
Unit 7: Doob’s Decomposition and Square Integrable

Martingales

Instructor: Quan Zhou

7.1 Doob’s decomposition

Theorem 7.1. Let (Xn)n≥0 be an adapted process with E|Xn| <∞ for every
n. There exists an essentially unique decomposition Xn = Mn + An, where
(An)n≥0 is previsible with A0 = 0 and (Mn)n≥0 is a martingale. This is known
as Doob’s decomposition of (Xn). Further, (Xn) is a submartingale if and
only if A is monotone non-decreasing a.s.

Proof. The decomposition is given by

A0 = 0, M0 = X0,

An =
n∑

k=1

(E[Xk | Fk−1]−Xk−1) , for n ≥ 1,

Mn = X0 +
n∑

k=1

(Xk − E[Xk | Fk−1]) , for n ≥ 1.

It is almost trivial to check that Xn = Mn + An and (An) is previsible. To
show (Mn) is a martingale, it suffices to notice that

E [(Xn − E[Xn | Fn−1]) | Fn−1] = 0.

To prove the uniqueness, suppose Xn = M̃n + Ãn also satisfies the required
conditions. We need to show that

P(M̃n = Mn, Ãn = An for all n) = 1.

(This is what we mean by “essentially unique”.) Since Mn + An = M̃n +
Ãn, Mn − M̃n is a previsible martingale. The uniqueness then follows from
Exercise 3.1.

The definition of (An) clearly implies that (Xn) is a submartingale if and
only if (An) is non-decreasing a.s.
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Example 7.1. Let (Xn)n≥0 be the (symmetric) simple random walk; that is,
X0 = 0 and, for each n ≥ 1, Xn = Xn−1 +Zn where Z1, Z2, . . . are i.i.d. such
that P(Z1 = 1) = P(Z1 = −1) = 1/2. Since (Xn) is a martingale, |Xn| is a
submartingale. The Doob decomposition of (|Xn|) is given by |Xn| = Mn+An

where

An =
n∑

k=1

(E[|Xk| | Fk−1]− |Xk−1|).

We can explicitly calculate that

E[|Xk| | Fk−1]− |Xk−1| =
{

0, if Xk−1 6= 0,
1, if Xk−1 = 0.

Hence, An is simply the cardinality of the set {0 ≤ k ≤ n − 1: Xk = 0},
which is known as the local time of the process X at 0. This allows us to
find that

E|Xn| = EAn =
n−1∑
i=1

P(Xi = 0) =

b(n−1)/2c∑
j=0

(
2j

j

)
4−j.

Example 7.2. We can generalize the last example as follows. Let (Xn) be a
stochastic process with initial value X0 = x0 such that |Xn −Xn−1| = 1 for
all n. Let f : Z → R be a measurable function. Consider the process (Yn)
with Yn = f(Xn). Define the discrete derivatives of f by

f ′(x) =
f(x+ 1)− f(x− 1)

2
, f ′′(x) = f(x− 1) + f(x+ 1)− 2f(x).

One can check that the following holds, since Xn = Xn−1 ± 1:

f(Xn)− f(Xn−1) = f ′(Xn−1)(Xn −Xn−1) +
1

2
f ′′(Xn−1).

Letting F ′n = f ′(Xn−1) and F ′′n = f ′′(Xn−1), we can now write

f(Xn) = f(x0) + (F ′ ·X)n +
1

2

n∑
i=1

F ′′i .

This can be seen as the discrete version of Itô formula. Now suppose X
is a martingale. Since both F ′ and F ′′ are previsible, we get the Doob
decomposition f(Xn) = Mn + An, where Mn = f(x0) + (F ′ · X)n is the
martingale and An = 1

2

∑n
i=1 F

′′
i . To recover the result of Example 7.1, it

suffices to note that, for f(x) = |x|, f ′′(x) = 2 if x = 0, and f ′′(x) = 0
otherwise.
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7.2 Square integrable martingales

Definition 7.1. Let (Xn)n≥0 be a square integrable martingale, where “square
integrable” means that EX2

n <∞ for each n. Let (An)n≥0 be the unique pre-
visible process such that (Yn)n≥0 is a martingale, where Yn = X2

n − An. We
say (An) is the square variation process of X, and denote it by 〈X〉n = An.

Remark 7.1. Since (X2
n) is a submartingale whenever (Xn) is a martingale,

(〈X〉n) is also called the increasing process associated with X.

Theorem 7.2. Let (Xn) be a square integrable martingale. Then,

E[〈X〉n] = Var(Xn −X0).

Proof. Try it yourself.

Corollary 7.1. Let (Xn) be a square integrable martingale with X0 = 0. Let
〈X〉∞ = limn↑∞〈X〉n. Then, E[supn≥0 |Xn|2] ≤ 4E〈X〉∞.

Proof. Note 〈X〉∞ exists since 〈X〉n is non-decreasing. The result then fol-
lows from Theorems 6.1 and 7.2.

Corollary 7.2. Let (Xn) be a square integrable martingale. Then the fol-
lowing statements are equivalent:

(i) supn EX
2
n <∞.

(ii) E[〈X〉∞] <∞.

(iii) (Xn) converges in L2.

(iv) (Xn) converges almost surely and in L2.

Proof. Try it yourself.

Theorem 7.3. Let (Xn) be a square integrable martingale. On the event
{〈X〉∞ <∞}, almost surely, X∞ = limnXn exists and is finite.

Proof. Pick k > 0, and define Tk = inf{n ≥ 0: 〈X〉n+1 ≥ k}, which is a
stopping time since the square variation process is previsible. Consider the
stopped process Y k

n = Xn∧Tk
. By Exercise 7.2, 〈Y k〉n = 〈X〉n∧Tk

< k, a.s.
Since a stopped martingale is still a martingale, Corollary 7.2 shows that (Y k

n )
converges a.s. and in L2. In particular, convergence in L2 implies that the
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limit is a.s. finite. Hence, there exists a measurable set A with P(A) = 1 such
that (Y k

n ) converges as n→∞ for every k. But for every ω ∈ A ∩ {〈X〉∞ <
∞}, we can find sufficiently large k such that Tk(ω) =∞ and thus Xn = Y k

n

for every n. Thus, Xn converges on the set A ∩ {〈X〉∞ <∞}.

Remark 7.2. Recall the following theorem for the convergence of random
series (a special case of Kolmogorov’s three-series theorem): if Z1, Z2, . . .
are independent with E[Zn] = 0 for each n and

∑∞
n=1 Var(Zn) < ∞, then∑∞

n=1 Zn converges a.s. It is easy to check that this result is just a special
case of Theorem 7.3.

Theorem 7.4. Let (Xn) be a square integrable martingale. On the event
{〈X〉∞ =∞}, almost surely, Xn/〈X〉n converges to 0.

Proof. Since 〈X〉n ≥ 0, the process Hn = (1 + 〈X〉n)−1 is previsible and
bounded by 1. Define a martingale (Wn) by

Wn =
n∑

k=1

(Xk −Xk−1)Hk = (H ·X)n.

Since

E[(Wn −Wn−1)
2 | Fn−1] = H2

n(〈X〉n − 〈X〉n−1)

≤ 〈X〉n − 〈X〉n−1
(1 + 〈X〉n−1)(1 + 〈X〉n)

=
1

1 + 〈X〉n−1
− 1

1 + 〈X〉n
,

we have 〈W 〉∞ =
∑∞

n=1 E[(Wn −Wn−1)
2 | Fn−1] < ∞, a.s. Hence, Wn con-

verges a.s. to a finite limit. On the event {〈X〉∞ =∞}, Kronecker’s lemma
yields that, XnHn → 0, a.s., but this just means Xn/〈X〉n → 0, a.s.

Remark 7.3. It is not difficult to show that the strong law of large numbers
for i.i.d. random variables in L2 is just a special case of Theorem 7.4.

Exercise 7.1. Let (Xn) be a square integrable martingale. For any m ≤ n,

E[X2
n | Fm] = X2

m + E[(Xn −Xm)2 | Fm].

Exercise 7.2. Let (Xn) be a square integrable martingale and T be a stop-
ping time. Define the process (Yn) by Yn = Xn∧T . Show that for every n,
〈Y 〉n = 〈X〉n∧T , a.s.
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Exercise 7.3. Let Y1, Y2, . . . be independent random variables such that
EYn = 1 and EY 2

n <∞ for each n. Define Xn =
∏n

i=1 Yi. Show that (Xn)n≥1
is a square integrable martingale with respect to the filtration (Fn)n≥1 defined
by Fn = σ(X1, . . . , Xn) and

〈X〉n =
n∑

i=1

X2
i−1Var(Yi), a.s.

7.3 Levy’s extension of the Borel-Cantelli lemma

Theorem 7.5. Let (Bn)n≥0 be a sequence of events such that Bn ∈ Fn for
each n. Let Xn =

∑n
i=1 1Bi

, and X∞ = limn↑∞Xn. Let pn = P(Bn | Fn−1)
and define Y∞ =

∑∞
n=1 pn. Then, almost surely,

(i) Y∞ <∞ implies X∞ <∞;

(ii) Y∞ =∞ implies Xn/Yn → 1.

Proof. Let Yn =
∑n

i=1 pn. Define a martingale (Mn) by M0 = 0 and

Mn = Xn − Yn =
n∑

i=1

(1Bi
− P(Bi | Fi−1)) , for n ≥ 1.

A direct calculation gives

〈M〉n =
n∑

k=1

(
E[M2

k | Fk−1]−M2
k−1
)

=
n∑

k=1

E[(Mk −Mk−1)
2 | Fk−1]

=
n∑

k=1

E[(1Bk
− pk)2 | Fk−1]

=
n∑

k=1

pk(1− pk) ≤ Yn.

Hence, 〈M〉∞ ≤ Y∞. Now consider three subcases.

(i) Y∞ < ∞ and 〈M〉∞ < ∞. By Theorem 7.3, Mn converges a.s. to a
finite limit. Thus, Xn = Mn + Yn also converges a.s. to a finite limit.
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(ii) Y∞ = ∞ and 〈M〉∞ < ∞. Since Xn/Yn = 1 + Mn/Yn, in this case we
have Xn/Yn → 1, a.s.

(iii) Y∞ = ∞ and 〈M〉∞ = ∞. By Theorem 7.4, we have Mn/〈M〉n → 0,
a.s., which implies Mn/Yn → 0 and thus Xn/Yn → 1, a.s.

The proof is complete.

Remark 7.4. We now show that the two Borel-Cantelli lemmas are special
cases of Theorem 7.5. First, if

∑∞
n=1 P(Bn) =

∑∞
n=1 E[pn] < ∞, we have∑∞

n=1 pn <∞, a.s.. Hence part (i) of Theorem 7.5 yields X∞ <∞, a.s. The
second Borel-Cantelli lemma assumes independence among B1, B2, . . . and
is clearly a special case of part (ii) of Theorem 7.5.
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