
Unit 9: Optional Sampling Theorem

Instructor: Quan Zhou

9.1 Optional sampling theorem

Theorem 9.1. Let (Xn)n≥0 be a uniformly integrable submartingale. Then,
for any stopping time T , EX0 ≤ EXT ≤ EX∞, where X∞ = limn→∞Xn.

Proof. The optional sampling theorem for bounded stopping times shows
that EX0 ≤ EXT∧n ≤ EXn, since T ∧n is a stopping time bounded by n. By
Lemma 9.1 below, (XT∧n) is uniformly integrable, and thus XT∧n converges
to XT a.s. and in L1. Thus,

EX0 ≤ lim
n

EXT∧n = EXT ≤ lim
n

EXn = EX∞.

The last equality follows from the uniform integrability of (Xn).

Remark 9.1. It follows from Theorem 9.1 that if (Xn) is a uniformly inte-
grable martingale, we have E[XT ] = E[X0]. A more powerful version of the
optional sampling theorem is given in the next theorem.

Theorem 9.2. Let S ≤ T be two stopping times and (Xn) be a submartingale
such that (Xn∧T )n≥0 is uniformly integrable. Then, E[XT | FS] ≥ XS, a.s.

Proof. Let Yn = Xn∧T . Since (Yn) is uniformly integrable, by Theorem 9.1,

E[X0] = E[Y0] ≤ E[YS] = E[XS] ≤ E[Y∞] = E[XT ].

In particular, we have E[XS] ≤ E[XT ].
To prove the asserted inequality, fix an arbitrary event A ∈ FS, and define

U = S1A +T1Ac . Since U is a stopping time by Exercise 9.1 and U ≤ T , we
have

E[XU ] = E[XS1A +XT1Ac ] ≤ E[XT ].

It follows that

E[XS1A] ≤ E[XT1A] = E [E[XT1A | FS] ] = E [1AE[XT | FS] ] .

This implies that E[XT | FS] ≥ XS, a.s. To see this, pick

A = {E[XT | FS] ≤ XS}

which is in FS.
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Remark 9.2. Again, in Theorem 9.2, T is allowed to equal∞, and we define
X∞ = limn→∞Xn. The existence of X∞ can be seen as part of the result.
This comment applies to Theorem 9.3 as well.

Lemma 9.1. Let (Xn)n≥0 be a uniformly integrable submartingale. Then,
for any stopping time T , (Xn∧T )n≥0 is uniformly integrable.

Proof. We first show E|XT | <∞, where we define X∞ = limn→∞Xn (which
exists due to the uniform integrability). Since f(x) = x+ is convex and non-
decreasing, (X+

n ) is a submartingale. Hence, treating T∧n as a bounded stop-
ping time, we find that E[X+

T∧n] ≤ E[X+
n ]. Clearly, the uniform integrability

of (Xn) implies the uniform integrability of (X+
n ). Thus, supn E[X+

T∧n] ≤
supn E[X+

n ] <∞, and XT∧n converges a.s. to some random variable Y∞ with
E|Y∞| <∞. But observe that, a.s. Y∞ = XT .

Next, we check the uniform integrability of (Xn∧T ) by definition. Write

E
(
|Xn∧T |1{|Xn∧T |>M}

)
= E

(
|Xn|1{|Xn|>M}1{n≤T}

)
+ E

(
|XT |1{|XT |>M}1{n>T}

)
≤ E

(
|Xn|1{|Xn|>M}

)
+ E

(
|XT |1{|XT |>M}

)
.

Pick ε > 0. Since (Xn) is uniformly integrable, there exists M = M1(ε) such
that E

(
|Xn|1{|Xn|>M}

)
< ε/2 for every n. Since E|XT | < ∞, there exists

M = M2(ε) such that E
(
|XT |1{|XT |>M}

)
< ε/2. The uniform integrability of

(Xn∧T ) then follows.

Exercise 9.1. Let S ≤ T be stopping times and A ∈ FS. Show that
U = S1A + T1Ac is also a stopping time.

9.2 Special cases of Theorem 9.2

Theorem 9.3. Let S ≤ T be two stopping times and (Xn) be a submartin-
gale. Suppose at least one of the following conditions holds:

(i) T ≤ m a.s. for some m <∞.

(ii) There exists K <∞ such that |Xn∧T | ≤ K a.s. for every n.

(iii) E[T ] <∞, and there exists K <∞ such that E(|Xn+1 −Xn| | Fn) ≤ K
a.s. on the event {T > n} for every n.
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(iv) E|XT | <∞ and E[|Xn|1{T>n}]→ 0.

Then, E[XT | FS] ≥ XS, a.s.

Proof. We just check that each condition implies that (Xn∧T )n≥0 is uniformly
integrable. For (i) and (ii), the proof is easy and thus omitted.

Consider (iii). Triangle inequality implies that

|Xn∧T | ≤ |X0|+
(n∧T )−1∑

j=0

|Xj+1 −Xj|

≤ |X0|+
∞∑
j=0

|Xj+1 −Xj|1{T>j} =: Z.

Since 1{T>j} ∈ Fj, we have

E(|Xj+1 −Xj|1{T>j}) = E
(
1{T>j}E[|Xj+1 −Xj| | Fj]

)
≤ K P(T > j).

Hence,

E|Z| ≤ E|X0|+K
∞∑
j=0

P(T > j) = E|X0|+KE[T ].

The assumption E[T ] < ∞ thus implies that (Xn∧T )n is dominated by an
integrable random variable Z, and thus (Xn∧T ) is uniformly integrable.

Consider (iv). We write

E|Xn∧T | = E
(
|Xn|1{T>n}

)
+ E

(
|XT |1{T≤n}

)
.

Hence,

E
[
|Xn∧T |1{|Xn∧T |>M}

]
≤ E

(
|Xn|1{T>n}1{|Xn∧T |>M}

)
+ E

(
|XT |1{|Xn∧T |>M}

)
.

Given any ε > 0, we can pick sufficiently large N = N(ε) such that for all
n > N , E

(
|Xn|1{T>n}

)
≤ ε/2, and then sufficiently large M = M(N, ε) such

that sup1≤n≤N E
(
|Xn|1{|Xn∧T |>M}

)
≤ ε/2 and E

(
|XT |1{|Xn∧T |>M}

)
< ε/2.

Hence, (Xn∧T ) is uniformly integrable.

Example 9.1. Consider condition (iv) of Theorem 9.3. We give an example
which shows that the first condition cannot be dropped. Let (Zn)n≥0 be
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independent random variables such that Zn ∼ N(0, σ2
n) for each n. Let

σ2
0 = 1, and for each n ≥ 1, let

σ2
n = a2n − a2n−1, where an =

n2

log(n+ 2)
.

Define Xn = Z0 + Z1 + · · · + Zn, which is clearly a martingale with respect
to (Fn), where Fn = σ(Z0, . . . , Zn). Let χ−1(q) denote the q-th quantile of
the standard normal distribution, i.e., P(Z0 ≤ χ−1(q)) = q. Define

T =
∞∑
n=1

(n+ 1)1[(n+1)−2,n−2)χ
−1(Z0),

which is a stopping time since T ∈ F0. We now prove that

E[|Xn|1{T>n}]→ 0, but E|XT | =∞,

and thus optional sampling theorem does not hold. Let Yn = Xn−Z0. Using
the independence among (Zn), we find that

E[|Xn|1{T>n}] ≤ E[|Z0|1{T>n}] + P(T > n)E|Yn|.

Observe that Yn ∼ N(0, a2n), which yields E|Yn| = Can for some universal
constant C. Since

P(T > n) = P(χ−1(Z0) < n−2) = n−2,

we have P(T > n)E|Yn| → 0, which further implies E[|Xn|1{T>n}] → 0.
However, E|XT | ≥ E|YT | =

∑∞
n=1CanP(T = n) =∞.

Example 9.2. Consider Example 1.1, the expected number of flips until we
see HHHH. To solve this problem, let Z1, Z2, . . . be i.i.d. random variables
such that P(Z1 = 1) = P(Z1 = 0) = 1/2; we interpret Zn = 1 as the n-
th flip landing on heads and Zn = 0 as the n-th flip landing on tails. Let
Fn = σ(Z1, . . . , Zn). My betting strategy is as follows: at each flip, I bet
all my remaining balance (all the money I have from previous bets) plus
one additional dollar on heads. Hence, my balance can be represented by
(Xn)n≥0, where X0 = 0 and, for n ≥ 1,

Xn = 2Zn(1 +Xn−1).
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Let Yn = Xn − n denote the net profit after n flips. (Yn)n≥0 is a martingale,
since E[Xn | Fn−1] = Xn−1 + 1. Let

T = min{n ≥ 4: Zn−3 = Zn−2 = Zn−1 = Zn = 1}.

Clearly, T is a stopping time. Further, we can prove that ET < ∞; see
Exercise 9.2. Before time T , Xn is bounded, since we can only have at most
3 consecutive heads and Xn = 0 whenever Zn = 0. Hence, condition (iii)
of Theorem 9.3 is satisfied, and we have E[YT ] = E[XT ] − T = 0. A direct
calculation gives XT = 30.

Alternative construction. Here is a more general construction of the betting
strategy. At each flip, I bet one dollar on the next four flips being HHHH.
That is, for n ≥ 4, my balance Xn is given by

Xn = Xn−4 + 24 · 1{Zn−3=Zn−2=Zn−1=Zn=1} + 23 · 1{Zn−2=Zn−1=Zn=1}

+ 22 · 1{Zn−1=Zn=1} + 2 · 1{Zn=1}.

The same argument yields that E[YT ] = E[XT ]− T = 0, where Yn = Xn − n.
It is clear that XT = 24 + 23 + 22 + 2 = 30. This method can be used to
quickly find answers for other patterns; e.g., the number of expected flips
needed to get HTHH is 24 + 2 = 18.

Example 9.3. Three people play the following game. At each round, two of
them are randomly selected, and first one gives 1 dollar to the other. When
one player has no remaining dollars, this player leaves the game, and the
other two continue. Let x, y, z (integers) denote the initial number of dollars
of the three players. What is the expected number of rounds until one of
them has all x+ y + z dollars?

To find the answer, let Xn, Yn, Zn denote the number of dollars of the
3 players after n rounds; set X0 = x, Y0 = y and Z0 = z. It is easy to
verify that Wn = XnYn + XnZn + YnZn + n is a martingale with respect to
the filtration (Fn)n≥0 where Fn = σ((Xk, Yk, Zk)0≤k≤n). Let T = min{n ≥
0: max(Xn, Yn, Zn) = x + y + z} denote the time that the game ends. As
in the last example, one can show that ET < ∞. Further, the increment
|Wn+1−Wn| is clearly bounded before the game ends. Hence, by Theorem 9.3,
E[WT ] = E[W0]. Since WT = T , and E[W0] = xy + xz + yz, we find that
T = xy + xz + yz.

Exercise 9.2. Consider Example 9.2. Prove that ET <∞.
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Exercise 9.3. Consider n people, each with a unique hat. They now mix the
n hats together and play the following game. At each round, each remaining
person randomly selects one hat. Those selecting their own hats leave the
game, and the others mix their hats together again. Let R denote the number
of rounds needed until everyone has her own hat. Find E[R].
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