, we have

F1 = {∅,Ω, AH , AT},
F2 = {∅,Ω, AH , AT , AHH , AHT , ATH , ATT ,

AHH ∪ ATH , AHH ∪ ATT , AHT ∪ ATH , AHT ∪ ATT , A
c
HH , A

c
HT , A

c
TH , A

c
TT}.

Example 12.2. Let Z1, Z2, . . . be a sequence of i.i.d. random variables with
E[Zi] = 0 (and thus E|Zi| < ∞). Let Sn =

∑n
i=1 Zi and define Fn =

σ(Z1, . . . , Zn). Then {Sn}n≥1 is a martingale.
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12.2 Martingale concentration inequalities

Lemma 12.1. For any distribution F on [0, 1] with mean p and any convex
function φ : [0, 1] → R, we have∫ 1

0

φ(x)F (dx) ≤ pφ(1) + (1− p)φ(0).

That is, if X is a random variable with distribution F , then E[φ(X)] is
maximized when F is the Bernoulli distribution with mean p.

Proof. Let X be a random variable with distribution F , and let U be a
uniform random variable on [0, 1] independent of X. Define another random
variable Y = 1{U≤X}, which follows a Bernoulli distribution. Further,

E[Y ] = E[E[Y | X]] = E[E[1{U≤X} | X]] = E[X] = p.

(Conditioning on X = x, U is still uniformly distributed.) Of course you
can also directly compute E[Y ]. Since U,X are independent, their joint
distribution is given by the product measure and then by Fubini’s Theorem,

E[Y ] =

∫
[0,1]

∫
[0,1]

1{u≤x}PX(dx)PU(du) = E[X],

where PX , PU denote the distribution of X and U respectively. Since Y is
bounded, by Jensen’s inequality (the conditional version),

E[φ(Y ) | X] ≥ φ(E[Y | X]) = φ(X).

Taking expectation on both sides, we obtain the asserted inequality.

Theorem 12.1 (Azuma’s inequality). Let X0, X1, . . . be a martingale se-
quence (X0 can be understood as the initial value of this process) such that
|Xi −Xi−1| ≤ ci < ∞, a.s. for i = 1, 2, . . . . Then,

P(Xn −X0 ≥ t) ≤ exp

(
− t2

2
∑n

i=1 c
2
i

)
.

Remark 12.1. Let Zi = Xi − Xi−1 for i = 1, . . . , n. Then, Xn − X0 =∑n
i=1 Zi. If Z1, . . . , Zn are i.i.d. with mean zero, we can also apply Hoeffding’s

inequality to obtain the above result.
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Proof. First, apply the Chernoff bound to obtain

P(Xn −X0 ≥ t) ≤ e−λtE[eλ(Xn−X0)], ∀λ > 0.

The increments |Xi −Xi−1| (i = 1, 2, . . . ) are not independent. But we can
use conditioning.

E[eλ(Xn−X0)] = E[E[eλ(Xn−X0) | Fn−1]]

= E[eλ(Xn−1−X0) E[eλ(Xn−Xn−1) | Fn−1]].

By assumptionXn−Xn−1 is bounded on (−cn, cn) and E[Xn−Xn−1 | Fn−1] =
0 since {Xn} is a martingale. Hence, the conditional distribution of ∆n =
(Xn −Xn−1 + cn)/(2cn) is a distribution on [0, 1] with mean 1/2.

Therefore, by Lemma 12.1 (recall that exp is convex),

E[eλ∆n | Fn−1] ≤
1

2

(
eλ + 1

)
.

Since Xn −Xn−1 = 2cn∆n − cn,

E[eλ(Xn−Xn−1) | Fn−1] ≤
1

2
e−λcn

(
e2λcn + 1

)
= cosh(λcn) ≤ eλ

2c2n/2.

The last inequality can be proved by comparing the corresponding Taylor
series expansions. Applying the above inequality iteratively, we get

e−λtE[eλ(Xn−X0)] ≤ exp

(
λ2

2

n∑
i=1

c2i − λt

)
.

Azuma’s inequality is then proved by letting λ = t/(
∑

c2i ).

Theorem 12.2 (Efron-Stein inequality). Let X1, . . . , Xn be n independent
random variables and let Y = f(X1, . . . , Xn) for some Borel function f such
that E|Y | < ∞. Define Ei[Y ] = E[Y | X1, . . . , Xi−1, Xi+1, . . . , Xn]. Then,

Var(Y ) ≤
n∑

i=1

E
(
{Y − Ei[Y ]}2

)
.

Proof. Define a filtration by letting Fi = σ(X1, . . . , Xi). Define ∆i = E[Y |
Fi]− E[Y | Fi−1]. By the properties of conditional expectation,

E[∆i | Fi−1] = 0,
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and thus {E[Y | Fi]}i≥1 is a martingale w.r.t. {Fi}i≥1. Further,

n∑
i=1

∆i =
n∑

i=1

(E[Y | Fi]− E[Y | Fi−1])

= E[Y | Fn]− E[Y | F0] = Y − E[Y ].

Next, we claim that

Var[Y ] = E
{
(Y − E[Y ])2

}
= E

( n∑
i=1

∆i

)2
 =

n∑
i=1

E[∆2
i ].

This is because for any i > j, we have

E[∆i∆j] = E[E[∆i∆j | Fj]] = E[∆j E[∆i | Fj]] = 0.

We claim that we have

E[Y | Fi−1] = E[E[Y | X1, . . . , Xi−1, Xi+1, . . . , Xn] | Fi]. (1)

Note that conditioning on Fi just means to condition on X1, . . . , Xi. To
prove (1), let U = (X1, . . . , Xi−1) and V = E[Y | U,Xi+1, . . . , Xn]. Then,

E[E[Y | X1, . . . , Xi−1, Xi+1, . . . , Xn] | Fi] = E[V | σ(U,Xi)].

Observing that (V, U) is σ(U,Xi+1, . . . , Xn)-measurable, by Theorem 7.2, we
know that (V, U) is independent of Xi. By Proposition 9.2 (iii),1 we find
that E[V | σ(U,Xi)] = E[V | U ], which is equal to E[Y | Fi−1] by the tower
property of conditional expectation.

By Jensen’s inequality for conditional expectation,

∆2
i = (E[Y | Fi]− E[Y | Fi−1])

2

= (E {Y − E[Y | X1, . . . , Xi−1, Xi+1, . . . , Xn] | Fi})2

≤ E
(
{Y − E[Y | X1, . . . , Xi−1, Xi+1, . . . , Xn]}2 | Fi

)
.

Taking expectation on both sides we get

E[∆2
i ] ≤ E

(
{Y − E[Y | X1, . . . , Xi−1, Xi+1, . . . , Xn]}2

)
,

which completes the proof.
1In Proposition 9.2 (iii), we only considered the case of three random variables. But

the extension to more than three random variables is straightforward.
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Example 12.3. Consider the simple random walk Sn = X1 +X2 + · · ·+Xn

where {Xi}i≥1 is an i.i.d. sequence of random variables and P(Xi = 1) =
P(Xi = −1) = 1/2. Then {Sn}n≥1 is a martingale with bounded increments.
Hence, by Azuma’s inequality,

P(Sn > t) ≤ e−t2/2n i.e. P(Sn >
√

2n log n) ≤ 1

n
.

This can also be obtained from Hoeffding’s inequality.
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