Unit 7: Doob's Decomposition and Square Integrable Martingales
 Instructor: Quan Zhou

7.1 Doob's decomposition

Theorem 7.1. Let $\left(X_{n}\right)_{n \geq 0}$ be an adapted process with $\mathrm{E}\left|X_{n}\right|<\infty$ for every n. There exists an essentially unique decomposition $X_{n}=M_{n}+A_{n}$, where $\left(A_{n}\right)_{n \geq 0}$ is previsible with $A_{0}=0$ and $\left(M_{n}\right)_{n \geq 0}$ is a martingale. This is known as Doob's decomposition of $\left(X_{n}\right)$. Further, $\left(X_{n}\right)$ is a submartingale if and only if A is monotone non-decreasing a.s.

Proof. The decomposition is given by

$$
\begin{aligned}
A_{0} & =0, \quad M_{0}=X_{0} \\
A_{n} & =\sum_{k=1}^{n}\left(\mathrm{E}\left[X_{k} \mid \mathcal{F}_{k-1}\right]-X_{k-1}\right), \quad \text { for } n \geq 1 \\
M_{n} & =X_{0}+\sum_{k=1}^{n}\left(X_{k}-\mathrm{E}\left[X_{k} \mid \mathcal{F}_{k-1}\right]\right), \quad \text { for } n \geq 1
\end{aligned}
$$

It is almost trivial to check that $X_{n}=M_{n}+A_{n}$ and $\left(A_{n}\right)$ is previsible. To show $\left(M_{n}\right)$ is a martingale, it suffices to notice that

$$
\mathrm{E}\left[\left(X_{n}-\mathrm{E}\left[X_{n} \mid \mathcal{F}_{n-1}\right]\right) \mid \mathcal{F}_{n-1}\right]=0
$$

To prove the uniqueness, suppose $X_{n}=\tilde{M}_{n}+\tilde{A}_{n}$ also satisfies the required conditions. We need to show that

$$
\mathrm{P}\left(\tilde{M}_{n}=M_{n}, \tilde{A}_{n}=A_{n} \text { for all } n\right)=1 .
$$

(This is what we mean by "essentially unique".) Since $M_{n}+A_{n}=\tilde{M}_{n}+$ $\tilde{A}_{n}, M_{n}-\tilde{M}_{n}$ is a previsible martingale. The uniqueness then follows from Exercise 3.1.

The definition of $\left(A_{n}\right)$ clearly implies that $\left(X_{n}\right)$ is a submartingale if and only if $\left(A_{n}\right)$ is non-decreasing a.s.

Example 7.1. Let $\left(X_{n}\right)_{n \geq 0}$ be the (symmetric) simple random walk; that is, $X_{0}=0$ and, for each $n \geq 1, X_{n}=X_{n-1}+Z_{n}$ where Z_{1}, Z_{2}, \ldots are i.i.d. such that $\mathrm{P}\left(Z_{1}=1\right)=\mathrm{P}\left(Z_{1}=-1\right)=1 / 2$. Since $\left(X_{n}\right)$ is a martingale, $\left|X_{n}\right|$ is a submartingale. The Doob decomposition of $\left(\left|X_{n}\right|\right)$ is given by $\left|X_{n}\right|=M_{n}+A_{n}$ where

$$
A_{n}=\sum_{k=1}^{n}\left(\mathrm{E}\left[\left|X_{k}\right| \mid \mathcal{F}_{k-1}\right]-\left|X_{k-1}\right|\right) .
$$

We can explicitly calculate that

$$
\mathrm{E}\left[\left|X_{k}\right| \mid \mathcal{F}_{k-1}\right]-\left|X_{k-1}\right|= \begin{cases}0, & \text { if } X_{k-1} \neq 0 \\ 1, & \text { if } X_{k-1}=0\end{cases}
$$

Hence, A_{n} is simply the cardinality of the set $\left\{0 \leq k \leq n-1: X_{k}=0\right\}$, which is known as the local time of the process X at 0 . This allows us to find that

$$
\mathrm{E}\left|X_{n}\right|=\mathrm{E} A_{n}=\sum_{i=1}^{n-1} \mathrm{P}\left(X_{i}=0\right)=\sum_{j=0}^{\lfloor(n-1) / 2\rfloor}\binom{2 j}{j} 4^{-j} .
$$

Example 7.2. We can generalize the last example as follows. Let $\left(X_{n}\right)$ be a stochastic process with initial value $X_{0}=x_{0}$ such that $\left|X_{n}-X_{n-1}\right|=1$ for all n. Let $f: \mathbb{Z} \rightarrow \mathbb{R}$ be a measurable function. Consider the process $\left(Y_{n}\right)$ with $Y_{n}=f\left(X_{n}\right)$. Define the discrete derivatives of f by

$$
f^{\prime}(x)=\frac{f(x+1)-f(x-1)}{2}, \quad f^{\prime \prime}(x)=f(x-1)+f(x+1)-2 f(x)
$$

One can check that the following holds, since $X_{n}=X_{n-1} \pm 1$:

$$
f\left(X_{n}\right)-f\left(X_{n-1}\right)=f^{\prime}\left(X_{n-1}\right)\left(X_{n}-X_{n-1}\right)+\frac{1}{2} f^{\prime \prime}\left(X_{n-1}\right)
$$

Letting $F_{n}^{\prime}=f^{\prime}\left(X_{n-1}\right)$ and $F_{n}^{\prime \prime}=f^{\prime \prime}\left(X_{n-1}\right)$, we can now write

$$
f\left(X_{n}\right)=f\left(x_{0}\right)+\left(F^{\prime} \cdot X\right)_{n}+\frac{1}{2} \sum_{i=1}^{n} F_{i}^{\prime \prime}
$$

This can be seen as the discrete version of Itô formula. Now suppose X is a martingale. Since both F^{\prime} and $F^{\prime \prime}$ are previsible, we get the Doob decomposition $f\left(X_{n}\right)=M_{n}+A_{n}$, where $M_{n}=f\left(x_{0}\right)+\left(F^{\prime} \cdot X\right)_{n}$ is the martingale and $A_{n}=\frac{1}{2} \sum_{i=1}^{n} F_{i}^{\prime \prime}$. To recover the result of Example 7.1, it suffices to note that, for $f(x)=|x|, f^{\prime \prime}(x)=2$ if $x=0$, and $f^{\prime \prime}(x)=0$ otherwise.

7.2 Square integrable martingales

Definition 7.1. Let $\left(X_{n}\right)_{n \geq 0}$ be a square integrable martingale, where "square integrable" means that $\mathrm{E} X_{n}^{2}<\infty$ for each n. Let $\left(A_{n}\right)_{n \geq 0}$ be the unique previsible process such that $\left(Y_{n}\right)_{n \geq 0}$ is a martingale, where $Y_{n}=X_{n}^{2}-A_{n}$. We say $\left(A_{n}\right)$ is the square variation process of X, and denote it by $\langle X\rangle_{n}=A_{n}$.

Remark 7.1. Since $\left(X_{n}^{2}\right)$ is a submartingale whenever $\left(X_{n}\right)$ is a martingale, $\left(\langle X\rangle_{n}\right)$ is also called the increasing process associated with X.

Theorem 7.2. Let $\left(X_{n}\right)$ be a square integrable martingale. Then,

$$
\mathrm{E}\left[\langle X\rangle_{n}\right]=\operatorname{Var}\left(X_{n}-X_{0}\right) .
$$

Proof. Try it yourself.
Corollary 7.1. Let $\left(X_{n}\right)$ be a square integrable martingale with $X_{0}=0$. Let $\langle X\rangle_{\infty}=\lim _{n \uparrow \infty}\langle X\rangle_{n}$. Then, $\mathrm{E}\left[\sup _{n \geq 0}\left|X_{n}\right|^{2}\right] \leq 4 \mathrm{E}\langle X\rangle_{\infty}$.

Proof. Note $\langle X\rangle_{\infty}$ exists since $\langle X\rangle_{n}$ is non-decreasing. The result then follows from Theorems 6.1 and 7.2 .

Corollary 7.2. Let $\left(X_{n}\right)$ be a square integrable martingale. Then the following statements are equivalent:
(i) $\sup _{n} \mathrm{E} X_{n}^{2}<\infty$.
(ii) $\mathrm{E}\left[\langle X\rangle_{\infty}\right]<\infty$.
(iii) $\left(X_{n}\right)$ converges in L^{2}.
(iv) $\left(X_{n}\right)$ converges almost surely and in L^{2}.

Proof. Try it yourself.
Theorem 7.3. Let $\left(X_{n}\right)$ be a square integrable martingale. On the event $\left\{\langle X\rangle_{\infty}<\infty\right\}$, almost surely, $X_{\infty}=\lim _{n} X_{n}$ exists and is finite.

Proof. Pick $k>0$, and define $T_{k}=\inf \left\{n \geq 0:\langle X\rangle_{n+1} \geq k\right\}$, which is a stopping time since the square variation process is previsible. Consider the stopped process $Y_{n}^{k}=X_{n \wedge T_{k}}$. By Exercise 7.2, $\left\langle Y^{k}\right\rangle_{n}=\langle X\rangle_{n \wedge T_{k}}<k$, a.s. Since a stopped martingale is still a martingale, Corollary 7.2 shows that $\left(Y_{n}^{k}\right)$ converges a.s. and in L^{2}. In particular, convergence in L^{2} implies that the
limit is a.s. finite. Hence, there exists a measurable set A with $\mathrm{P}(A)=1$ such that $\left(Y_{n}^{k}\right)$ converges as $n \rightarrow \infty$ for every k. But for every $\omega \in A \cap\left\{\langle X\rangle_{\infty}<\right.$ $\infty\}$, we can find sufficiently large k such that $T_{k}(\omega)=\infty$ and thus $X_{n}=Y_{n}^{k}$ for every n. Thus, X_{n} converges on the set $A \cap\left\{\langle X\rangle_{\infty}<\infty\right\}$.

Remark 7.2. Recall the following theorem for the convergence of random series (a special case of Kolmogorov's three-series theorem): if Z_{1}, Z_{2}, \ldots are independent with $\mathrm{E}\left[Z_{n}\right]=0$ for each n and $\sum_{n=1}^{\infty} \operatorname{Var}\left(Z_{n}\right)<\infty$, then $\sum_{n=1}^{\infty} Z_{n}$ converges a.s. It is easy to check that this result is just a special case of Theorem 7.3.

Theorem 7.4. Let $\left(X_{n}\right)$ be a square integrable martingale. On the event $\left\{\langle X\rangle_{\infty}=\infty\right\}$, almost surely, $X_{n} /\langle X\rangle_{n}$ converges to 0 .

Proof. Since $\langle X\rangle_{n} \geq 0$, the process $H_{n}=\left(1+\langle X\rangle_{n}\right)^{-1}$ is previsible and bounded by 1 . Define a martingale $\left(W_{n}\right)$ by

$$
W_{n}=\sum_{k=1}^{n}\left(X_{k}-X_{k-1}\right) H_{k}=(H \cdot X)_{n} .
$$

Since

$$
\begin{aligned}
\mathrm{E}\left[\left(W_{n}-W_{n-1}\right)^{2} \mid \mathcal{F}_{n-1}\right] & =H_{n}^{2}\left(\langle X\rangle_{n}-\langle X\rangle_{n-1}\right) \\
& \leq \frac{\langle X\rangle_{n}-\langle X\rangle_{n-1}}{\left(1+\langle X\rangle_{n-1}\right)\left(1+\langle X\rangle_{n}\right)} \\
& =\frac{1}{1+\langle X\rangle_{n-1}}-\frac{1}{1+\langle X\rangle_{n}}
\end{aligned}
$$

we have $\langle W\rangle_{\infty}=\sum_{n=1}^{\infty} \mathrm{E}\left[\left(W_{n}-W_{n-1}\right)^{2} \mid \mathcal{F}_{n-1}\right]<\infty$, a.s. Hence, W_{n} converges a.s. to a finite limit. On the event $\left\{\langle X\rangle_{\infty}=\infty\right\}$, Kronecker's lemma yields that, $X_{n} H_{n} \rightarrow 0$, a.s., but this just means $X_{n} /\langle X\rangle_{n} \rightarrow 0$, a.s.

Remark 7.3. It is not difficult to show that the strong law of large numbers for i.i.d. random variables in L^{2} is just a special case of Theorem 7.4.

Exercise 7.1. Let $\left(X_{n}\right)$ be a square integrable martingale. For any $m \leq n$,

$$
\mathrm{E}\left[X_{n}^{2} \mid \mathcal{F}_{m}\right]=X_{m}^{2}+\mathrm{E}\left[\left(X_{n}-X_{m}\right)^{2} \mid \mathcal{F}_{m}\right] .
$$

Exercise 7.2. Let $\left(X_{n}\right)$ be a square integrable martingale and T be a stopping time. Define the process $\left(Y_{n}\right)$ by $Y_{n}=X_{n \wedge T}$. Show that for every n, $\langle Y\rangle_{n}=\langle X\rangle_{n \wedge T}$, a.s.

Exercise 7.3. Let Y_{1}, Y_{2}, \ldots be independent random variables such that $\mathrm{E} Y_{n}=1$ and $\mathrm{E} Y_{n}^{2}<\infty$ for each n. Define $X_{n}=\prod_{i=1}^{n} Y_{i}$. Show that $\left(X_{n}\right)_{n \geq 1}$ is a square integrable martingale with respect to the filtration $\left(\mathcal{F}_{n}\right)_{n \geq 1}$ defined by $\mathcal{F}_{n}=\sigma\left(X_{1}, \ldots, X_{n}\right)$ and

$$
\langle X\rangle_{n}=\sum_{i=1}^{n} X_{i-1}^{2} \operatorname{Var}\left(Y_{i}\right), \text { a.s. }
$$

7.3 Levy's extension of the Borel-Cantelli lemma

Theorem 7.5. Let $\left(B_{n}\right)_{n \geq 0}$ be a sequence of events such that $B_{n} \in \mathcal{F}_{n}$ for each n. Let $X_{n}=\sum_{i=1}^{n} \mathbb{1}_{B_{i}}$, and $X_{\infty}=\lim _{n \uparrow \infty} X_{n}$. Let $p_{n}=\mathrm{P}\left(B_{n} \mid \mathcal{F}_{n-1}\right)$ and define $Y_{\infty}=\sum_{n=1}^{\infty} p_{n}$. Then, almost surely,
(i) $Y_{\infty}<\infty$ implies $X_{\infty}<\infty$;
(ii) $Y_{\infty}=\infty$ implies $X_{n} / Y_{n} \rightarrow 1$.

Proof. Let $Y_{n}=\sum_{i=1}^{n} p_{n}$. Define a martingale $\left(M_{n}\right)$ by $M_{0}=0$ and

$$
M_{n}=X_{n}-Y_{n}=\sum_{i=1}^{n}\left(\mathbb{1}_{B_{i}}-\mathrm{P}\left(B_{i} \mid \mathcal{F}_{i-1}\right)\right), \quad \text { for } n \geq 1
$$

A direct calculation gives

$$
\begin{aligned}
\langle M\rangle_{n} & =\sum_{k=1}^{n}\left(\mathrm{E}\left[M_{k}^{2} \mid \mathcal{F}_{k-1}\right]-M_{k-1}^{2}\right) \\
& =\sum_{k=1}^{n} \mathrm{E}\left[\left(M_{k}-M_{k-1}\right)^{2} \mid \mathcal{F}_{k-1}\right] \\
& =\sum_{k=1}^{n} \mathrm{E}\left[\left(\mathbb{1}_{B_{k}}-p_{k}\right)^{2} \mid \mathcal{F}_{k-1}\right] \\
& =\sum_{k=1}^{n} p_{k}\left(1-p_{k}\right) \leq Y_{n}
\end{aligned}
$$

Hence, $\langle M\rangle_{\infty} \leq Y_{\infty}$. Now consider three subcases.
(i) $Y_{\infty}<\infty$ and $\langle M\rangle_{\infty}<\infty$. By Theorem 7.3, M_{n} converges a.s. to a finite limit. Thus, $X_{n}=M_{n}+Y_{n}$ also converges a.s. to a finite limit.
(ii) $Y_{\infty}=\infty$ and $\langle M\rangle_{\infty}<\infty$. Since $X_{n} / Y_{n}=1+M_{n} / Y_{n}$, in this case we have $X_{n} / Y_{n} \rightarrow 1$, a.s.
(iii) $Y_{\infty}=\infty$ and $\langle M\rangle_{\infty}=\infty$. By Theorem 7.4, we have $M_{n} /\langle M\rangle_{n} \rightarrow 0$, a.s., which implies $M_{n} / Y_{n} \rightarrow 0$ and thus $X_{n} / Y_{n} \rightarrow 1$, a.s.

The proof is complete.
Remark 7.4. We now show that the two Borel-Cantelli lemmas are special cases of Theorem 7.5. First, if $\sum_{n=1}^{\infty} \mathrm{P}\left(B_{n}\right)=\sum_{n=1}^{\infty} \mathrm{E}\left[p_{n}\right]<\infty$, we have $\sum_{n=1}^{\infty} p_{n}<\infty$, a.s.. Hence part (i) of Theorem 7.5 yields $X_{\infty}<\infty$, a.s. The second Borel-Cantelli lemma assumes independence among B_{1}, B_{2}, \ldots and is clearly a special case of part (ii) of Theorem 7.5 .

References

[1] Rick Durrett. Probability: theory and examples, volume 49. Cambridge university press, 2019.
[2] Achim Klenke. Probability theory: a comprehensive course. Springer Science \& Business Media, 2013.
[3] David Williams. Probability with martingales. Cambridge university press, 1991.

