Lecture 10

Instructor: Quan Zhou
For more details about the materials covered in this note, see Chapters $5.2,6.5$ and 10.3 of Resnick [3] and Chapters 1.5, 1.6 and 4.1 of Durrett [2].

10.1 Moments and norms of random variables

Definition 10.1. Variance and covariance of random variables:

$$
\begin{aligned}
\operatorname{Var}(X) & =E\left[(X-E[X])^{2}\right], \\
\operatorname{Cov}(X, Y) & =E[(X-E[X])(Y-E[Y])],
\end{aligned}
$$

provided that $E\left[X^{2}\right]<\infty$ and $E\left[Y^{2}\right]<\infty$.
Proposition 10.1. Properties of variance and covariance (assuming $E\left[X^{2}\right]<$ ∞ and $\left.E\left[Y^{2}\right]<\infty\right)$.
(i) $\operatorname{Var}(X)=E\left[X^{2}\right]-(E[X])^{2}$ and $\operatorname{Cov}(X, Y)=E[X Y]-E[X] E[Y]$.
(ii) For any $a \in \mathbb{R}, \operatorname{Var}(X+a)=\operatorname{Var}(X)$ and $\operatorname{Var}(a X)=a^{2} \operatorname{Var}(X)$.
(iii) $\operatorname{Var}\left(\sum_{i=1}^{n} X_{i}\right)=\sum_{i=1}^{n} \operatorname{Var}\left(X_{i}\right)+\sum_{i \neq j} \operatorname{Cov}\left(X_{i}, X_{j}\right)$.
(iv) If X, Y are independent, $\operatorname{Cov}(X, Y)=0$.

Proof. Try it yourself.
Example 10.1. Let $X \sim N(0,1)$ be a standard normal random variable. Let Z be independent of X and $\mathrm{P}(Z=1)=\mathrm{P}(Z=-1)=0.5$. Define $Y=X Z$. Note that Y is also a standard normal random variable. Further, $\operatorname{Cov}(X, Y)=E[X Y]=E\left[Z X^{2}\right]=E[Z]=0$. But X, Y are not independent.

Definition 10.2. The L^{p} norm of a random variable is defined by

$$
\|X\|_{p}=\left(E\left[|X|^{p}\right]\right)^{1 / p}, \quad 1 \leq p<\infty
$$

This notation is also defined for $0<p<1$, though $\|\cdot\|_{p}$ is not a norm for $0<p<1$.

Definition 10.3. L^{∞} norm: $\|X\|_{\infty}=\inf \{a \in \mathbb{R}: \mathrm{P}(|X|>a)=0\}$. If there is no $a \in \mathbb{R}$ such that $\mathrm{P}(|X|>a)=0$, then $\|X\|_{\infty}=\infty$. This is also called the essential supremum of $|X|$.

Definition 10.4. Moment generating function of the random variable X :

$$
M_{X}(t)=E\left[e^{t X}\right], \quad t \in \mathbb{R}
$$

Proposition 10.2. Properties of $M G F$.
(i) For independent random variables X_{1}, \ldots, X_{n} and constants a_{1}, \ldots, a_{n}. The MGF of the sum $S_{n}=a_{1} X_{1}+\cdots+a_{n} X_{n}$ is given by

$$
M_{S_{n}}(t)=M_{X_{1}}\left(a_{1} t\right) M_{X_{2}}\left(a_{2} t\right) \cdots M_{X_{n}}\left(a_{n} t\right)
$$

(ii) If $M_{X}(t)$ is finite in a neighborhood of 0 , then

$$
E\left[X^{n}\right]=\left.\frac{d^{n} M_{X}(t)}{d t^{n}}\right|_{t=0}
$$

(iii) If in a neighborhood of 0 , both $M_{X}(t)$ and $M_{Y}(t)$ are finite and they are equal, then X, Y have the same distribution.

Proof. Part (ii) is easy to show. We do not prove the other two parts here.

10.2 Inequalities involving expectations and moments

Theorem 10.1 (Jensen's inequality). For any convex function $\varphi, E[\varphi(X)] \geq$ $\varphi(E[X])$, provided that both expectations exist. More generally, if $\varphi: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is convex, then $E\left[\varphi\left(X_{1}, \ldots, X_{n}\right)\right] \geq \varphi\left(E\left[X_{1}\right], \ldots, E\left[X_{n}\right]\right)$ provided that all the expectations involved exist.

Proof. See the textbook.
Example 10.2. Typical examples of convex functions include: $|x|, x^{2}, e^{x}$, $|x|^{p}$ for $p \geq 1$. Typical examples of concave functions include: $\sqrt{x}, \log x$. Affine functions of the form $a x+b$ are both convex and concave. Hence, by Jensen's inequality, $E\left[X^{2}\right] \geq(E[X])^{2}$ (i.e. $\left.\operatorname{Var}(X) \geq 0\right)$ and $E|X| \geq|E X|$.

Example 10.3. Consider the function $f(x)=|x|^{q / p}$ where $0<p \leq q<\infty$. Then f is convex. For a random variable X with finite absolute moments of any order, define another random variable $Y=|X|^{p}$. By Jensen's inequality,

$$
E\left(|Y|^{q / p}\right) \geq|E Y|^{q / p} \quad \Longrightarrow \quad\left\{E\left(|Y|^{q / p}\right)\right\}^{1 / q} \geq|E Y|^{1 / p}
$$

Substituting $Y=|X|^{p}$, we get $\|X\|_{p} \leq\|X\|_{q}$.
Theorem 10.2 (Hölder's inequality). For $1 \leq p, q \leq \infty$ s.t. $1 / p+1 / q=1$,

$$
E|X Y| \leq\|X\|_{p}\|Y\|_{q}
$$

When $p=q=2$, this is known as Cauchy-Schwarz inequality.
Proof. See the textbook.
Example 10.4. By Cauchy-Schwarz inequality, $|\operatorname{Cov}(X, Y)|^{2} \leq \operatorname{Var}(X) \operatorname{Var}(Y)$.
Theorem 10.3 (Minkowski inequality). For any $1 \leq p \leq \infty$ and X, Y s.t. $\|X\|_{p}<\infty,\|Y\|_{p}<\infty$, we have the "triangle inequality",

$$
\|X+Y\|_{p} \leq\|X\|_{p}+\|Y\|_{p}
$$

Proof. Try it yourself.
Theorem 10.4 (Markov inequality). For a non-negative random variable X and any $a>0, \mathrm{P}(X \geq a) \leq E[X] / a$.

Proof. Note that $\mathrm{P}(X \geq a)=E\left[\mathbb{1}_{\{X \geq a\}}\right]$, and on the set $\{X \geq a\}$, we have $X / a \geq 1$ since $a>0$. Thus,

$$
E\left[\mathbb{1}_{\{X \geq a\}}\right] \leq E\left[\frac{X}{a} \mathbb{1}_{\{X \geq a\}}\right]=\frac{E\left[X \mathbb{1}_{\{X \geq a\}}\right]}{a} \leq \frac{E[X]}{a}
$$

which completes the proof.
Corollary 10.1 (Chebyshev inequality). $\mathrm{P}(|X-E(X)| \geq a) \leq \operatorname{Var}(X) / a^{2}$ for any $a>0$.

Proof. Try it yourself.
Corollary 10.2 (Chernoff bound). $\mathrm{P}(X \geq a) \leq e^{-t a} E\left[e^{t X}\right]$ for any $t>0$.

Proof. Try it yourself.
Example 10.5. Let X_{1}, X_{2}, \ldots be an infinite sequence of i.i.d. random variables with $E\left(X_{i}\right)=\mu, \operatorname{Var}\left(X_{i}\right)=\sigma^{2}<\infty$. Define $\bar{X}_{n}=\left(X_{1}+\cdots+\right.$ $\left.X_{n}\right) / n$. Clearly, $E\left(\bar{X}_{n}\right)=\mu$. The variance of \bar{X}_{n} can be computed by

$$
\operatorname{Var}\left(\bar{X}_{n}\right)=\operatorname{Var}\left(\frac{X_{1}+\cdots+X_{n}}{n}\right)=\frac{1}{n^{2}} \operatorname{Var}\left(X_{1}+\cdots+X_{n}\right)=\frac{\sigma^{2}}{n}
$$

where we have used the assumption that X_{i} 's are i.i.d. By Chebyshev inequality, for any $c>0$,

$$
\mathrm{P}\left(\left|\bar{X}_{n}-\mu\right| \geq c\right) \leq \frac{\operatorname{Var}\left(\bar{X}_{n}\right)}{c^{2}}=\frac{\sigma^{2}}{n c^{2}} \rightarrow 0
$$

as $n \rightarrow \infty$. This is a special case of Weak Law of Large Numbers.
Example 10.6. Let $X \sim N(0,1)$. One can show that the MGF is given by $E\left[e^{t X}\right]=e^{t^{2} / 2}$. Hence, use the Chernoff bound with $t=x$, we get

$$
\mathrm{P}(X>x) \leq e^{-t x} E\left[e^{t X}\right]=\exp \left(\frac{t^{2}-2 t x}{2}\right)=e^{-x^{2} / 2}
$$

10.3 Inequalities involving conditional expectations

For all results below, assume X is an integrable random variable defined on $(\Omega, \mathcal{F}, \mathrm{P})$ and $\mathcal{G} \subset \mathcal{F}$ is a given sub- σ-algebra.

Proposition 10.3 (Jensen's inequality for conditional expectation). If φ is convex and $E|\varphi(X)|<\infty$, then

$$
\varphi(E[X \mid \mathcal{G}]) \leq E[\varphi(X) \mid \mathcal{G}], \quad \text { a.s. }
$$

Proof. See the textbook.
Theorem 10.5 (Conditional expectation as a projection). Let $L^{2}(\Omega, \mathcal{G}, \mathrm{P})=$ $\left\{Y: Y \in \mathcal{G}, E Y^{2}<\infty\right\}$. If $E X^{2}<\infty$, then $\inf _{Y \in L^{2}(\Omega, \mathcal{G}, \mathrm{P})} E(X-Y)^{2}$ is attained by $Y=E[X \mid \mathcal{G}]$.

Proof. Try it yourself.
Theorem 10.6 (Conditional expectation as a contraction). Suppose $p \geq 1$. If $E|X|^{p}<\infty$, then $\|E[X \mid \mathcal{G}]\|_{p} \leq\|X\|_{p}$.

Proof. Try it yourself.

10.4 Union bound

The following result is often known as union bound or Boole's inequality: for a countable sequence of events $A_{1}, A_{2}, \ldots, \mathrm{P}\left(\cup_{i} A_{i}\right) \leq \sum_{i} \mathrm{P}\left(A_{i}\right)$. But it is just a paraphrase of the σ-subadditivity of measures.

Example 10.7. If $\mathrm{P}\left(A_{i}\right)=\alpha / n$ for $i=1,2, \ldots, n$. Then $\mathrm{P}\left(\cup A_{i}\right) \leq \alpha$ by the union bound. This is why we do Bonferroni correction in multiple testing.

Example 10.8. By De Morgan's laws and union bound,

$$
\mathrm{P}\left(\cap_{i} A_{i}\right)=1-\mathrm{P}\left(\cup A_{i}^{c}\right) \geq 1-\sum_{i=1}^{n}\left(1-\mathrm{P}\left(A_{i}\right)\right)=\sum_{i=1}^{n} \mathrm{P}\left(A_{i}\right)-(n-1) .
$$

10.5 Tail bound for normal distribution

We have already obtained a tail bound for normal random variables in Example 10.6. But very often we can find tail bounds for random variables using more elementary techniques: differentiation and integration by parts.

Theorem 10.7. Let $\phi(x)=e^{-x^{2} / 2} / \sqrt{2 \pi}$ be the density function of the standard normal distribution. Then, for $x>0$,

$$
\frac{x}{x^{2}+1} \phi(x) \leq \int_{x}^{\infty} \phi(t) d t \leq \frac{1}{x} \phi(x)
$$

Proof. The lower bound can be proven by differentiating (try it yourself). To prove the upper bound, use integration by parts to get

$$
\begin{aligned}
\int_{x}^{\infty} \frac{1}{\sqrt{2 \pi}} e^{-t^{2} / 2} d t & =\int_{x}^{\infty}-\frac{1}{t} \cdot \frac{1}{\sqrt{2 \pi}} d e^{-t^{2} / 2} \\
& =-\left.\frac{\phi(t)}{t}\right|_{x} ^{\infty}-\int_{x}^{\infty} \frac{1}{t^{2}} \phi(t) d t \\
& =\frac{\phi(x)}{x}-\int_{x}^{\infty} \frac{1}{t^{2}} \phi(t) d t \leq \frac{\phi(x)}{x}
\end{aligned}
$$

Note that the trick of integration by parts can be applied again to bound the remainder term, $\int_{x}^{\infty}\left(\phi(t) / t^{2}\right) d t$.

References

[1] Dennis D. Cox. The Theory of Statistics and Its Applications. Unpublished.
[2] Rick Durrett. Probability: Theory and Examples, volume 49. Cambridge university press, 2019.
[3] Sidney Resnick. A Probability Path. Springer, 2019.

