
Unit 8: Convergence in L1

Instructor: Quan Zhou

8.1 Review of uniform integrability (R: §6.5; D: §4.6)

Definition 8.1. Let {Xt : t ∈ T} be a family of integrable random variables
(i.e. E|Xt| <∞ for each t). We say this family is uniformly integrable if as
M →∞, we have

sup
t∈T

E
(
|Xt|1{|Xt|>M}

)
= sup

t∈T

∫
{|Xt|>M}

|Xt|dP→ 0.

Proposition 8.1. If there exists a random variable Z such that E|Z| < ∞
and |Xt| ≤ Z for every t, then {Xt} is uniformly integrable.

Proof. Try it yourself.

Remark 8.1. Proposition 8.1 implies that if E(supt∈T |Xt|) < ∞, then
{Xt}t∈T is uniformly integrable. If {Xt}t∈T is uniformly integrable, one can
show that supt E|Xt| <∞ using E|Xt| ≤ E

(
|Xt|1{|Xt|>M}

)
+M .

Corollary 8.1. If E|Xt| < ∞ for each t and the index set T is finite, then
{Xt} is uniformly integrable.

Proof. Try it yourself.

Proposition 8.2. Consider two families of integrable random variable {Xt :
t ∈ T} and {Yt : t ∈ T}. If |Xt| ≤ |Yt| for each t and {Yt} is uniformly
integrable, then {Xt} is uniformly integrable.

Proof. Try it yourself.

Example 8.1. Let {Xn} be a sequence of random variables with P(Xn =
n) = 1/n and P(Xn = 0) = 1 − 1/n. Clearly, supE|Xn| = 1. However, this
family is not uniformly integrable because∫

{Xn>M}
Xn dP =

{
1 if M ≤ n,
0 if M > n,

which yields supn≥1
∫
{Xn>M}Xn dP = 1 for every M .
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Theorem 8.1. Suppose p ∈ [1,∞) and {Xn} is a sequence of random vari-

ables such that E|Xn|p < ∞ for all n. Then Xn
Lp

→ X if and only if (i)

{|Xn|p} is uniformly integrable and (ii) Xn
P→ X.

Proof. See the textbook.

Exercise 8.1 (Crystal ball condition). For any p > 0, the family {|Xt|p} is
uniformly integrable if supn E|Xn|p+δ <∞ for some δ > 0.

8.2 Convergence of submartingales in L1

Theorem 8.2. Let (Xn) be a submartingale. The following statements are
equivalent:

(i) (Xn) is uniformly integrable.

(ii) (Xn)
L1

→ X∞ for some random variable X∞.

(iii) (Xn)
L1

→ X∞ and (Xn)
a.s.→ X∞ for some random variable X∞.

Proof. Clearly, (iii) implies (ii). By Theorem 8.1, (ii) implies (i). It only
remains to show that (i) implies (iii). By Theorem 5.1 and Remark 8.1,
uniform integrability implies that Xn

a.s.→ X∞, and Theorem 8.1 shows that
we also have the convergence in L1.

Theorem 8.3. Let (Xn) be a martingale such that Xn
L1

→ X∞. Then Xn =
E[X∞ | Fn].

Proof. According to the definition of conditional expectations, it suffices to
show that for any A ∈ Fm, we have E[X∞1A] = E[Xm1A]. Scheffe’s lemma
implies that E[Xn1A] → E[X∞1A] as n → ∞. And the martingale property
implies that for any n > m, a.s.,

E[Xn1A] = E[E[Xn1A | Fm]] = E[Xm1A].

In other words, a.s., E[Xn1A] can only converge to E[Xm1A]. Thus, we have
E[Xm1A] = E[X∞1A].
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8.3 Convergence of conditional expectations

Theorem 8.4. Let X be defined on (Ω,F ,P) such that E|X| <∞. Then,

{E[X | G] : G ⊂ F is a σ-algebra on Ω}

is uniformly integrable.

Proof. Pick any σ-algebra G ⊂ F and let Y = E[X | G]. Jensen’s inequality
implies that |Y | ≤ Z = E[|X| | G]. Further, for any A ∈ G,

E[|Y |1A] ≤ E[Z1A] = E [E[|X| | G]1A ]

= E [E[|X|1A | G] ] = E[|X|1A].

In particular, this holds for A = {|Y | > M} where M can be any constant.
Now pick arbitrarily ε > 0 and let δ = δ(ε) be as given in Exercise 8.2.

Since E|X| <∞ and

P(|Y | > M) ≤ P(Z > M) ≤M−1E[Z] = M−1E|X|,

we can pick sufficiently large M = M(ε) such that P(|Y | > M) ≤ δ, and
Exercise 8.2 implies that

ε ≥ E
[
|X|1{|Y |>M}

]
≥ E

[
|Y |1{|Y |>M}

]
.

Since both ε and Y are arbitrary, this proves the result.

Theorem 8.5. Let F∞ = σ(∪n≥0Fn) and X be integrable. Then, E[X | Fn]
converges to E[X | F∞] a.s. and in L1.

Proof. Recall that Yn = E[X | Fn] is a martingale. By Theorem 8.4, Yn
converges to some limiting random variable Y∞ ∈ F∞ both a.s. and in L1.
Further, Theorem 8.3 implies that

E[Y∞ | Fn] = Yn = E[X | Fn].

That is, E[Y∞1A] = E[X1A] for any A ∈ ∪n≥1Fn. Dynkin’s π − λ theorem
then shows that this holds for any A ∈ σ(∪n≥1Fn) = F∞; that is, Y∞ =
E[X | F∞].

Exercise 8.2. Let X be defined on (Ω,F ,P) such that E|X| <∞. For any
ε > 0, there exists some δ = δ(ε) > 0 such that

sup
A∈F : P(A)≤δ

E[|X|1A] ≤ ε.
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Exercise 8.3. Let F∞ = σ(∪n≥0Fn), and suppose Xn
L1

→ X∞ where each
Xn is integrable. We do not assume (Xn) is adapted to (Fn). Show that

E[Xn | Fn]
L1

→ E[X∞ | F∞].

8.4 Levy’s zero-one law

Theorem 8.6. Let F∞ = σ(∪n≥0Fn) and A ∈ F∞. Then E[1A | Fn]
a.s.→ 1A.

Proof. This follows from Theorem 8.5 and the assumption A ∈ F∞.

Example 8.2. Let X1, X2, . . . be independent and A ∈ T , where we recall
the tail σ-field T is defined by

T =
⋂
n≥1

σ(Xn, Xn+1, . . . ).

For each n, let Fn = σ(X1, X2, . . . , Xn), which is independent of A. Hence,
E[1A | Fn] = P(A), but Theorem 8.6 implies that E[1A | Fn]

a.s.→ 1A, which
means that P(A) has to be zero or one. This shows that Theorem 8.6 gener-
alizes Kolmogorov’s zero-one law.
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