Lecture 11

Instructor: Quan Zhou

For more details about the materials covered in this note, see Chapters 2.2 and 2.3 of Vershynin [1].

11.1 Some concentration inequalities

In this section, we assume X_{1}, X_{2}, \ldots are i.i.d. random variables with expectation μ. Let \bar{X}_{n} denote the average of the first n random variables.

Lemma 11.1. Let Z be a random variable with mean 0 and variance σ^{2}.
(i) Hoeffding's lemma: If $Z \in[a, b]$, then $E\left[e^{\lambda Z}\right] \leq e^{\lambda^{2}(b-a)^{2} / 8}$ for $\lambda>0$.
(ii) If $|Z| \leq K$, then for $0<\lambda<3 / K$,

$$
E\left[e^{\lambda Z}\right] \leq \exp \left(\frac{\lambda^{2} \sigma^{2} / 2}{1-\lambda K / 3}\right)
$$

(iii) If $|Z| \leq K, E\left[e^{\lambda Z}\right] \leq \exp \left\{\frac{\sigma^{2}}{K^{2}}\left(e^{\lambda K}-1-\lambda K\right)\right\}$ for $\lambda>0$.

Proof. To prove part (i), note that $e^{\lambda z}$ is a convex function in z and thus for any $z \in[a, b]$,

$$
e^{\lambda z} \leq \frac{b-z}{b-a} e^{\lambda a}+\frac{z-a}{b-a} e^{\lambda b}
$$

Taking expectation on both sides and using $E[Z]=0$, we get

$$
E\left[e^{\lambda Z}\right] \leq \frac{b}{b-a} e^{\lambda a}-\frac{a}{b-a} e^{\lambda b}=e^{-\lambda \theta(b-a)}\left(1-\theta+\theta e^{\lambda(b-a)}\right)
$$

where $\theta=-a /(b-a)$. Let $u=\lambda(b-a)$ and consider

$$
\psi(u)=-\theta u+\log \left(1-\theta+\theta e^{u}\right), \quad u \geq 0
$$

Direct calculation yields that $\psi(0)=\psi^{\prime}(0)=0$ and $\psi^{\prime \prime}(u) \leq 1 / 4$ for every u. Hence, by Taylor theorem (and the mean-value form for the remainder),

$$
\psi(u)=\frac{1}{2} \psi^{\prime \prime}(v)
$$

for some $v \in[0, u]$. Therefore, $\psi(u) \leq u^{2} / 8$ for $u \geq 0$ and

$$
E\left[e^{\lambda Z}\right] \leq e^{\psi(u)} \leq e^{\lambda^{2}(b-a)^{2} / 8}
$$

To prove part (ii), first we verify that for $|z|<3$,

$$
e^{z} \leq 1+z+\frac{z^{2} / 2}{1-|z| / 3}
$$

This can be shown by Taylor expansion:

$$
2 \frac{e^{z}-1-z}{z^{2}}=\sum_{k=2}^{\infty} \frac{z^{k-2}}{k!/ 2} \leq \sum_{k=2}^{\infty} \frac{|z|^{k-2}}{k!/ 2} \leq \sum_{k=2}^{\infty} \frac{|z|^{k-2}}{3^{k-2}}=\frac{1}{1-|z| / 3}
$$

Then, taking expectation on both sides and using $e^{x} \geq 1+x$, we find that

$$
E\left[e^{\lambda Z}\right] \leq E\left[\exp \left(\frac{\lambda^{2} Z^{2} / 2}{1-\lambda|Z| / 3}\right)\right] \leq E\left[\exp \left(\frac{\lambda^{2} Z^{2} / 2}{1-\lambda K / 3}\right)\right]
$$

provided that $\lambda<3 / K$ (so that $\lambda|Z| \leq 3$.)
To prove part (iii), apply Taylor expansion to obtain that, for $z \in(-K, K)$,

$$
\begin{aligned}
e^{\lambda z} & =1+\lambda z+\sum_{n=2}^{\infty} \frac{\lambda^{n} z^{n}}{n!} \leq 1+\lambda z+\sum_{n=2}^{\infty} \frac{\lambda^{n} z^{2}|z|^{n-2}}{n!} \\
& \leq 1+\lambda z+\sum_{n=2}^{\infty} \frac{\lambda^{n} z^{2} K^{n-2}}{n!}=1+\lambda z+\frac{z^{2}}{K^{2}} \sum_{n=2}^{\infty} \frac{\lambda^{n} K^{n}}{n!} \\
& =1+\lambda z+\frac{z^{2}}{K^{2}}\left(e^{\lambda K}-1-\lambda K\right) .
\end{aligned}
$$

Taking expectation on both sides, we get

$$
E\left(e^{\lambda Z}\right) \leq 1+\frac{\sigma^{2}}{K^{2}}\left(e^{\lambda K}-1-\lambda K\right) \leq \exp \left\{\frac{\sigma^{2}}{K^{2}}\left(e^{\lambda K}-1-\lambda K\right)\right\}
$$

which completes the proof.
Theorem 11.1 (Hoeffding's inequality). If $X_{i} \in[m, M]$ (i.e. bounded),

$$
\mathrm{P}\left(\bar{X}_{n}-\mu \geq t\right) \leq \exp \left(-\frac{2 n t^{2}}{(M-m)^{2}}\right), \quad \forall t \geq 0
$$

Proof. We use the Chernoff bound. For any $\lambda>0$,

$$
\begin{aligned}
\mathrm{P}\left(\bar{X}_{n}-\mu \geq t\right) & =\mathrm{P}\left\{e^{\lambda\left(\bar{X}_{n}-\mu\right)} \geq e^{\lambda t}\right\} \\
& \leq e^{-\lambda t} E\left[e^{\lambda\left(\bar{X}_{n}-\mu\right)}\right] \\
& =e^{-\lambda t} \prod_{i=1}^{n} E\left[e^{\lambda\left(X_{i}-\mu\right) / n}\right]
\end{aligned}
$$

where the last equality follows from the independence between X_{1}, \ldots, X_{n}. Now we apply Hoeffding's lemma to obtain

$$
\mathrm{P}\left(\bar{X}_{n}-\mu \geq t\right) \leq e^{-\lambda t} \prod_{i=1}^{n} \exp \left(\frac{\lambda^{2}(M-m)^{2}}{8 n^{2}}\right)=\exp \left\{\frac{\lambda^{2}(M-m)^{2}}{8 n}-\lambda t\right\}
$$

This inequality holds for any $\lambda>0$. We should choose the best one (i.e. the one that minimizes the upper bound), which is given by

$$
\lambda^{*}=\frac{4 n t}{(M-m)^{2}},
$$

for every $t \geq 0$. The result then follows.
Theorem 11.2 (Bernstein's inequality). Suppose $E\left[X_{i}\right]=\mu=0$, $\operatorname{Var}\left(X_{i}\right)=$ σ^{2} and $\left|X_{i}\right| \leq K$. Then,

$$
\mathrm{P}\left(\bar{X}_{n} \geq t\right) \leq \exp \left(-\frac{n t^{2} / 2}{\sigma^{2}+K t / 3}\right), \quad \forall t \geq 0
$$

Proof. Applying Chernoff bound with Lemma 11.1 (ii), we obtain

$$
\mathrm{P}\left(\bar{X}_{n} \geq t\right) \leq \exp \left\{\frac{\lambda^{2} \sigma^{2} / 2 n}{1-\lambda K /(3 n)}-\lambda t\right\}
$$

for $0<\lambda<3 n / K$. Let's further assume $1-\lambda K / 3 n \geq c$. Then,

$$
\frac{\lambda^{2} \sigma^{2} / 2 n}{1-\lambda K / 3}-\lambda t \leq \frac{\lambda^{2} \sigma^{2}}{2 n c}-\lambda t=f(\lambda)
$$

$f(\lambda)$ is maximized at $\lambda^{*}=t c n / \sigma^{2}$, which gives $f\left(\lambda^{*}\right)=-\frac{t^{2} c n}{2 \sigma^{2}}$. Thus,

$$
\begin{equation*}
\mathrm{P}\left(\bar{X}_{n} \geq t\right) \leq \exp \left\{-\frac{t^{2} c n}{2 \sigma^{2}}\right\} \tag{1}
\end{equation*}
$$

However, the choice of c is not arbitrary and must satisfy

$$
1-\frac{\lambda^{*} K}{3 n} \geq c
$$

Some algebra yields that this is equivalent to $c \leq\left\{K t /\left(3 \sigma^{2}\right)+1\right\}^{-1}=c^{*}$. Plugging c^{*} black into (1), we obtain the asserted inequality.

Theorem 11.3 (Bennett's inequality). Under the same assumption as Bernstein's inequality, we also have

$$
\mathrm{P}\left(\bar{X}_{n} \geq t\right) \leq \exp \left(-\frac{n \sigma^{2}}{K^{2}} h\left(\frac{K t}{\sigma^{2}}\right)\right), \quad \forall t \geq 0
$$

where $h(x)=(1+x) \log (1+x)-x$.
Proof. By Chernoff bound and Lemma 11.1 (iii),

$$
\mathrm{P}\left(\bar{X}_{n} \geq t\right) \leq \exp \left\{\frac{n \sigma^{2}}{K^{2}}\left(e^{\lambda K / n}-1-\frac{\lambda K}{n}\right)-\lambda t\right\} .
$$

By differentiating the exponent and setting it to zero, we get

$$
\lambda^{*}=\frac{n}{K} \log \left(1+\frac{t K}{\sigma^{2}}\right) .
$$

Some routine algebra then yields the asserted inequality.
Example 11.1. Consider a triangular array $\left\{Y_{n, k}: 1 \leq k \leq n, n \geq 1\right\}$ where for each $n, Y_{n, 1}, \ldots, Y_{n, n}$ are i.i.d. with $\mathrm{P}\left(Y_{n, k}=n\right)=1 / n$ and $\mathrm{P}\left(Y_{n, k}=0\right)=$ $1-1 / n$. Define $\bar{Y}_{n}=\left(Y_{n, 1}+\cdots+Y_{n, n}\right) / n$ for each n (i.e., the average of the n-th row). It is straightforward to compute that

$$
E\left[Y_{n, 1}\right]=1, \quad \operatorname{Var}\left(Y_{n, 1}\right)=n-1, \quad E\left[\bar{Y}_{n}\right]=1, \quad \operatorname{Var}\left(\bar{Y}_{n}\right)=\frac{n-1}{n} .
$$

Hence, $\operatorname{Var}\left(\bar{Y}_{n}\right)$ is asymptotically equal to 1 . Observe that

$$
\mathrm{P}\left(\frac{\left|\bar{Y}_{n}-E\left[\bar{Y}_{n}\right]\right|}{\sqrt{\operatorname{Var}\left(\bar{Y}_{n}\right)}} \geq n-1\right) \geq \mathrm{P}\left(\bar{Y}_{n}=n\right)=n^{-n}=e^{-n \log n}
$$

which is a slower rate than $e^{-c n^{2}}$ for any $c>0$.

To apply the three concentration inequalities, we first center the random variables by letting $X_{n, k}=Y_{n, k}-1$. Then, $\left|X_{n, k}\right| \leq K=n-1$ and $\operatorname{Var}\left(X_{n, k}\right)=\sigma^{2}=n-1$. So we obtain that

$$
\begin{aligned}
\text { Hoeffding: } & \mathrm{P}\left(\bar{X}_{n} \geq t\right) \leq e^{-2 t^{2} / n} \\
\text { Bernstein: } & \mathrm{P}\left(\bar{X}_{n} \geq t\right) \leq \exp \left(-\frac{n}{n-1} \frac{t^{2} / 2}{1+t / 3}\right) \\
\text { Bennett: } & \mathrm{P}\left(\bar{X}_{n} \geq t\right) \leq \exp \left(-\frac{n}{n-1}[(1+t) \log (1+t)-t]\right)
\end{aligned}
$$

Now choose $t=n$, and one can check that only Bennett's inequality gives the right order.

References

[1] Roman Vershynin. High-dimensional probability: An introduction with applications in data science, volume 47. Cambridge university press, 2018.

