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Stochastic differential equations

Let ξ be a random variable independent of the one-dimensional Brownian
motion (Bt)t≥0. Consider the stochastic differential equation (SDE):

X0 = ξ,

dXt = b(Xt , t)dt + σ(Xt , t)dBt ,
(1)

where σ : R× [0,∞)→ (0,∞) and b : R× [0,∞)→ R.

To solve this SDE means to seek an adapted process (Xt)t≥0 s.t. a.s.,

Xt = ξ +

∫ t

0
b(Xs , s)ds +

∫ t

0
σ(Xs , s)dBs , ∀t ≥ 0.

Existence and uniqueness of the solution? How to choose the filtration?
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Strong solution

Given ξ and Bt , we use Fξ,Bt to denote the completion of the σ-algebra
generated by σ(ξ) and σ((Bs)0≤s≤t).

Definition 16.1

Let ξ,Bt be defined on (Ω,F ,P). A strong solution to (1) is a stochastic
process (Xt)t≥0 with continuous sample paths s.t.

1 X is adapted to (Fξ,Bt )t≥0;

2 P(X0 = ξ) = 1;

3 for any 0 ≤ t <∞,

P

(∫ t

0

{
|b(Xs , s)|+ σ2(Xs , s)

}
ds <∞

)
= 1;

4 almost surely, Xt = ξ +
∫ t

0 b(Xs , s)ds +
∫ t

0 σ(Xs , s)dBs , ∀t ≥ 0.
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Examples

Example 1 (Geometric Brownian motion)

Consider the geometric Brownian motion with S0 > 0:

dSt = rStdt + aStdBt .

By Itô formula, one can check that the solution is

St = S0 exp

{(
r − 1

2
a2

)
t + aBt

}
.
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Law of iterated logarithm

If r > a2/2, St →∞ a.s.; if r < a2/2, St → 0, a.s. This can be quickly
proved by using the law of iterated logarithm.

Theorem 16.2

For a standard Brownian motion, a.s.

lim inf
t→∞

Bt√
2t log(log t)

= −1, lim sup
t→∞

Bt√
2t log(log t)

= 1.
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Examples

Example 2 (Ornstein-Uhlenbeck process)

The solution to the following SDE is known as Ornstein-Uhlenbeck process:

dXt = rXtdt + σdBt .

It is a continuous-time version of the AR(1) process.

The strong solution is given by

Xt = ertX0 + σ

∫ t

0
er(t−s)dBs .
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Fubini theorem for Itô integrals

To verify that Xt indeed solves dXt = rXtdt + σdBt , one can use the
following version of Fubini’s theorem for Itô integrals.

Theorem 16.3

Let g(x , t) : R× [0,∞)→ R be continuous and twice continuously
differentiable in x . Then∫ s

0

(∫ t

0
g(u, v) du

)
dBv =

∫ t

0

(∫ s

0
g(u, v)dBv

)
du.
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Examples

Example 3 (Brownian bridge)

Let b ∈ R. Consider the following SDE with t ∈ [0, 1):

dXt =
b − Xt

1− t
dt + dBt .

Assume X0 = 0. The strong solution is given by

Xt = bt + (1− t)

∫ t

0

1

1− s
dBs .
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Existence and uniqueness of strong solution

Theorem 16.4

Assume that Eξ2 <∞ and there exists constant K <∞ s.t. for any
x , y ∈ R and 0 ≤ t <∞,

1 (Lipschitz)

|b(x , t)− b(y , t)|+ |σ(x , t)− σ(y , t)| ≤ K |x − y |;

2 (linear growth)

|b(x , t)|+ |σ(x , t)| ≤ K (1 + |x |).

Then the SDE given in (1) has a unique strong solution (Xt)t≥0.
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Grönwall lemma

Theorem 16.5

Let f , g be integrable functions and t ∈ (0,∞). Suppose there exists a
constant C ∈ (0,∞) such that

f (s) ≤ g(s) + C

∫ s

0
f (u)du, ∀s ∈ [0, t].

Then,

f (s) ≤ g(s) + C

∫ s

0
eC(s−u)g(u)du, ∀s ∈ [0, t].

In particular, if g(t) ≡ a is constant, then f (s) ≤ aeCs for s ∈ [0, t].
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Existence and uniqueness of strong solution

Proof of Theorem 16.4: uniqueness.

Let X and X̃ be two strong solutions with initial r.v. ξ and ξ̃. Using Itô
isometry, Lipschitz condition and Cauchy-Schwarz inequality, we find that

E|Xt − X̃t |2 ≤ 3E|ξ − ξ̃|2 + 3(1 + t)K 2

∫ t

0
E|Xs − X̃s |2ds.

Letting f (t) = E|Xt − X̃t |2 and applying Grönwall’s lemma, we get

E|Xs − X̃s |2 ≤ 3e3(1+t)K2sE|ξ − ξ̃|2, ∀ 0 ≤ s ≤ t.

Since we must have ξ = ξ̃ a.s., this shows that X = X̃ a.s. on the time
interval [0, t]. Since t is arbitrary, we have the uniqueness on [0,∞).
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Existence and uniqueness of strong solution

Proof of Theorem 16.4: existence

Picard iteration: define X 0
t = ξ, and for each n ≥ 1, define

X n
t = ξ +

∫ t

0
b(X n−1

s , s)ds +

∫ t

0
σ(X n−1

s , s)dBs .

Our goal is to show that X n converges to the SDE solution on time
interval [0, t] for every fixed t ∈ [0,∞).

Using the linear growth condition, one can show that
∫ t

0 E|X n
s |2ds <∞ for

each n. This implies that
∫ t

0 σ(X n
s , s)dBs is defined for each n.
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Existence and uniqueness of strong solution

Proof of Theorem 16.4: existence

Fix t <∞. We will show that there exists C (t) <∞ s.t.

∆n(t) = E

[
sup

0≤s≤t
|X n

s − X n−1
s |2

]
≤ C (t)n

n!
. (2)

Assuming that (2) holds, we have

∞∑
n=1

P

(
sup

0≤s≤t
|X n

s − X n−1
s |2 > 2−n

)
≤
∞∑
n=1

2n∆n(t) ≤ e2C(t) <∞.

Borel-Cantelli lemma thus shows that for almost every ω, X n(ω) converges
to some X (ω) in the space C([0, t]) w.r.t. to the sup norm. Denote this
limit by X . Since each X n is continuous and adapted, so is X .
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Existence and uniqueness of strong solution

Proof of Theorem 16.4: existence

Another consequence of (2) is that for any m ≥ n and s ∈ [0, t],

‖Xm
s − X n

s ‖2 ≤
m∑

k=n+1

‖X k
s − X k−1

s ‖2 ≤
∞∑

k=n+1

√
C (t)k

k!
=: Bn.

Note Bn <∞ and limn→∞ Bn = 0. By Fatou’s lemma,

E

∫ t

0
|Xs − X n

s |2ds ≤ lim inf
m→∞

E

∫ t

0
|Xm

s − X n
s |2ds ≤ B2

n t.

Hence, limn→∞ E
∫ t

0 |Xt − X n
t |2dt = 0. Using Itô isometry and

assumptions on b and σ, we can then show that X satisfies (3) and (4) in
Definition 16.1 on [0, t]. Since t is arbitrary, X is a strong solution.
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Existence and uniqueness of strong solution

Sketch of proof for (2)

Define Dn
t =

∫ t
0 [σ(X n

s , s)− σ(X n−1
s , s)]dBs , which is a continuous

martingale. Hence, Doob’s inequality yields

E

(
sup
s≤t
‖Dn

s ‖2
2

)
≤ 4E‖Dn

t ‖2
2 ≤ 4K 2

∫ t

0
E|X n

s − X n−1
s |2ds.

Define F n
t =

∫ t
0 [b(X n

s , s)− b(X n−1
s , s)]ds. Cauchy-Schwarz yields that

E

(
sup
s≤t
‖F n

s ‖2
2

)
≤ tK 2

∫ t

0
E|X n

s − X n−1
s |2ds.

Hence, there exists some C (t) <∞ s.t. ∆n+1(t) ≤ C (t)
∫ t

0 ∆n(s)ds. A
routine induction argument completes the proof.
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Itô diffusion

The solution to an SDE is often called (Itô) diffusion; b is called the drift
coefficient, and σ the diffusion coefficient.

In the time-homogeneous case, we have an SDE

dXt = b(Xt)dt + σ(Xt)dBt . (3)

The assumptions of Theorem 16.4 can be simplified to

∃K <∞, s.t. |b(x)− b(y)|+ |σ(x)− σ(y)| ≤ K |x − y |, ∀x , y . (4)
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Strong Markovian property

Theorem 16.6

Assume (4) holds. The solution to (3) is a strong Markov process; that is,
for any bounded f , any finite stopping time T w.r.t. the filtration defined
by F0

t = σ((Bs)0≤s≤t), and any s > 0, we have a.s.,

Ex

[
f (XT+s) | F0

T

]
= EXT

[f (Xs)],

where Ex denotes the expectation corresponding to the probability
measure Px under which Px(X0 = x) = 1.
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Infinitesimal generator

Let X be the solution to (3). The infinitesimal generator of X , denoted by
A, is defined by

(Af )(x) = lim
s↓0

Ex [f (Xs)]− f (x)

s
.

Let D(A) = {f : (Af )(x) exists for every x ∈ R}.

Theorem 16.7

Assume (4) holds. Let f : R→ R be twice continuously differentiable and
have a bounded support. Then f ∈ D(A), and

(Af )(x) = b(x)
∂f

∂x
+

1

2
σ2(x)

∂2f

∂x2
.
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Dynkin’s formula

The infinitesimal generator is often used to calculate the expectation of
f (XT ) for some stopping time T . The proof of the following theorem,
known as Dynkin’s formula, is similar to that of Theorem 16.8. One
applies Itô’s lemma and verifies that the stochastic integral involving dBt

has expectation zero.

Theorem 16.8

Under the setting of Theorem 16.7, for any stopping time T such that
Ex [T ] <∞, we have

Ex [f (XT )] = f (x) + Ex

[∫ T

0
(Af )(Xs)ds

]
.
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Weak solutions

Definition 16.9

A weak solution to the SDE

dXt = b(Xt , t)dt + σ(Xt , t)dBt ,

with initial distribution µ is a triple (X ,B), (Ω,F ,P) and (Ft)t≥0 s.t.

1 (Ω,F ,P) is a probability space, and (Ft)t≥0 is a right-continuous and
complete filtration;

2 X is adapted to (Ft)≥0 and has continuous paths, and B is a
standard Brownian motion w.r.t. (Ft)≥0;

3 P ◦ X−1
0 = µ;

4 for any 0 ≤ t <∞, P
(∫ t

0

{
|b(Xs , s)|+ σ2(Xs , s)

}
ds <∞

)
= 1;

5 almost surely, Xt = X0 +
∫ t

0 b(Xs , s)ds +
∫ t

0 σ(Xs , s)dBs for t ≥ 0.
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Weak solutions

Definition 16.10

We say that the weak solution to a SDE is unique in law if, for any two
weak solutions {(X ,B), (Ω,F ,P), (Ft)} and {(X̃ , B̃), (Ω̃, F̃ , P̃), (F̃t)}, we
have Law(X ) = Law(X̃ ).
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Examples

Example 4 (Tanaka’s SDE)

Let sgn(x) = 1[0,∞)(x)− 1(−∞,0)(x). Consider the following SDE

dXt = sgn(Xt)dBt , with X0 = 0.

Here is a weak solution unique in law. Let X be a standard Brownian
motion on (Ω,F ,P), and let Ft be the completion of σ((Xs)0≤s≤t). By
Tanaka’s SDE, we can define Bt by

Bt =

∫ t

0
sgn(Xt) dXt .

It can be shown that Bt is indeed a Brownian motion adapted to (Ft)t≥0.
However, there is no strong solution.
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Filtering problems

Suppose we observe the process (Zt)t≥0 with dynamics given by

dZt = b(Xt , t)dt + σ(Xt , t)dBt .

How to estimate (Xt)t≥0? The estimate X̂t must be measurable w.r.t.
FZ
t , the completion of σ((Zs)0≤s≤t).

By the projection property of conditional expectation, the best estimator
that minimizes E|Xt − X̂t |2 is given by

X̂t = E[Xt | FZ
t ].
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Linear filtering

Consider the linear case:

dXt = ftXtdt + σtdBt , with X0 ∼ N(µ0, v0),

dZt = gtXtdt + ρtdB̃t , with Z0 = 0,

where ft , gt , σt , ρt are deterministic functions, and B, B̃ are two
independent Brownian motions. Assume that

1 ft , gt , σt , ρt are all bounded on [0, n] for every n <∞;

2 σt ≥ 0 for all t, and inft≥0 ρt > 0.
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Linear filtering

Theorem 16.11 (Kalman-Bucy filter)

For the linear filtering problem, the solution is given by X̂0 = µ0,

dX̂t =

(
ft −

g2
t st
ρ2
t

)
X̂t dt +

gtst
ρ2
t

dZt ,

where st = E|Xt − X̂t |2 satisfies s0 = v0 and

ds

dt
= −g2

t

ρ2
t

s2
t + 2ftst + σ2

t .
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Optimal stopping

Let g : R→ [0,∞) be given and Xt be given by

dXt = b(Xt , t)dt + σ(Xt , t)dBt .

Optimal stopping means to find an optimal stopping time T ∗ that attains

sup
T

E[g(XT )],

where the supremum is taken over all stopping times w.r.t. the filtration
generated by X . The function g is often known as the reward function.
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Quickest detection

Let π ∈ [0, 1) and θ ∼ πδ0 + (1− π)Exp(λ) (where δ0 denotes the Dirac
measure at 0). Assume θ is unknown and independent of B. We observe
the process X with X0 = 0 and dynamics given by

dXt = µ1{θ≤t}dt + σdBt ,

where µ, σ are known. For β > 0, the goal is to find T ∗ that attains

inf
T

P(T < θ) + βE[(T − θ)+].

Why do we choose this objective function?
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Stochastic control

In stochastic control problems, we can choose a stochastic process
(ut)t≥0, known as the control, to modify the system dynamics. Assume
that the controlled process, denoted by X u, evolves by

dX u
t = b(X u

t , t, ut)dt + σ(X u
t , t, ut)dBt . (5)

We usually require that ut be measurable w.r.t. FB
t or w.r.t. FX

t .

If we can write ut(ω) = u0(X u
t (ω), t) for some measurable function u0, we

say u is Markovian. Sometimes we only consider Markovian controls.
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Stochastic control

Let T denote the time horizon of the problem. Some common choices are:
T ∈ (0,∞), T =∞, or T = inf{t ≥ 0: (X u

t , t) /∈ C} for some bounded
set C ⊂ R× [0,∞).

Given some measurable functions f , g , the goal is to find the control u∗

that attains supu J(u), where

J(u) = E

[∫ T

0
f (X u

t , t, ut)dt + g(X u
T )1{T<∞}

]
.

A typical application of stochastic control is to find the optimal portfolio
in a financial market.
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Value function

It is often more convenient to find the optimal control for all possible
initial states. Define the value function by

v(x , t) = sup
u

Jx ,t(u), where

Jx ,t(u) = Ex ,t

[∫ T

t
f (X u

t , t, ut)ds + g(X u
T )1{T<∞}

]
.

The expectation Ex ,t means that we consider the solution to the SDE (5)
starting at X u

t = x .
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Hamilton-Jacobi-Bellman equation

Under certain regularity conditions, the optimal control is Markovian. To
find the optimal control, one often begins with solving the so-called
Hamilton-Jacobi-Bellman (HJB) equation,

sup
u

{
f (x , t, u) +

∂v

∂t
(x , t) + b(x , t, u)

∂v

∂x
+

1

2
σ2(x , t, u)

∂2v

∂x2

}
= 0,

subject to the boundary condition v(x ,T ) = g(x) (assuming T is fixed).

Under some conditions, one can prove that the solution v to the HJB
equation is the value function we seek, and the control u that attains the
supremum in the HJB equation is optimal. This technique is known as the
verification theorem.

Instructor: Quan Zhou Unit 16: Stochastic Differential Equations Fall 2023 31 / 34



Exercises

Exercise 16.1

Consider the geometric Brownian motion St in Example 1. Prove that if
r < a2/2, St → 0, a.s.

Exercise 16.2

Consider the Ornstein-Uhlenbeck process Xt in Example 2. Verify that Xt

solves the SDE dXt = rXtdt + σdBt .

Exercise 16.3

Show that the Brownian bridge Xt in Example 3 satisfies limt↑1 Xt = b a.s.
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Exercises

Exercise 16.4

Let θ be a parameter drawn from N(µ0, v0). Suppose we observe the
process (Zt)t≥0 with dynamics

dZt = θgtdt + ρ dBt .

where ρ > 0 is known and gt is a known bounded function. Use
Kalman-Bucy filter to find the estimate of θ at time t.

Exercise 16.5

Prove Theorem 16.7.
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