Lecture 12

Instructor: Quan Zhou

For more details about the materials covered in this note, see Chapter 10.4 of Resnick [3] and Chapter 4.2 of Durrett [2].

12.1 Martingales

Let $(\Omega, \mathcal{F}, \mathrm{P})$ be a probability space.
Definition 12.1. $\left\{\mathcal{F}_{i}\right\}_{i \geq 1}$ is called a filtration, if it is an non-decreasing sequence of σ-algebras, i.e. each \mathcal{F}_{i} is a σ-algebra on Ω and $\mathcal{F}_{1} \subset \mathcal{F}_{2} \subset \cdots \subset$ \mathcal{F}. We often assume the index i starts from 0 and let $\mathcal{F}_{0}=\{\emptyset, \Omega\}$.

Definition 12.2. A sequence of random variables $\left\{X_{i}\right\}_{i \geq 1}$ is said to be adapted to $\left\{\mathcal{F}_{i}\right\}_{i \geq 1}$ if $X_{i} \in \mathcal{F}_{i}$ for each i.
Definition 12.3. A sequence of random variables $\left\{X_{i}\right\}_{i \geq 1}$ adapted to $\left\{\mathcal{F}_{i}\right\}_{i \geq 1}$ is said to be a martingale w.r.t. $\left\{\mathcal{F}_{i}\right\}_{i \geq 1}$, if for each i, we have (i) $E\left|X_{i}\right|<\infty$; (ii) $E\left[X_{i+1} \mid \mathcal{F}_{i}\right]=X_{i}$.

Example 12.1. Consider tossing a coin infinitely many times. The sample space is $\Omega=\left\{\omega=\left(\omega_{1}, \omega_{2}, \ldots\right): \omega_{i} \in\{\mathrm{H}, \mathrm{T}\}\right\}$. We can define a filtration $\left\{\mathcal{F}_{n}\right\}_{n \geq 1}$ by letting \mathcal{F}_{n} be the σ-algebra "generated by" the first n tosses; i.e., \mathcal{F}_{n} represents the information we have after observing n tosses. By convention, we often let $\mathcal{F}_{0}=\{\emptyset, \Omega\}$ to represent no information. To simplify the notation, let A_{H} denote the set of all sequences beginning with H, i.e.

$$
A_{H}=\left\{\omega=\left(\omega_{1}, \omega_{2}, \ldots\right): \omega_{1}=\mathrm{H}\right\} .
$$

$A_{T}, A_{H H}, A_{H T}, \ldots$ are defined similarly. Then, we have

$$
\mathcal{F}_{1}=\left\{\emptyset, \Omega, A_{H}, A_{T}\right\}
$$

$$
\mathcal{F}_{2}=\left\{\emptyset, \Omega, A_{H}, A_{T}, A_{H H}, A_{H T}, A_{T H}, A_{T T}\right.
$$

$$
\left.A_{H H} \cup A_{T H}, A_{H H} \cup A_{T T}, A_{H T} \cup A_{T H}, A_{H T} \cup A_{T T}, A_{H H}^{c}, A_{H T}^{c}, A_{T H}^{c}, A_{T T}^{c}\right\}
$$

Example 12.2. Let Z_{1}, Z_{2}, \ldots be a sequence of i.i.d. random variables with $E\left[Z_{i}\right]=0$ (and thus $E\left|Z_{i}\right|<\infty$). Let $S_{n}=\sum_{i=1}^{n} Z_{i}$ and define $\mathcal{F}_{n}=$ $\sigma\left(Z_{1}, \ldots, Z_{n}\right)$. Then $\left\{S_{n}\right\}_{n \geq 1}$ is a martingale.

12.2 Martingale concentration inequalities

Lemma 12.1. For any distribution F on $[0,1]$ with mean p and any convex function $\varphi:[0,1] \rightarrow \mathbb{R}$, we have

$$
\int_{0}^{1} \varphi(x) F(d x) \leq p \varphi(1)+(1-p) \varphi(0)
$$

That is, if X is a random variable with distribution F, then $E[\varphi(X)]$ is maximized when F is the Bernoulli distribution with mean p.

Proof. Let X be a random variable with distribution F, and let U be a uniform random variable on $[0,1]$ independent of X. Define another random variable $Y=\mathbb{1}_{\{U \leq X\}}$, which follows a Bernoulli distribution. Further,

$$
E[Y]=E[E[Y \mid X]]=E\left[E\left[\mathbb{1}_{\{U \leq X\}} \mid X\right]\right]=E[X]=p .
$$

(Conditioning on $X=x, U$ is still uniformly distributed.) Of course you can also directly compute $E[Y]$. Since U, X are independent, their joint distribution is given by the product measure and then by Fubini's Theorem,

$$
E[Y]=\int_{[0,1]} \int_{[0,1]} \mathbb{1}_{\{u \leq x\}} \mathrm{P}_{X}(d x) \mathrm{P}_{U}(d u)=E[X],
$$

where P_{X}, P_{U} denote the distribution of X and U respectively. Since Y is bounded, by Jensen's inequality (the conditional version),

$$
E[\varphi(Y) \mid X] \geq \varphi(E[Y \mid X])=\varphi(X)
$$

Taking expectation on both sides, we obtain the asserted inequality.
Theorem 12.1 (Azuma's inequality). Let X_{0}, X_{1}, \ldots be a martingale sequence (X_{0} can be understood as the initial value of this process) such that $\left|X_{i}-X_{i-1}\right| \leq c_{i}<\infty$, a.s. for $i=1,2, \ldots$ Then,

$$
\mathrm{P}\left(X_{n}-X_{0} \geq t\right) \leq \exp \left(-\frac{t^{2}}{2 \sum_{i=1}^{n} c_{i}^{2}}\right)
$$

Remark 12.1. Let $Z_{i}=X_{i}-X_{i-1}$ for $i=1, \ldots, n$. Then, $X_{n}-X_{0}=$ $\sum_{i=1}^{n} Z_{i}$. If Z_{1}, \ldots, Z_{n} are i.i.d. with mean zero, we can also apply Hoeffding's inequality to obtain the above result.

Proof. First, apply the Chernoff bound to obtain

$$
\mathrm{P}\left(X_{n}-X_{0} \geq t\right) \leq e^{-\lambda t} E\left[e^{\lambda\left(X_{n}-X_{0}\right)}\right], \quad \forall \lambda>0 .
$$

The increments $\left|X_{i}-X_{i-1}\right|(i=1,2, \ldots)$ are not independent. But we can use conditioning.

$$
\begin{aligned}
E\left[e^{\lambda\left(X_{n}-X_{0}\right)}\right] & =E\left[E\left[e^{\lambda\left(X_{n}-X_{0}\right)} \mid \mathcal{F}_{n-1}\right]\right] \\
& =E\left[e^{\lambda\left(X_{n-1}-X_{0}\right)} E\left[e^{\lambda\left(X_{n}-X_{n-1}\right)} \mid \mathcal{F}_{n-1}\right]\right]
\end{aligned}
$$

By assumption $X_{n}-X_{n-1}$ is bounded on $\left(-c_{n}, c_{n}\right)$ and $E\left[X_{n}-X_{n-1} \mid \mathcal{F}_{n-1}\right]=$ 0 since $\left\{X_{n}\right\}$ is a martingale. Hence, the conditional distribution of $\Delta_{n}=$ $\left(X_{n}-X_{n-1}+c_{n}\right) /\left(2 c_{n}\right)$ is a distribution on $[0,1]$ with mean $1 / 2$.

Therefore, by Lemma 12.1 (recall that exp is convex),

$$
E\left[e^{\lambda \Delta_{n}} \mid \mathcal{F}_{n-1}\right] \leq \frac{1}{2}\left(e^{\lambda}+1\right)
$$

Since $X_{n}-X_{n-1}=2 c_{n} \Delta_{n}-c_{n}$,

$$
E\left[e^{\lambda\left(X_{n}-X_{n-1}\right)} \mid \mathcal{F}_{n-1}\right] \leq \frac{1}{2} e^{-\lambda c_{n}}\left(e^{2 \lambda c_{n}}+1\right)=\cosh \left(\lambda c_{n}\right) \leq e^{\lambda^{2} c_{n}^{2} / 2}
$$

The last inequality can be proved by comparing the corresponding Taylor series expansions. Applying the above inequality iteratively, we get

$$
e^{-\lambda t} E\left[e^{\lambda\left(X_{n}-X_{0}\right)}\right] \leq \exp \left(\frac{\lambda^{2}}{2} \sum_{i=1}^{n} c_{i}^{2}-\lambda t\right)
$$

Azuma's inequality is then proved by letting $\lambda=t /\left(\sum c_{i}^{2}\right)$.
Theorem 12.2 (Efron-Stein inequality). Let X_{1}, \ldots, X_{n} be n independent random variables and let $Y=f\left(X_{1}, \ldots, X_{n}\right)$ for some Borel function f such that $E|Y|<\infty$. Define $E_{i}[Y]=E\left[Y \mid X_{1}, \ldots, X_{i-1}, X_{i+1}, \ldots, X_{n}\right]$. Then,

$$
\operatorname{Var}(Y) \leq \sum_{i=1}^{n} E\left(\left\{Y-E_{i}[Y]\right\}^{2}\right)
$$

Proof. Define a filtration by letting $\mathcal{F}_{i}=\sigma\left(X_{1}, \ldots, X_{i}\right)$. Define $\Delta_{i}=E[Y \mid$ $\left.\mathcal{F}_{i}\right]-E\left[Y \mid \mathcal{F}_{i-1}\right]$. By the properties of conditional expectation,

$$
E\left[\Delta_{i} \mid \mathcal{F}_{i-1}\right]=0
$$

and thus $\left\{E\left[Y \mid \mathcal{F}_{i}\right]\right\}_{i \geq 1}$ is a martingale w.r.t. $\left\{\mathcal{F}_{i}\right\}_{i \geq 1}$. Further,

$$
\begin{aligned}
\sum_{i=1}^{n} \Delta_{i} & =\sum_{i=1}^{n}\left(E\left[Y \mid \mathcal{F}_{i}\right]-E\left[Y \mid \mathcal{F}_{i-1}\right]\right) \\
& =E\left[Y \mid \mathcal{F}_{n}\right]-E\left[Y \mid \mathcal{F}_{0}\right]=Y-E[Y]
\end{aligned}
$$

Next, we claim that

$$
\operatorname{Var}[Y]=E\left\{(Y-E[Y])^{2}\right\}=E\left[\left(\sum_{i=1}^{n} \Delta_{i}\right)^{2}\right]=\sum_{i=1}^{n} E\left[\Delta_{i}^{2}\right]
$$

This is because for any $i>j$, we have

$$
E\left[\Delta_{i} \Delta_{j}\right]=E\left[E\left[\Delta_{i} \Delta_{j} \mid \mathcal{F}_{j}\right]\right]=E\left[\Delta_{j} E\left[\Delta_{i} \mid \mathcal{F}_{j}\right]\right]=0
$$

We claim that we have

$$
\begin{equation*}
E\left[Y \mid \mathcal{F}_{i-1}\right]=E\left[E\left[Y \mid X_{1}, \ldots, X_{i-1}, X_{i+1}, \ldots, X_{n}\right] \mid \mathcal{F}_{i}\right] \tag{1}
\end{equation*}
$$

Note that conditioning on \mathcal{F}_{i} just means to condition on X_{1}, \ldots, X_{i}. To prove (11), let $U=\left(X_{1}, \ldots, X_{i-1}\right)$ and $V=E\left[Y \mid U, X_{i+1}, \ldots, X_{n}\right]$. Then,

$$
E\left[E\left[Y \mid X_{1}, \ldots, X_{i-1}, X_{i+1}, \ldots, X_{n}\right] \mid \mathcal{F}_{i}\right]=E\left[V \mid \sigma\left(U, X_{i}\right)\right]
$$

Observing that (V, U) is $\sigma\left(U, X_{i+1}, \ldots, X_{n}\right)$-measurable, by Theorem 7.2, we know that (V, U) is independent of X_{i}. By Proposition 9.2 (iii). $\frac{1}{1}$ we find that $E\left[V \mid \sigma\left(U, X_{i}\right)\right]=E[V \mid U]$, which is equal to $E\left[Y \mid \mathcal{F}_{i-1}\right]$ by the tower property of conditional expectation.

By Jensen's inequality for conditional expectation,

$$
\begin{aligned}
\Delta_{i}^{2} & =\left(E\left[Y \mid \mathcal{F}_{i}\right]-E\left[Y \mid \mathcal{F}_{i-1}\right]\right)^{2} \\
& =\left(E\left\{Y-E\left[Y \mid X_{1}, \ldots, X_{i-1}, X_{i+1}, \ldots, X_{n}\right] \mid \mathcal{F}_{i}\right\}\right)^{2} \\
& \leq E\left(\left\{Y-E\left[Y \mid X_{1}, \ldots, X_{i-1}, X_{i+1}, \ldots, X_{n}\right]\right\}^{2} \mid \mathcal{F}_{i}\right) .
\end{aligned}
$$

Taking expectation on both sides we get

$$
E\left[\Delta_{i}^{2}\right] \leq E\left(\left\{Y-E\left[Y \mid X_{1}, \ldots, X_{i-1}, X_{i+1}, \ldots, X_{n}\right]\right\}^{2}\right)
$$

which completes the proof.

[^0]Example 12.3. Consider the simple random walk $S_{n}=X_{1}+X_{2}+\cdots+X_{n}$ where $\left\{X_{i}\right\}_{i \geq 1}$ is an i.i.d. sequence of random variables and $\mathrm{P}\left(X_{i}=1\right)=$ $\mathrm{P}\left(X_{i}=-1\right)=1 / 2$. Then $\left\{S_{n}\right\}_{n \geq 1}$ is a martingale with bounded increments. Hence, by Azuma's inequality,

$$
\mathrm{P}\left(S_{n}>t\right) \leq e^{-t^{2} / 2 n} \quad \text { i.e. } \quad \mathrm{P}\left(S_{n}>\sqrt{2 n \log n}\right) \leq \frac{1}{n}
$$

This can also be obtained from Hoeffding's inequality.

References

[1] S Boucheron, G Lugosi, and P Massart. Concentration inequalities: A nonasymptotic theory of independence, 2013.
[2] Rick Durrett. Probability: Theory and Examples, volume 49. Cambridge university press, 2019.
[3] Sidney Resnick. A Probability Path. Springer, 2019.

[^0]: ${ }^{1}$ In Proposition 9.2 (iii), we only considered the case of three random variables. But the extension to more than three random variables is straightforward.

