Unit 6: Convergence in L^p

Instructor: Quan Zhou

6.1 Doob's L^p inequality

Lemma 6.1. Let $(X_n)_{n\geq 0}$ be a submartingale, and define $\bar{X}_n = \max_{0\leq i\leq n} X_i^+$. For any c > 0,

$$c \mathsf{P}(\bar{X}_n \ge c) \le \mathsf{E}[X_n \mathbb{1}_{\{\bar{X}_n \ge c\}}]$$

Proof. We fix n and let $T = n \wedge \inf\{k \colon X_k \ge c\}$, which is a bounded stopping time. By Theorem 4.3, $\mathsf{E}X_T \le \mathsf{E}X_n$. Let $A = \{\bar{X}_n \ge c\}$, and observe that on the event A^c , we have T = n. Hence, $X_T - X_n = (X_T - X_n)\mathbb{1}_A$, and thus

$$\mathsf{E}[X_n \mathbb{1}_A] \ge \mathsf{E}[X_T \mathbb{1}_A] \ge c \,\mathsf{E}[\mathbb{1}_A]$$

which proves the asserted inequality.

Theorem 6.1. Let $(X_n)_{n\geq 0}$ be a submartingale and $p \in (1,\infty)$. Then,

$$\mathsf{E}[\bar{X}_n^p] \le \left(\frac{p}{p-1}\right)^p \mathsf{E}[(X_n^+)^p],$$

where $\bar{X}_n = \max_{0 \le i \le n} X_i^+$.

Proof. We use truncation. Pick $M < \infty$ and define $Y_n = \bar{X}_n \wedge M$. Lemma 6.1 yields $\mathsf{P}(Y_n \ge y) \le y^{-1}\mathsf{E}[X_n^+\mathbbm{1}_{\{Y_n \ge y\}}]$, since $\{Y_n \ge y\} = \{\bar{X}_n \ge y\}$ if $M \ge y$ and $\{Y_n \ge y\} = \emptyset$ if M < y. Hence,

$$\begin{split} \mathsf{E}[Y_n^p] &= \int_0^\infty p y^{p-1} \mathsf{P}(Y_n \ge y) \mathrm{d}y \\ &\leq \int_0^\infty p y^{p-2} \mathsf{E}[X_n^+ \mathbbm{1}_{\{Y_n \ge y\}}] \mathrm{d}y \\ &= \mathsf{E}\left[X_n^+ \int_0^\infty p y^{p-2} \mathbbm{1}_{\{Y_n \ge y\}} \mathrm{d}y\right] \\ &= \frac{p}{p-1} \mathsf{E}\left[X_n^+ Y_n^{p-1}\right]. \end{split}$$

Hölder's inequality yields that

$$\mathsf{E}\left[X_{n}^{+}Y_{n}^{p-1}\mathrm{d}y\right] \leq \left(\mathsf{E}[(X_{n}^{+})^{p}]\right)^{1/p} \left(\mathsf{E}[(Y_{n}^{p-1})^{p/(p-1)}]\right)^{(p-1)/p}.$$

Combining the two inequalities above and using $\mathsf{E}[Y_n^p] < \infty$ due to truncation, we obtain that

$$\left(\mathsf{E}[Y_n^p]\right)^{1/p} \le \frac{p}{p-1} \left(\mathsf{E}[(X_n^+)^p]\right)^{1/p}.$$

To conclude the proof, let $M \to \infty$ and apply monotone convergence theorem. \Box

Corollary 6.1. Let $(X_n)_{n\geq 0}$ be a martingale and $p \in (1,\infty)$. Then,

$$\mathsf{E}\left[\left(\max_{0\leq i\leq n}|X_i|\right)^p\right]\leq \left(\frac{p}{p-1}\right)^p\mathsf{E}\left[|X_n|^p\right]$$

Proof. Apply Theorem 6.1 and Lemma 6.2 below.

Remark 6.1. In Theorem 6.1 and Corollary 6.1, there is no assumption on the integrability of $|X_n|^p$. Indeed, Corollary 6.1 implies that, for a martingale (X_n) and $p \in (1, \infty)$, $\sup_n \mathsf{E}|X_n|^p < \infty$ if and only if $\mathsf{E}[\sup_n |X_n|^p] < \infty$. However, this no longer holds if p = 1.

Lemma 6.2. Let (X_n) be a martingale and φ be a convex function such that $\mathsf{E}[\varphi(X_n)] < \infty$ for each n. Then, (Y_n) is a submatingale (w.r.t. the same filtration) where $Y_n = \varphi(X_n)$.

Proof. Apply Jensen's inequality for conditional expectations.

Remark 6.2. If (X_n) is only a submartingale, we need to require φ to be a non-decreasing convex function. Then, $(\varphi(X_n))$ is still a submartingale.

Exercise 6.1. Let Z_1, Z_2, \ldots be independent such that $\mathsf{E}Z_n = 0$ for every n. Define $S_n = Z_1 + \cdots + Z_n$, and $V_n = \operatorname{Var}(S_n) = \sum_{i=1}^n \mathsf{E}Z_i^2$. Prove Kolmogorov's inequality:

$$\mathsf{P}(\max_{1 \le i \le n} |S_i| \ge c) \le V_n/c^2.$$

Hint: use the submartingale (S_n^2) .

Exercise 6.2. Consider the setting of Exercise 6.1. Assume that $|Z_n| \leq K$ for every n. Prove that

$$\mathsf{P}(\max_{1 \le i \le n} |S_i| \le c) \le \frac{(c+K)^2}{V_n + (c+K)^2 - c^2} \le \frac{(c+K)^2}{V_n}.$$

Hint: use Theorem 4.3 with the martingale $(S_n^2 - V_n)$ and stopping time $T = n \wedge \inf\{k \colon |S_k| > c\}.$

6.2 Convergence in L^p

Theorem 6.2. Let X_n be a martingale with $\sup_n \mathsf{E}|X_n|^p < \infty$ for some p > 1. Then X_n converges almost surely and in L^p .

Proof. The assumption implies that $\sup \mathsf{E}|X_n| < \infty$, and thus Theorem 5.1 shows that $X_n \xrightarrow{\text{a.s.}} X_\infty$. Define $X^* = \sup_{n\geq 0} |X_n|$, and observe that $|X_n - X_\infty|^p \leq (2X^*)^p$ by the triangle inequality. But by Corollary 6.1, $(X^*)^p$ is integrable. Hence, we can apply dominated convergence theorem to conclude that $\mathsf{E}[|X_n - X_\infty|^p] \to 0$.

Example 6.1. Consider the branching process (X_n) defined in Example 5.1, and we still let $W_n = X_n/\mu^n$ and $W_\infty = \lim W_n$. Exercise 5.1 shows that, if $\mu \leq 1$, then $X_n = 0$ (and thus $W_n = 0$) for all sufficiently large n. Hence, $W_\infty = 0$ a.s.

Now consider the case $\mu > 1$, and assume $\operatorname{Var}(Z_{0,1}) = \sigma^2 \in (0, \infty)$. By Lemma 6.3 below, we have

$$\operatorname{Var}(X_n) = \mu^2 \operatorname{Var}(X_{n-1}) + \sigma^2 \mathsf{E}[X_{n-1}].$$

Hence, using $X_n = W_n \mu^n$, we get

$$\operatorname{Var}(W_n) = \operatorname{Var}(W_{n-1}) + \frac{\sigma^2}{\mu^{n+1}} \mathsf{E}[W_{n-1}] = \operatorname{Var}(W_{n-1}) + \frac{\sigma^2}{\mu^{n+1}}$$

An induction argument shows that

$$\operatorname{Var}(W_n) = \sum_{i=1}^n \frac{\sigma^2}{\mu^{i+1}} = \frac{\sigma^2(1-\mu^{-n})}{\mu(\mu-1)} \le \frac{\sigma^2}{\mu(\mu-1)}.$$

which is finite for every n. Hence, (W_n) is a martingale bounded in L^2 . Thus, W_n converges to W_∞ a.s. and in L^2 , and $\mathsf{E}[W_\infty] = 1$.

Lemma 6.3. Let X_1, X_2, \ldots , be i.i.d. and N be a non-negative integer-valued random variable independent of $(X_n)_{n\geq 1}$. Define $S_N = \sum_{i=1}^N X_i$. Suppose $\mathsf{E}X_1^2 < \infty$ and $\mathsf{E}N^2 < \infty$. Then, $\mathsf{E}S_N^2 < \infty$ and

$$\operatorname{Var}(S_N) = \operatorname{Var}(N)(\mathsf{E}X_1)^2 + \mathsf{E}(N)\operatorname{Var}(X_1).$$

Proof. Try it yourself.

References

- [1] Rick Durrett. *Probability: theory and examples*, volume 49. Cambridge university press, 2019.
- [2] Achim Klenke. *Probability theory: a comprehensive course*. Springer Science & Business Media, 2013.
- [3] David Williams. *Probability with martingales*. Cambridge university press, 1991.