Lecture 12

Instructor: Quan Zhou

For more details about the materials covered in this note, see Chapter
10.4 of Resnick [3] and Chapter 4.2 of Durrett [2].

12.1 Martingales
Let (2, F,P) be a probability space.

Definition 12.1. {F;};>; is called a filtration, if it is an non-decreasing
sequence of g-algebras, i.e. each F; is a g-algebra on 2 and F; C F, C --- C
F. We often assume the index i starts from 0 and let Fy = {0, Q}.

Definition 12.2. A sequence of random variables {X;};>; is said to be
adapted to {F;}i>1 if X; € F; for each i.

Definition 12.3. A sequence of random variables { X, };>; adapted to {F; };>1
is said to be a martingale w.r.t. {F;};>1, if for each i, we have (i) E|X;| < oo;
(i) B[ X1 | Fi] = X;.

Example 12.1. Consider tossing a coin infinitely many times. The sample
space is Q = {w = (wy,wa,...) : w; € {H,T}}. We can define a filtration
{Fn}tn>1 by letting F,, be the o-algebra “generated by” the first n tosses;
i.e., F, represents the information we have after observing n tosses. By
convention, we often let Fy = {(), 2} to represent no information. To simplify
the notation, let Ay denote the set of all sequences beginning with H, i.e.

Ay ={w = (w1,wq,...): wy = H}.
Ar, Ay, Agr, ... are defined similarly. Then, we have

]:1 == {®797AH7AT}7
Fo=A{0,Q, Ay, Ar, Agu, Aur, Aru, Arr,
Aug UAry, Agn U Arr, Apr U Arg, Aur U Arr, Ay, Ay A AT b

Example 12.2. Let 7, Z>, ... be a sequence of i.i.d. random variables with
E[Z;)] = 0 (and thus E|Z;] < o0). Let S, = >, Z; and define F,, =
o(Z1,...,Zy). Then {S,},>1 is a martingale.
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12.2 Martingale concentration inequalities

Lemma 12.1. For any distribution F' on [0, 1] with mean p and any convex
function ¢ : [0,1] — R, we have

A<M@Fw@fnwﬂ%+ﬂ—pM®)

That is, if X is a random wvariable with distribution F', then E[p(X)] is
maximized when F is the Bernoulli distribution with mean p.

Proof. Let X be a random variable with distribution F', and let U be a
uniform random variable on [0, 1] independent of X. Define another random
variable Y = 1{y<x), which follows a Bernoulli distribution. Further,

EY] = E[E[Y | X]) = E[E[Lpxy | X]] = E[X] = p

(Conditioning on X = z, U is still uniformly distributed.) Of course you
can also directly compute E[Y]. Since U, X are independent, their joint
distribution is given by the product measure and then by Fubini’s Theorem,

E[Y] = /[0 } A) § 1ucs) P (d2)Py (du) = E[X],

where Py, Py denote the distribution of X and U respectively. Since Y is
bounded, by Jensen’s inequality (the conditional version),

Elp(Y) | X] = o(E[Y | X]) = ¢(X).
Taking expectation on both sides, we obtain the asserted inequality. O]

Theorem 12.1 (Azuma’s inequality). Let Xy, Xi,... be a martingale se-
quence (Xo can be understood as the initial value of this process) such that
|1 X; — Xiq| < ¢ < o0, as. fori=1,2,.... Then,

t2
P(X,—Xo>1t) < ——— | .
( "= )_eXp( 221:1022)
Remark 12.1. Let Z; = X; — X;_ 1 for i = 1,...,n. Then, X, — X, =
v Zio W2y, ..., Z, areiid. with mean zero, we can also apply Hoeffding’s
inequality to obtain the above result.
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Proof. First, apply the Chernoff bound to obtain
P(X, — Xo >t) < e ME[XE=X0)] - yA >0,

The increments | X; — X; 4| (i = 1,2,...) are not independent. But we can
use conditioning.

E[}X=%0)] = E[E[A X0 | F, 4]
_ E[BA(Xn_l_XO) E[e)\(xn_xn—l) ’ Fn—l”

By assumption X,,—X,,_; is bounded on (—¢,, ¢,) and E[X,,—X,,_1 | Fo_1] =
0 since {X,} is a martingale. Hence, the conditional distribution of A, =
(X, — Xn—1 + ¢)/(2¢,) is a distribution on [0, 1] with mean 1/2.
Therefore, by Lemma [12.1] (recall that exp is convex),
1
E[ )\An|fn 1] 5(6)\4—1).
Since X,, — X,,_1 = 2¢, A, — ¢y,

1
E[e’\(X"_X”*) | Froq] < 56_)\6” (€2>\C" + 1) = cosh(A¢,) < eNen/?,

The last inequality can be proved by comparing the corresponding Taylor
series expansions. Applying the above inequality iteratively, we get

e ME[MNXn=X0)] < exp ( Z c; — )\t)

Azuma'’s inequality is then proved by letting A =t/ ¢?). O

Theorem 12.2 (Efron-Stein inequality). Let Xi,..., X, be n independent
random variables and let Y = f(Xy,...,X,) for some Borel function f such
that E|Y| < co. Define E;[Y] = E[Y | Xy, ..., Xi—1, Xis1, ..., Xy]. Then,

Var(Y) < Z E({Y - E[Y]}?).

Proof. Define a filtration by letting F; = 0(X3,...,X;). Define A; = E[Y |
Fi| — E[Y | Fi_1]. By the properties of conditional expectation,

EA; | Fizal =0
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and thus {E[Y | Fi]}i>1 is a martingale w.r.t. {F;};>1. Further,

ZA —Z Y [ F] = EIY [ Fial)

=1

=ElY | F,| - E]Y | F] =Y — E[Y].

Next, we claim that

Var[Y] = E{(Y - E[Y (ZA) :iE[A?}.

This is because for any i > j, we have
E[A;A;] = E[E[AA; | Fill = E[A; E[A; | F]] =
We claim that we have
E[Y ‘ Efl] == E[E[Y | Xl, P ,Xl',l,XiJrl, e 7Xn] | .E] (1)

Note that conditioning on F; just means to condition on Xi,...,X;. To
prove , let U = (X17 c. ,Xi,1> and V = E[Y ‘ U, X:L'Jrl, . ,Xn} Then,
E[E[Y | le e 7Xi—17Xi+17 e ;Xn] ’ E] = E[V ‘ O'(U, Xl)]

Observing that (V,U) is o(U, X;41, . .., X, )-measurable, by Theorem 7.2, we
know that (V,U) is independent of X;. By Proposition 9.2 (iii)[[] we find
that E[V | o(U, X;)] = E[V | U], which is equal to E[Y | F;_1] by the tower
property of conditional expectation.

By Jensen’s inequality for conditional expectation,

A= (E[Y | F] - E[Y | Fia])®
= (E{Y —E[Y | X1,.... Xi_1, Xis1,.. ., X, | F:})?
SE{Y -EY | X1, Xit, Xigrs -, Xl VP | )

Taking expectation on both sides we get
EA)<E{Y —EY | Xi,..., X1, Xit1s -, X)),

which completes the proof. ]

'n Proposition 9.2 (iii), we only considered the case of three random variables. But
the extension to more than three random variables is straightforward.
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Example 12.3. Consider the simple random walk S, = X; + Xo+---+ X,
where {X;};>1 is an i.i.d. sequence of random variables and P(X; = 1) =
P(X; = —1) =1/2. Then {S, },>1 is a martingale with bounded increments.
Hence, by Azuma’s inequality,

P(S, >t) <e ¥/ ie. P(S,>+/2nlogn) <

S|

This can also be obtained from Hoeffding’s inequality.
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