
Unit 1: Introduction to Martingale Theory

Instructor: Quan Zhou

1.1 Martingales and stopping times

Let (Ω,F ,P) be a probability space. Let N = {1, 2, . . . } and N0 = {0, 1, 2, . . . }.

Definition 1.1. (Fn)n∈N0 is called a filtration, if it is an non-decreasing se-
quence of σ-algebras; that is, each Fn is a σ-algebra on Ω and F0 ⊂ F1 ⊂
· · · ⊂ F . Define F∞ = σ (

⋃
nFn) . We say (Ω,F , (Fn),P) is a filtered proba-

bility space.

Definition 1.2. A sequence of random variables (Xn)n≥0 is said to be adapted
to (Fn)n≥0 if Xn ∈ Fn for each n.

Definition 1.3. A sequence of random variables (Xn)n≥0 adapted to (Fn)n≥0
is said to be a martingale w.r.t (Fn)n≥0, if for each n ∈ N0, we have (i)
E|Xn| <∞, and (ii) E[Xn+1 | Fn] = Xn, a.s.

Definition 1.4. Let T : Ω → N0 ∪ {∞} be measurable. We say T is a
stopping time w.r.t. (Fn)n≥0 if {T ≤ n} ∈ Fn for each n ∈ N0.

1.2 Examples in probability theory

Example 1.1. Let’s flip a fair coin. What is the expected number of flips
needed to get the sequence HHHH (i.e., four consecutive heads)?

A martingale solution. Imagine that we are betting on heads/tails in a casino.
For each dollar I bet, I get an additional dollar if I am correct, and I lose
that dollar if I am wrong. Since the coin is assumed fair, this game is fair,
which intuitively means that I should not be able to make or lose money in
expectation. Here is my strategy: at each flip, I bet all the money I have
from previous bets plus one additional dollar on heads. Now let T denote
the first time that the sequence HHHH first happens. My expected profit at
time T should be zero. Hence,

E(T ) = 16 + 8 + 4 + 2 = 30.

In the above calculation, E(T ) is the expected total number of dollars that
come out of my pocket. It should be equal to the money that I have after the
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T -th flip, which is equal to 30. This solution is extremely simple, compared
to a more standard approach based on Markov chains.

Is this calculation really rigorous? The filtered probability space for this
question can be constructed as follows: Ω is the collection of all possible
outcomes of infinitely many flips, F is the power set on Ω, P is the probability
measure under which all flips are fair and independent, and Fn is the σ-
algebra generated by the first n flips. Let Yn denote my net profit after n
flips. It is not difficult to prove that Yn is a martingale, and thus E(Yn) = 0
for each n. However, in the above calculation, we actually assumed that
E(YT ) = 0, where T is a stopping time (T is random, not deterministic).
This step was not justified, and for now, it is unclear why it is true. If you
think replacing n with a stopping time T is always harmless, see the next
simple counterexample.

Example 1.2. Let Z1, Z2, . . . be i.i.d. random variables such that P(Zn =
1) = P(Zn = −1) = 1/2. Define F0 = {Ω, ∅}, Fn = σ(Z1, . . . , Zn) for each
n ≥ 1, and Xn = Z1 + · · ·+ Zn. Clearly, Xn is a martingale w.r.t. (Fn) and
E(Xn) = 0 for each n. Now define T = min{t : Xt = 1}. It can be shown
that P(T <∞) = 1, and thus E(XT ) = 1 6= 0.

Intuitive explanation. In a gambling context, we can think of Zn as my net
profit from the n-th bet. Each individual bet is fair. And now if I choose
to stop betting at time T , my expected profit is 1. This is of course too
good to be true. Indeed, we can show that E(T ) = ∞, which suggests that
implementing this strategy in practice may be problematic. This and the
previous example motivate us to study a key result in martingale theory, op-
tional sampling theorem. It tells us that, for a martingale (Xn) and stopping
time T , when we have E(XT ) = E(X0).

Example 1.3. Let {Zn,i : n ∈ N0, i ∈ N} be a collection of i.i.d. random
variables taking values in N0. Let X0 = 1, and

Xn =

Xn−1∑
i=1

Zn−1,i, ∀n ∈ N.

We say (Xn)n∈N0 is a Galton-Watson branching process. It can be interpretd
as the evolution of a population, which at time 0 only has X0 = 1 individual.
Each individual only lives for one unit of time, and the i-th individual at
time n has Zn,i offspring. So Xn is the number of individuals at time n. To
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avoid uninteresting cases, we assume µ = E(Z0,1) ∈ (0,∞).

Constructing a martingale. Define Fn = σ({Zk,i : k < n, i ∈ N}); you can
check that (Xn) is adapted to (Fn). Define Wn = Xn/µ

n, and it can be
quickly verified that Wn is a martingale such that E(Wn) = 1 for each n.

Question. Does limn→∞Wn exist a.s.? This probably is not very clear at
first glance. We will see that a fundamental martingale convergence result
immediately shows that W∞ = limn→Wn exists a.s. Can we further say
anything about E(W∞)?

Example 1.4. This problem is known as the Mabinogion sheep. Consider a
magical flock of sheep; some are black, and the others are white. At each time
n ∈ N, a sheep is drawn randomly (with equal probability) from the whole
flock and bleats. If the bleating sheep is white, one black sheep becomes
white instantly; if the bleating sheep is black, a white sheep becomes black.
Of course when all sheep are black or all are white, this magical process
stops. Now suppose that we are allowed to do the following: at each time
n ∈ N0, we can remove any number of white sheep from the flock. How to
maximize the expected final number of black sheep?

Solution. Let w be the number of white sheep and b be the number of black
ones. Here is the optimal policy: if b > w or b = 0, we do nothing; if w ≥ b,
reduce w to b − 1. The optimality of this policy can be proved by using
martingale theory (the calculation is somewhat complicated). Actually, this
type of problems is called stochastic control, for which martingale theory is
a fundamental tool. A more famous example in stochastic control is call/put
option pricing in mathematical finance, which you can easily find online.

1.3 Examples in mathematical statistics

Let X1, X2, . . . be i.i.d. random variables with E(X1) = 0 and Var(X1) = 1.
Define Sn = X1 + · · ·+Xn. We know that

SLLN : Sn/n
a.s.→ 0,

LIL : lim sup
n→∞

Sn/
√

2n log(log n) = 1, a.s.

CLT : Sn/
√
n

D→ N(0, 1).

‘SLLN’ denotes the strong law of large numbers, ‘LIL’ denotes the law of
the iterated logarithm, and ‘CLT’ denotes the central limit theorem. In
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mathematical statistics, we often want to establish the above three types
of results for some estimator, and very often the independence assumption
becomes too restrictive. In the seminal book [3], the authors extended these
results to the case where Sn is a zero-mean martingale, and they argued that
the limit theory for martingales essentially covers the limit theory for

(1) processes with independent increments,

(2) Markov processes,

(3) stationary processes,

(4) processes with “asymptotically independent” increments.

Thus, we can probably claim that martingale theory provides the principal
tool for building the statistical theory concerning dependent data.

Example 1.5. Let X1, X2, . . . be i.i.d. random elements. Let H be a bi-
variate function such that (i) H(x, y) = H(y, x), (ii) E[H(X1, X2)] = 0, and
(iii) E[H(X1, X2) |X1] = 0 a.s. Then we say

Un =
∑

1≤i<j≤n

H(Xi, Xj)

is a centered, degenerate U -statistic. To construct a martingale, observe that

Un = H(X1, X2)+

H(X1, X3) +H(X2, X3)+

H(X1, X4) +H(X2, X4) +H(X3, X4)+

...

H(X1, Xn) +H(X2, Xn) + · · ·+H(Xn−1, Xn).

So Un =
∑n

j=2 Yj, where

Yj =

j−1∑
i=1

H(Xi, Xj).

Letting Fn = σ(X1, . . . , Xn), we have E(Yn | Fn−1) = 0. Hence, (Un)n≥2 is a
martingale w.r.t. (Fn). Martingale CLT then can be used to obtain CLT for
U -statistics. See [2] for a classical application to kernel density estimation.
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Example 1.6. Let X1, X2, . . . denote our (possibly dependent) observations.
The underlying probability measure, Pθ, depends on an unknown parameter
θ. Let Ln(θ) denote the likelihood function with first n observations, and let

sn(θ) =
d logLn(θ)

dθ
.

As usual, let Fn = σ(X1, . . . , Xn). Set L0 = 1 and s0 = 0. Under some
regularity conditions, we can show that (sn) is a martingale w.r.t. (Fn)
under the measure Pθ. Define the “conditional” Fisher information by

In(θ) =
n∑
i=1

Eθ
[
(si(θ)− si−1(θ))2 | Fi−1

]
.

Note that when observations are independent, In(θ) is the standard Fisher

information. Martingale theory can be used to show that sn(θ)/
√
In(θ)

D→
N(0, 1) under certain regularity conditions, generalizing the score test for
i.i.d. observations, and to study the asymptotic efficiency of maximum like-
lihood estimators. See [3].

1.4 An example in machine learning

Example 1.7. Consider a function M(θ) such that M(θ) = 0 has a unique
solution at θ = θ∗. Suppose that we cannot observe M(θ) but we have
access to an unbiased estimator Y (θ) for each θ. The famous Robbins-Monro
algorithm begins with an initial guess θ0 and then update it iteratively by

θn+1 = θn − anYn(θn),

where (an) is a decreasing sequence of positive constants, and Yn(θn) is the
unbiased estimator for M(θn) generated in the n-th iteration independently
of the previous iterations. Under some conditions, we have θn

a.s.→ θ. Now
imagine that we have a large number of independent observations whose dis-
tributions depend on an uknown parameter θ, and M(θ) is the log-likelihood
function. Then, we can let Y (θ) be the log-likelihood of θ evaluated by only
using a random subsample of the entire data set, which can be quickly shown
to be unbiased. In this context, the Robbins-Monro algorithm is known as
the stochastic gradient descent (SGD), which is widely used in machine learn-
ing to find the maximum likelihood estimator.
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Martingale proof. The martingale theory can be used to study the conver-
gence of θn. The key idea is to rewrite the Robbins-Monro update by

θn+1 = θn − anM(θn)− anZn+1,

where Zn+1 = Yn(θn) −M(θn). Note that E(Zn+1 | θ1, . . . , θn) = 0; i.e., (Zn)
is a martingale difference sequence.
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