Unit 5: Almost Sure Convergence

Instructor: Quan Zhou

5.1 Upcrossing inequality

Definition 5.1. Consider a stochastic process (X,,),>0. Choose constants
a < b and we define the upcrossings of [a, b] as follows. Let Ty, = —1, and for
k>1,let

Tgk_l = 1nf{n > Top_o: Xn < a},
Tor = mf{n > T 1: X, > b}

From time T5;_1 to 15, the process X crosses from below a to above b, which
is called an upcrossing. Define

U = sup{k: Ty, < n},
which gives the number of completed upcrossings up to time n.
Lemma 5.1. Let (X,,) be a supermartingale and U as defined above. Then,
(b—a)E[U*"] <E[(X, —a)"], foranyn>0.

Proof. Define H, = 1 if Ty 1 < n < Ty, for some k£ > 1, and let H, = 0
otherwise. That is,

Hy = Ly, 1my(n).
k=1

Since T}’s are stopping times, H, is previsible. Further, H - X can be seen as
the return in a stock market, where we always buy some stock once its price
drops below a and sell the stock once its price goes above b. Hence,

(H-X)p>(b—a)U* — (X, —a)”,

where (X,, — @)~ is an upper bound on the possible loss due to the last
ongoing upcrossing. By Theorem 3.1,

E[(H - X).] <0,

which yields the asserted inequality. O
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Remark 5.1. Consider a sequence of real numbers (z,). If liminfz, <
limsup x,,, then there exist rational numbers a < b such that liminfz, <
a < b < limsup x,,, which implies that the sequence (x,,) completes infinitely
many upcrossings of [a,b]. This observation allows us to use Lemma [5.1| to
prove an almost sure convergence result for supermartingales.

5.2 Almost sure convergence

Theorem 5.1. Let (X,,) be a supermartingale such that sup, E[X, ] < oo.
Then, X = lim, X,, ezists almost surely. Further, E|X | < oc.

Proof. Define the event A = {liminf X,, < limsup X,,}. By Remark [5.1]

A= |J {liminfX,<a<b<lmswpX,}C |J {U% =00},

a,beQ: a<b a,beQ: a<b

where Ugf = lim, oo Uq‘j’b exists by monotone convergence theorem. But

Lemma [5.1] yields that

E[(X, —a)
E[U) = lim E[U%Y] < limsup S =27

< 00,
n—00 n—00 b—a

where the last step follows from (X, — a)” < X, + |a| and the assumption
sup,, E[X 7] < oco. Hence, U%* < oo a.s., from which it follows that P(A) = 0.
This proves that X, exists a.s. (but it may be infinite).

Since X, converges to X, implies X, converges to X, by Fatou’s
lemma, we have

EX, <liminfEX, < oc.
n—o0

It only remains to use the supermartingale property to show EX;" < co. By
Fatou’s lemma again,

EXE <liminf EX; = liminf E[X,, + X,,] < liminf E[X] 4+ E[X,] < oo.

n—00 n—00 n—r00
Hence, E| X | < oo, which of course implies that X, is finite, a.s. O

Corollary 5.1. Let (X,,) be a non-negative supermartingale. Then, X, =
lim,, X,, exists almost surely. Further, EX, < EXj.
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Proof. The first claim follows from Theorem [5.1] By Fatou’s lemma, EX., <
liminf, EX, < EX,. m

Example 5.1. Consider the branching process example given in Unit 1. Let
{Z,.i: n € Ny, i € N} be a collection of i.i.d. random variables taking values
in {0,1,2,...}. Let Xo =1, and for each n > 1,

anl
Xn = E anl,i-
=1

Define F,, = o(X;y,...,X,), and W,, = X,,/u™ where po = E[Zy;]. Then, W,
is a martingale, since

E[Xn+1 |Fn] = E[Zn,l 4+ Zn,Xn |Fn] = /JJXn

Since a martingale is also a supermartingale, W, = lim W, exists a.s.. How-
ever, we may not have the convergence in L'; see Exercise below.

Example 5.2. We now give a numerical simulation of the branching pro-
cess. For simplicity, we let Xq = 1 and generate X,, by sampling it from
Pois(uX,,—1); that is, we assume each 7, ; follows a Poisson distribution with
rate . Results for g = 1.2 and p = 0.95 are shown in Figure[I, We will prove
later that whether (X,,) converges in L' only depends on whether p > 1.
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Figure 1: 15 simulated trajectories of (W,,) in Example with ¢ = 1.2 in the left panel
and g = 0.95 in the right.
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Example 5.3. We give a counterexample which shows that the condition of
Theorem cannot be replaced by sup,, | X,,| < oo, a.s. Let (Z,),>1 be i.i.d.
with Z; ~ Unif(0,1). Let Xy = 0, and for each n > 1, let

1, if X, 1 =0,U, >1/2,
v 1,  if X, =0,U, <1/2,
"o 0 if Xn,1 7é O, Un > n_2,

annfl, if Xn,1 % 0, Un < n_z.

It is easy to show that (X,,) is a martingale. Borel-Cantelli lemma implies
that (X,,) is bounded a.s.; i.e., sup,, | X,| < oo a.s. However, a.s., (X,,) is not
convergent with limsup,, X,, = 1 and liminf,, X,, = —1.

Exercise 5.1. Consider Example [p.1} Suppose 4 < 1 and P(Zp; = 1) < 1.
Show that X, =3 0.

Exercise 5.2. Let 7y, Z,,... be ii.d. such that P(Z; = 1) =P(Z; = —1) =
1/2. Define F,, = 0(Z1, Zs, ..., Zy), and X,, = Z1+- - -+ Z,, (we set Xy = 0).
Let our betting strategy be H; = 1, and

H, = 2”_111{Z1:...:Zn71:_1}, for each n > 2.

Define S, = (H - X), = >, H;Z;. Does S,, converge a.s.? If S,, converges
a.s., find the limit.

Exercise 5.3. Let Y1,Y5,... be ii.d. non-negative random variables such
that EY; =1 and P(Y; = 1) < 1. Let X,, =[], Vi. Prove that X,, =3 0.
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