
Unit 2: Review of Conditional Expectations

Instructor: Quan Zhou

Proofs are omitted for the results in this section; they can be found in
probability textbooks such as [2, 3, 4].

2.1 Conditional expectations

Definition 2.1. Consider a probability space (Ω,F ,P), a sub-σ-field G ⊂ F ,
and a random variable X such that E|X| <∞. The conditional expectation
of X given G, denoted by E[X | G], is a random variable such that

(i) E[X | G] is G-measurable;

(ii) for any A ∈ G, we have
∫
A
XdP =

∫
A
E[X | G]dP.

Any random variable that satisfies the above two properties is called a version
of E[X | G]. For two random variables X, Y defined on the same probability
space, we often write E[X |Y ] = E[X |σ(Y )].

Theorem 2.1. There exists a random variable that satisfies (i) and (ii) in
Definition 2.1. Further, such a random variable is essentially unique, which
means that any two versions of E[X | G] are equivalent almost surely.

Proof. See, e.g., [2].

Example 2.1. Consider a probability space (Ω,F ,P). Let Ω1,Ω2, . . . be a
countable partition of the entire sample space Ω (“partition” implies “dis-
joint”) such that P(Ωi) > 0 for each i. Define a sub-σ-algebra by

G = σ(Ω1,Ω2, . . . ).

Then, one can show that the conditional expectation of a random variable
X given G is

E[X | G](ω) =
∑
i≥1

∫
Ωi
XdP

P(Ωi)
1Ωi

(ω), a.s.

Observe that equivalently this can be expressed as, almost surely,

E[X | G](ω) =
E[X1Ωi

]

P(Ωi)
, if ω ∈ Ωi.
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This justifies why in elementary probability, we use the following formula to
calculate the conditional expectation given any A ∈ F ,

E[X |A] =
E[X1A]

P(A)
. (1)

In (1), E[X |A] is a real number, not a random variable.

Remark 2.1. Let Y : (Ω,F) → (Λ,H). Consider a version of E[X |σ(Y )],
which by definition is a mapping from Ω to R and should be σ(Y )-measurable.
This implies that there exists a function h : (Λ,H) → (R,B(R)) such that
E[X |σ(Y )](ω) = (h ◦ Y )(ω) = h(Y (ω)). In statistics, we often use the
notation E[X |Y = y], which is defined by E[X |Y = y] = h(y).

Remark 2.2. Consider 1{X∈A} for a random variable X and A ∈ B(R). Let
Y be another random variable. From Remark 2.1, P(X ∈ A |Y = y) :=
E[1{X∈A} |Y = y] = h(y) for some measurable function h. Further, it can be
shown that, almost surely,

h(y) = lim
δ↓0

P(X ∈ A |Y ∈ (y − δ, y + δ]). (2)

The right-hand side is evaluated by using elementary formula for conditional
probabilities. This yields a natural interpretation of P(X ∈ A |Y = y). For
the proof of (2), see [1].

Example 2.2. Let X, Y be independent standard normal random variables,
and consider P(X ∈ A |X = Y ). In light of Remark 2.2, we may want to
interpret P(X ∈ A |X = Y ) as the limit of P(X ∈ A |Bn) for some sequence
of events {Bn}n≥1 that converges to {X = Y }. This will be problematic,
because the limit, even if it exists, largely depends on how we construct
the sequence {Bn}n≥1. For example, we can let U = X − Y and BU

n =
{|U | < n−1}; we can also let V = X/Y and BV

n = {|V − 1| < n−1}. But
limn→∞ P(X ∈ A |BU

n ) and limn→∞ P(X ∈ A |BV
n ) are unequal in general.

(You can use the formula given in Proposition 2.5 to verify that the regular
conditional distribution of X |U = 0 and X |V = 1 are actually different.)
This is not too surprising upon observing that σ(U) 6= σ(V ). Whenever we
do conditioning, we should think about the σ-algebra we are conditioning
on. The two random variables E[1{X∈A} |σ(U)] and E[1{X∈A} |σ(V )] are
very different. A similar example is given by the Borel-Kolmogorov paradox.
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2.2 Properties of conditional expectation

For all results below, assume the probability space (Ω,F ,P) is given.

Proposition 2.1 (Basic properties of conditional expectation). Let X, Y be
integrable random variables and G ⊂ F be a given sub-σ-algebra.

(i) For a, b ∈ R, E[(aX + bY ) | G] = aE[X | G] + bE[Y | G], a.s.

(ii) If X = c where c ∈ R, then E[X | G] = c, a.s.

(iii) If X ≥ Y , then E[X | G] ≥ E[Y | G], a.s.

(iv) If X ∈ G, then E[X | G] = X, a.s.

(v) E[X | {∅,Ω}] = E[X].

(vi) Law of total expectation: E[E[X | G] ] = E[X].

(vii) Tower property: If H is another σ-algebra such that H ⊂ G ⊂ F , then

E[E[X | G] |H] = E[E[X |H] | G] = E[X |H], a.s.

(viii) Suppose E|XY | <∞ and Y ∈ G. Then E[XY | G] = Y E[X | G], a.s.

Remark 2.3. By part (vi), E[E[X |Y ] ] = E[X] for any random variable Y ,
which is the non-measure theoretic version of the law of total expectation.
Actually, part (vi) is just a special case of part (vii). Let H = {∅,Ω}. Then,
by part (v), E[E[X | G]] = E[E[X | G] |H] = E[X |H] = E[X], a.s.

Proposition 2.2 (Conditional expectation and independence). Let X, Y, Z
be integrable random variables and G ⊂ F be a given sub-σ-algebra.

(i) If σ(X) and G are independent, then E[X | G] = E[X], a.s.

(ii) Suppose X, Y are independent, and φ is a Borel function such that
E|φ(X, Y )| < ∞. Define a function f by letting f(x) = E[φ(x, Y )] for
each x ∈ R. Then, E[φ(X, Y ) |X] = f(X), a.s.

(iii) If σ(X, Y ) is independent of σ(Z), E[Y |X,Z] = E[Y |X], a.s.

Proposition 2.3 (Limits of conditional expectation). Let X and {Xn} be
integrable random variables and G ⊂ F be a given sub-σ-algebra.
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(i) MCT: If 0 ≤ Xn ↑ X, then E[Xn | G] ↑ E[X | G], a.s.

(ii) DCT: If Xn → X and |Xn| ≤ Z for some integrable random variable
Z, then E[X | G] = limn→∞ E[Xn | G], a.s.

Exercise 2.1. Let (Gn)n≥1 be a filtration on the probability space (Ω,F ,P).
Let (Xn)n≥1 be adapted to (Gn) and also a martingale w.r.t. (Gn). Define
Fn = σ(X1, . . . , Xn) for each n. Prove that (i) Fn ⊂ Gn for each n, and (ii)
(Xn) is a martingale w.r.t. (Fn).

2.3 Inequalities involving conditional expectations

Assume X is an integrable random variable defined on (Ω,F ,P) and G ⊂ F
is a given sub-σ-algebra.

Proposition 2.4 (Jensen’s inequality for conditional expectation). If ϕ is
convex and E|ϕ(X)| <∞, then

ϕ(E[X | G]) ≤ E[ϕ(X) | G], a.s.

Theorem 2.2 (Conditional expectation as a projection). Let L2(Ω,G,P) =
{Y : Y ∈ G, EY 2 < ∞}. If EX2 < ∞, then infY ∈L2(Ω,G,P) E(X − Y )2 is
attained by Y = E[X | G].

Theorem 2.3 (Conditional expectation as a contraction). Suppose p ≥ 1.
If E|X|p <∞, then ‖E[X | G]‖p ≤ ‖X‖p.

Exercise 2.2. Let X, Y1, Y2, . . . be random variables defined on the same
probability space (Ω,F ,P) such that E|X| <∞. Let Fn = σ(Y1, . . . , Yn) for
each n, and Xn = E[X | Fn]. Is (Xn)n≥1 a martingale w.r.t. (Fn)n≥1?

2.4 Conditional probability distributions

Definition 2.2. Consider the probability space (Ω,F ,P), a sub-σ-field G ⊂
F , and a random variable X: (Ω,F)→ (R,B(R)) such that E|X| <∞. The
conditional probability P(X ∈ A | G) for any A ∈ B(R) is defined as

P(X ∈ A | G) = E[1{X∈A} | G].

Theorem 2.4. Consider the setting of Definition 2.2. There always exists a
function p : Ω×B(R)→ [0, 1], which is called a regular conditional distribu-
tion of X given G, such that
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(i) for each A ∈ B(R), the function p(·, A) is a version of P(X ∈ A | G);

(ii) for P-almost every ω ∈ Ω, the function p(ω, ·) is a probability measure
on (R,B(R)).

Remark 2.4. The above theorem is not necessarily true if X does not take
values in (R,B(R)). There are explicit counterexamples where the regular
conditional distribution does not exist.

Proposition 2.5. Let Z = (X, Y ) : (Ω,F ,P) → (R2,B(R2)) be a random
vector with density fZ = d(P ◦ Z−1)/dm2. Define fY (y) =

∫
R fZ(x, y)m(dx)

and fX|Y (x, y) = fZ(x, y)/fY (y). Then,

p(ω,A) =

∫
A

fX|Y (x, Y (ω))m(dx), ∀ω ∈ Ω, A ∈ B(R).

is the regular conditional distribution of X given σ(Y ). In other words, the
regular conditional distribution of X given Y = y has density fX|Y (·, y).
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