Unit 2: Review of Conditional Expectations

Instructor: Quan Zhou

Proofs are omitted for the results in this section; they can be found in probability textbooks such as [2, 3, 4].

2.1 Conditional expectations

Definition 2.1. Consider a probability space $(\Omega, \mathcal{F}, \mathsf{P})$, a sub- σ -field $\mathcal{G} \subset \mathcal{F}$, and a random variable X such that $\mathsf{E}|X| < \infty$. The conditional expectation of X given \mathcal{G} , denoted by $\mathsf{E}[X | \mathcal{G}]$, is a random variable such that

- (i) $\mathsf{E}[X | \mathcal{G}]$ is \mathcal{G} -measurable;
- (ii) for any $A \in \mathcal{G}$, we have $\int_A X d\mathsf{P} = \int_A \mathsf{E}[X | \mathcal{G}] d\mathsf{P}$.

Any random variable that satisfies the above two properties is called a version of $\mathsf{E}[X | \mathcal{G}]$. For two random variables X, Y defined on the same probability space, we often write $\mathsf{E}[X | Y] = \mathsf{E}[X | \sigma(Y)]$.

Theorem 2.1. There exists a random variable that satisfies (i) and (ii) in Definition 2.1. Further, such a random variable is essentially unique, which means that any two versions of $\mathsf{E}[X | \mathcal{G}]$ are equivalent almost surely.

Proof. See, e.g., [2].

Example 2.1. Consider a probability space $(\Omega, \mathcal{F}, \mathsf{P})$. Let $\Omega_1, \Omega_2, \ldots$ be a countable partition of the entire sample space Ω ("partition" implies "disjoint") such that $\mathsf{P}(\Omega_i) > 0$ for each *i*. Define a sub- σ -algebra by

$$\mathcal{G} = \sigma(\Omega_1, \Omega_2, \dots).$$

Then, one can show that the conditional expectation of a random variable X given \mathcal{G} is

$$\mathsf{E}[X \mid \mathcal{G}](\omega) = \sum_{i \ge 1} \frac{\int_{\Omega_i} X \mathrm{d}\mathsf{P}}{\mathsf{P}(\Omega_i)} \mathbb{1}_{\Omega_i}(\omega), \quad \text{a.s.}$$

Observe that equivalently this can be expressed as, almost surely,

$$\mathsf{E}[X \,|\, \mathcal{G}](\omega) = \frac{\mathsf{E}[X \,\mathbb{I}_{\Omega_i}]}{\mathsf{P}(\Omega_i)}, \quad \text{if } \omega \in \Omega_i.$$

This justifies why in elementary probability, we use the following formula to calculate the conditional expectation given any $A \in \mathcal{F}$,

$$\mathsf{E}[X \mid A] = \frac{\mathsf{E}[X \mathbb{1}_A]}{\mathsf{P}(A)}.$$
(1)

In (1), $\mathsf{E}[X \mid A]$ is a real number, not a random variable.

Remark 2.1. Let $Y: (\Omega, \mathcal{F}) \to (\Lambda, \mathcal{H})$. Consider a version of $E[X | \sigma(Y)]$, which by definition is a mapping from Ω to \mathbb{R} and should be $\sigma(Y)$ -measurable. This implies that there exists a function $h: (\Lambda, \mathcal{H}) \to (\mathbb{R}, \mathcal{B}(\mathbb{R}))$ such that $\mathsf{E}[X | \sigma(Y)](\omega) = (h \circ Y)(\omega) = h(Y(\omega))$. In statistics, we often use the notation $\mathsf{E}[X | Y = y]$, which is defined by E[X | Y = y] = h(y).

Remark 2.2. Consider $\mathbb{1}_{\{X \in A\}}$ for a random variable X and $A \in \mathcal{B}(\mathbb{R})$. Let Y be another random variable. From Remark 2.1, $\mathsf{P}(X \in A | Y = y) := \mathsf{E}[\mathbb{1}_{\{X \in A\}} | Y = y] = h(y)$ for some measurable function h. Further, it can be shown that, almost surely,

$$h(y) = \lim_{\delta \downarrow 0} \mathsf{P}(X \in A \,|\, Y \in (y - \delta, y + \delta]).$$
(2)

The right-hand side is evaluated by using elementary formula for conditional probabilities. This yields a natural interpretation of $P(X \in A | Y = y)$. For the proof of (2), see [1].

Example 2.2. Let X, Y be independent standard normal random variables, and consider $P(X \in A | X = Y)$. In light of Remark 2.2, we may want to interpret $P(X \in A | X = Y)$ as the limit of $P(X \in A | B_n)$ for some sequence of events $\{B_n\}_{n\geq 1}$ that converges to $\{X = Y\}$. This will be problematic, because the limit, even if it exists, largely depends on how we construct the sequence $\{B_n\}_{n\geq 1}$. For example, we can let U = X - Y and $B_n^U =$ $\{|U| < n^{-1}\}$; we can also let V = X/Y and $B_n^V = \{|V - 1| < n^{-1}\}$. But $\lim_{n\to\infty} P(X \in A | B_n^U)$ and $\lim_{n\to\infty} P(X \in A | B_n^V)$ are unequal in general. (You can use the formula given in Proposition 2.5 to verify that the regular conditional distribution of X | U = 0 and X | V = 1 are actually different.) This is not too surprising upon observing that $\sigma(U) \neq \sigma(V)$. Whenever we do conditioning, we should think about the σ -algebra we are conditioning on. The two random variables $E[\mathbbm{1}_{\{X \in A\}} | \sigma(U)]$ and $E[\mathbbm{1}_{\{X \in A\}} | \sigma(V)]$ are very different. A similar example is given by the Borel-Kolmogorov paradox.

2.2 Properties of conditional expectation

For all results below, assume the probability space $(\Omega, \mathcal{F}, \mathsf{P})$ is given.

Proposition 2.1 (Basic properties of conditional expectation). Let X, Y be integrable random variables and $\mathcal{G} \subset \mathcal{F}$ be a given sub- σ -algebra.

- (i) For $a, b \in \mathbb{R}$, $\mathsf{E}[(aX + bY) | \mathcal{G}] = a\mathsf{E}[X | \mathcal{G}] + b\mathsf{E}[Y | \mathcal{G}]$, a.s.
- (ii) If X = c where $c \in \mathbb{R}$, then $\mathsf{E}[X | \mathcal{G}] = c$, a.s.
- (iii) If $X \ge Y$, then $\mathsf{E}[X | \mathcal{G}] \ge \mathsf{E}[Y | \mathcal{G}]$, a.s.
- (iv) If $X \in \mathcal{G}$, then $\mathsf{E}[X | \mathcal{G}] = X$, a.s.
- $(v) \ \mathsf{E}[X \mid \{\emptyset, \Omega\}] = \mathsf{E}[X].$
- (vi) Law of total expectation: $\mathsf{E}[\mathsf{E}[X | \mathcal{G}]] = \mathsf{E}[X]$.
- (vii) Tower property: If \mathcal{H} is another σ -algebra such that $\mathcal{H} \subset \mathcal{G} \subset \mathcal{F}$, then

 $\mathsf{E}[\mathsf{E}[X \mid \mathcal{G}] \mid \mathcal{H}] = \mathsf{E}[\mathsf{E}[X \mid \mathcal{H}] \mid \mathcal{G}] = \mathsf{E}[X \mid \mathcal{H}], \quad a.s.$

(viii) Suppose $\mathsf{E}[XY] < \infty$ and $Y \in \mathcal{G}$. Then $\mathsf{E}[XY | \mathcal{G}] = Y\mathsf{E}[X | \mathcal{G}]$, a.s.

Remark 2.3. By part (vi), $\mathsf{E}[\mathsf{E}[X | Y]] = \mathsf{E}[X]$ for any random variable Y, which is the non-measure theoretic version of the law of total expectation. Actually, part (vi) is just a special case of part (vii). Let $\mathcal{H} = \{\emptyset, \Omega\}$. Then, by part (v), $\mathsf{E}[\mathsf{E}[X | \mathcal{G}]] = \mathsf{E}[E[X | \mathcal{G}] | \mathcal{H}] = \mathsf{E}[X | \mathcal{H}] = \mathsf{E}[X]$, a.s.

Proposition 2.2 (Conditional expectation and independence). Let X, Y, Z be integrable random variables and $\mathcal{G} \subset \mathcal{F}$ be a given sub- σ -algebra.

- (i) If $\sigma(X)$ and \mathcal{G} are independent, then $\mathsf{E}[X | \mathcal{G}] = \mathsf{E}[X]$, a.s.
- (ii) Suppose X, Y are independent, and ϕ is a Borel function such that $\mathsf{E}[\phi(X,Y)] < \infty$. Define a function f by letting $f(x) = \mathsf{E}[\phi(x,Y)]$ for each $x \in \mathbb{R}$. Then, $\mathsf{E}[\phi(X,Y) | X] = f(X)$, a.s.
- (iii) If $\sigma(X, Y)$ is independent of $\sigma(Z)$, $\mathsf{E}[Y | X, Z] = \mathsf{E}[Y | X]$, a.s.

Proposition 2.3 (Limits of conditional expectation). Let X and $\{X_n\}$ be integrable random variables and $\mathcal{G} \subset \mathcal{F}$ be a given sub- σ -algebra.

- (i) MCT: If $0 \leq X_n \uparrow X$, then $\mathsf{E}[X_n | \mathcal{G}] \uparrow \mathsf{E}[X | \mathcal{G}]$, a.s.
- (ii) DCT: If $X_n \to X$ and $|X_n| \leq Z$ for some integrable random variable Z, then $\mathsf{E}[X | \mathcal{G}] = \lim_{n \to \infty} \mathsf{E}[X_n | \mathcal{G}]$, a.s.

Exercise 2.1. Let $(\mathcal{G}_n)_{n\geq 1}$ be a filtration on the probability space $(\Omega, \mathcal{F}, \mathsf{P})$. Let $(X_n)_{n\geq 1}$ be adapted to (\mathcal{G}_n) and also a martingale w.r.t. (\mathcal{G}_n) . Define $\mathcal{F}_n = \sigma(X_1, \ldots, X_n)$ for each n. Prove that (i) $\mathcal{F}_n \subset \mathcal{G}_n$ for each n, and (ii) (X_n) is a martingale w.r.t. (\mathcal{F}_n) .

2.3 Inequalities involving conditional expectations

Assume X is an *integrable* random variable defined on $(\Omega, \mathcal{F}, \mathsf{P})$ and $\mathcal{G} \subset \mathcal{F}$ is a given sub- σ -algebra.

Proposition 2.4 (Jensen's inequality for conditional expectation). If φ is convex and $E|\varphi(X)| < \infty$, then

$$\varphi(E[X | \mathcal{G}]) \le E[\varphi(X) | \mathcal{G}], \quad a.s.$$

Theorem 2.2 (Conditional expectation as a projection). Let $L^2(\Omega, \mathcal{G}, \mathsf{P}) = \{Y \colon Y \in \mathcal{G}, EY^2 < \infty\}$. If $EX^2 < \infty$, then $\inf_{Y \in L^2(\Omega, \mathcal{G}, \mathsf{P})} E(X - Y)^2$ is attained by $Y = E[X | \mathcal{G}]$.

Theorem 2.3 (Conditional expectation as a contraction). Suppose $p \ge 1$. If $E|X|^p < \infty$, then $||E[X | \mathcal{G}]||_p \le ||X||_p$.

Exercise 2.2. Let X, Y_1, Y_2, \ldots be random variables defined on the same probability space $(\Omega, \mathcal{F}, \mathsf{P})$ such that $\mathsf{E}|X| < \infty$. Let $\mathcal{F}_n = \sigma(Y_1, \ldots, Y_n)$ for each n, and $X_n = \mathsf{E}[X | \mathcal{F}_n]$. Is $(X_n)_{n \ge 1}$ a martingale w.r.t. $(\mathcal{F}_n)_{n \ge 1}$?

2.4 Conditional probability distributions

Definition 2.2. Consider the probability space $(\Omega, \mathcal{F}, \mathsf{P})$, a sub- σ -field $\mathcal{G} \subset \mathcal{F}$, and a random variable $X: (\Omega, \mathcal{F}) \to (\mathbb{R}, \mathcal{B}(\mathbb{R}))$ such that $\mathsf{E}|X| < \infty$. The conditional probability $\mathsf{P}(X \in A \mid \mathcal{G})$ for any $A \in \mathcal{B}(\mathbb{R})$ is defined as

$$\mathsf{P}(X \in A \,|\, \mathcal{G}) = \mathsf{E}[\mathbb{1}_{\{X \in A\}} \,|\, \mathcal{G}].$$

Theorem 2.4. Consider the setting of Definition 2.2. There always exists a function $p: \Omega \times \mathcal{B}(\mathbb{R}) \to [0, 1]$, which is called a regular conditional distribution of X given \mathcal{G} , such that

- (i) for each $A \in \mathcal{B}(\mathbb{R})$, the function $p(\cdot, A)$ is a version of $\mathsf{P}(X \in A \mid \mathcal{G})$;
- (ii) for P-almost every $\omega \in \Omega$, the function $p(\omega, \cdot)$ is a probability measure on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$.

Remark 2.4. The above theorem is not necessarily true if X does not take values in $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$. There are explicit counterexamples where the regular conditional distribution does not exist.

Proposition 2.5. Let $Z = (X, Y) \colon (\Omega, \mathcal{F}, \mathsf{P}) \to (\mathbb{R}^2, \mathcal{B}(\mathbb{R}^2))$ be a random vector with density $f_Z = d(\mathsf{P} \circ Z^{-1})/dm^2$. Define $f_Y(y) = \int_{\mathbb{R}} f_Z(x, y)m(dx)$ and $f_{X|Y}(x, y) = f_Z(x, y)/f_Y(y)$. Then,

$$p(\omega, A) = \int_{A} f_{X|Y}(x, Y(\omega))m(dx), \qquad \forall \omega \in \Omega, \ A \in \mathcal{B}(\mathbb{R}).$$

is the regular conditional distribution of X given $\sigma(Y)$. In other words, the regular conditional distribution of X given Y = y has density $f_{X|Y}(\cdot, y)$.

References

- [1] Patrick Billingsley. Probability and measure. John Wiley & Sons, 2017.
- [2] Rick Durrett. *Probability: theory and examples*, volume 49. Cambridge university press, 2019.
- [3] Achim Klenke. *Probability theory: a comprehensive course*. Springer Science & Business Media, 2013.
- [4] Sidney Resnick. A probability path. Springer, 2019.