Unit 7: Doob’s Decomposition and Square Integrable
Martingales

Instructor: Quan Zhou

7.1 Doob’s decomposition

Theorem 7.1. Let (X,,)n>0 be an adapted process with E|X,,| < oo for every
n. There exists an essentially unique decomposition X,, = M, + A,, where
(An)n>o is previsible with Ag = 0 and (M,),>0 is @ martingale. This is known
as Doob’s decomposition of (X,). Further, (X,) is a submartingale if and
only if A is monotone non-decreasing a.s.

Proof. The decomposition is given by

AO = 07 MO = X07
An = (E[Xk | kal] - Xk71> R for n Z 1,

k=1

M, = Xo+ Y (Xp —E[Xx|Fra]), forn>1

k=1

It is almost trivial to check that X, = M, + A, and (A4,) is previsible. To
show (M,,) is a martingale, it suffices to notice that

E [(Xn - E[Xn | fn—l]) |-7:n—1} =0.

To prove the uniqueness, suppose X, = M, + A, also satisfies the required
conditions. We need to show that

P(Mn = M,, A, = A, for all n) = 1.

(This is what we mean by “essentially unique”.) Since M, + A, = ]\7[n +
A,, M, — M, is a previsible martingale. The uniqueness then follows from
Exercise 3.1.

The definition of (A,,) clearly implies that (X,,) is a submartingale if and
only if (A,) is non-decreasing a.s. O
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Example 7.1. Let (X,,),>0 be the (symmetric) simple random walk; that is,
Xo=0and, foreachn > 1, X,, = X,,_1+ Z,, where 7, Z,, ... are i.i.d. such
that P(Z; = 1) = P(Z; = —1) = 1/2. Since (X,,) is a martingale, | X,,| is a
submartingale. The Doob decomposition of (|X,,|) is given by | X,,| = M,,+ A,
where

n

Ay = (ElIXe] [ Fra] = [ X))

k=1
We can explicitly calculate that

07 if Xk—l 7é 07

1, if X1 =0.

Hence, A, is simply the cardinality of the set {0 < k < n —1: X = 0},
which is known as the local time of the process X at 0. This allows us to
find that

X | Fs] — [ X0 | = {

n-1 n 2] oy
EIX,|=EA, =) P(X;=0)= ) (j)w.
i=1 j=0

Example 7.2. We can generalize the last example as follows. Let (X,,) be a
stochastic process with initial value Xy = zg such that | X,, — X,,_4| = 1 for
all n. Let f: Z — R be a measurable function. Consider the process (Y;,)
with Y,, = f(X,,). Define the discrete derivatives of f by

pay = EPDTEZD gy = pa 1)+ gl 1)~ 240).

One can check that the following holds, since X, = X,, 1 + 1:
1
FXn) = (X)) = [(Xno1) (X = Xoa) + 5/ (Xa).
Letting F! = f'(X,_1) and F = f"(X,_1), we can now write

n

/ ]' 1!
%) = flao) + (- X)aot 5 SR
This can be seen as the discrete version of It6 formula. Now suppose X
is a martingale. Since both F’ and F” are previsible, we get the Doob
decomposition f(X,) = M, + A,, where M, = f(x¢) + (F' - X), is the
martingale and A, = £ >°" | F/". To recover the result of Example , it
suffices to note that, for f(z) = |z|, f"(x) = 2if x = 0, and f"(z) = 0
otherwise.
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7.2 Square integrable martingales

Definition 7.1. Let (X,,),>0 be a square integrable martingale, where “square
integrable” means that EX? < oo for each n. Let (A,),>o be the unique pre-
visible process such that (Y;,),>o is a martingale, where Y,, = X2 — A,,. We
say (A,) is the square variation process of X, and denote it by (X), = A,.

Remark 7.1. Since (X?) is a submartingale whenever (X,,) is a martingale,
((X),) is also called the increasing process associated with X.

Theorem 7.2. Let (X,,) be a square integrable martingale. Then,
E[(X),] = Var(X,, — Xo).
Proof. Try it yourself. O]

Corollary 7.1. Let (X,) be a square integrable martingale with Xo = 0. Let
(X) oo = limypoe(X)p. Then, E[sup,sq | X,[*] < 4E(X).

Proof. Note (X)., exists since (X),, is non-decreasing. The result then fol-
lows from Theorems 6.1 and [.2] O

Corollary 7.2. Let (X,) be a square integrable martingale. Then the fol-
lowing statements are equivalent:

(i) sup, EX? < oo.
(11) E[{X)oo] < 0.
(iii) (X,) converges in L2.
(w) (X,) converges almost surely and in L?.
Proof. Try it yourself. m

Theorem 7.3. Let (X,,) be a square integrable martingale. On the event
{{X)oo < 00}, almost surely, Xo, = lim, X,, exists and is finite.

Proof. Pick k > 0, and define T, = inf{n > 0: (X),11 > k}, which is a
stopping time since the square variation process is previsible. Consider the
stopped process Y, = X,.7,. By Exercise [1.2) (Y*), = (X)orr, < k. as.
Since a stopped martingale is still a martingale, Corollary shows that (Y,F)
converges a.s. and in L2 In particular, convergence in L? implies that the

3
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limit is a.s. finite. Hence, there exists a measurable set A with P(A) = 1 such
that (Y,*) converges as n — oo for every k. But for every w € AN {{X) <
oo}, we can find sufficiently large k such that Ty (w) = oo and thus X,, = Y,*
for every n. Thus, X,, converges on the set AN {(X) < c0}. O

Remark 7.2. Recall the following theorem for the convergence of random
series (a special case of Kolmogorov’s three-series theorem): if Zy, Zs, ...
are independent with E[Z,] = 0 for each n and ) °, Var(Z,) < oo, then
> | Z, converges a.s. It is easy to check that this result is just a special
case of Theorem [7.3

Theorem 7.4. Let (X,,) be a square integrable martingale. On the event
{{X)oo = 00}, almost surely, X,,/(X), converges to 0.

Proof. Since (X),, > 0, the process H, = (1 + (X),)™! is previsible and
bounded by 1. Define a martingale (1,,) by

W= (Xp = Xp1)Hy, = (H - X),.

k=1

Since

E[(We — Wao1)? | Faa] = Hy({X)n — (X)n-1)

< <X n <X>n—1
T (4 (X)) (L4 (X))
1 1

1+ (XYt 14 (X),

we have (W)o, = > 07 E[(W,, — W,,_1)? | Fu1] < o0, a.s. Hence, W, con-
verges a.s. to a finite limit. On the event {(X). = oo}, Kronecker’s lemma
yields that, X, H, — 0, a.s., but this just means X,,/(X), — 0, a.s. ]

Remark 7.3. It is not difficult to show that the strong law of large numbers
for i.i.d. random variables in L? is just a special case of Theorem [7.4

Exercise 7.1. Let (X,,) be a square integrable martingale. For any m < n,
E[XZ | "T_‘m] = ng + E[(Xn - Xm)2 ‘ Fm]

Exercise 7.2. Let (X,,) be a square integrable martingale and T be a stop-
ping time. Define the process (Y,,) by Y, = X,r. Show that for every n,

(Y)n = (X)nnar, a.s.
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Exercise 7.3. Let Y1,Y5,... be independent random variables such that
EY, =1 and EY;? < oo for each n. Define X,, =[]}, ¥i. Show that (X,),>1
is a square integrable martingale with respect to the filtration (F,,),>1 defined
by F, = o(Xy,...,X,) and

Z * Var(V;), as.

7.3 Levy’s extension of the Borel-Cantelli lemma

Theorem 7.5. Let (B,),>0 be a sequence of events such that B,, € F,, for
each n. Let X, = Y 1p,, and Xoo = limpyeo Xy. Let p, = P(By | Fr1)
and define Yoo =3 7 pn. Then, almost surely,

(1) Yoo < 00 implies Xoo < 00;
(11) Yoo = 00 implies X, /Y, — 1.
Proof. Let Y,, = Y"1 | pn. Define a martingale (M,,) by My = 0 and
M, =X, Y, =) (I, —P(Bi| Fi_1)), forn>1.
i=1

A direct calculation gives

n

(M), = Z (E[M | Fia] — M3,

= Z E[(My — My_1)* | Fioi]
= Z E[(1p, — pr)* | Fri)

=Y p(l—p) <Y,
k=1

Hence, (M) < Y. Now consider three subcases.

(i) Yoo < 00 and (M) < 00. By Theorem M,, converges a.s. to a
finite limit. Thus, X,, = M,, +Y,, also converges a.s. to a finite limit.

5
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(ii) Yoo = 00 and (M) < 0. Since X,,/Y, =1+ M, /Y, in this case we
have X,,/Y, — 1, as.

(iii) Yoo = 0o and (M) = oo. By Theorem [7.4 we have M, /(M), — 0,
a.s., which implies M,,/Y,, — 0 and thus X,,/Y,, — 1, a.s.

The proof is complete. O

Remark 7.4. We now show that the two Borel-Cantelli lemmas are special
cases of Theorem [7.5] First, if Yo P(B,) = Yo" E[p,] < oo, we have
> Pn < 00, a.s.. Hence part (i) of Theorem yields Xo < 0, a.s. The
second Borel-Cantelli lemma assumes independence among By, Bs,... and
is clearly a special case of part (ii) of Theorem .
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