Unit 14: Brownian Motion

Instructor: Quan Zhou

Fall 2023

Instructor: Quan Zhou

Unit 14: Brownian Motion

Fall 2023 1 / 32

Let $(\Omega, \mathcal{F}, \mathsf{P})$ be a probability space. We say $(X_t)_{0 \le t < \infty}$, a collection of random variables defined on $(\Omega, \mathcal{F}, \mathsf{P})$ indexed by $t \in [0, \infty)$, is a continuous-time stochastic process.

Sample path

For each $\omega \in \Omega$, the function $t \mapsto X_t(\omega)$ is said to be a sample path or trajectory of the process $X = (X_t)_{0 \le t < \infty}$.

Finite-dimensional distributions

The finite-dimensional distributions of X refer to the distributions of $(X_{t_1}, X_{t_2}, \ldots, X_{t_n})$ for any $n \ge 1$ and $0 \le t_1 < t_2 \le \cdots < t_n < \infty$.

Theorem 14.1

Let X and Y be two stochastic processes. Consider the following.

- P($X_t = Y_t$ for every $0 \le t < \infty$) = 1 (indistinguishable).
- **2** $P(X_t = Y_t) = 1$ for every $0 \le t < \infty$ (modification).

• X and Y have the same finite-dimensional distributions. Then $(1) \Rightarrow (2) \Rightarrow (3)$.

Proof.

Try it yourself.

Let $(\mathcal{F}_t)_{0 \leq t < \infty}$ be a filtration (i.e., non-decreasing σ -algebras) such that X is adapted to $(\mathcal{F}_t)_{0 \leq t < \infty}$ (i.e., $X_t \in \mathcal{F}_t$ for each t). Further, assume that $E|X_t| < \infty$ for each t.

Submartingales, supermartingales and martingales

- X is a submartingale if $E[X_t | \mathcal{F}_s] \ge X_s$, a.s. for any $0 \le s < t < \infty$.
- X is a supermartingale if -X is a submartingale.
- X is a martingale if it is both a supermartingale and a submartingale.

Many results for discrete-time martingales (e.g. upcrossing inequality, Doob's inequality, optional sampling theorem) continue to hold for continuous-time martingales with right-continuous paths.

Brownian motion is the foundation of continuous-time martingales.

Definition 14.2

We say $B = (B_t)_{0 \le t < \infty}{}^a$ is a standard one-dimensional Brownian motion (i.e., Wiener process) if

- **1** $B_0 = 0;$
- 2 for any $t_0 < t_1 < \cdots < t_n$, $B(t_0), B(t_1) B(t_0), \ldots, B(t_n) B(t_{n-1})$ are independent;
- **③** for any s, t ≥ 0, B(s + t) B(s) ∼ N(0, t);

9 sample paths of *B* are almost surely continuous.

^aWe will sometimes write B(t) instead of B_t .

Numerical simulation of Brownian motion

Here is the R code.

h = 0.001 N = 1/h Z = rnorm(N, mean=0, sd=sqrt(h)) B = c(0, cumsum(Z)) plot((0:N)/N, B, type='1', xlab='time', ylab='B_t')

Numerical simulation of Brownian motion

time

Instructor: Quan Zhou

We first consider how to construct a Brownian motion on the time interval [0, 1]. The method we use will also justify the simulation scheme used in the previous slides and lead to the famous Donsker's theorem.

Let Z_1, Z_2, \ldots be i.i.d. random variables with mean zero and variance $\sigma^2 \in (0, \infty)$. Define $S_n = Z_1 + \cdots + Z_n$ and set $S_0 = 0$. Define $(X_t^n)_{0 \le t \le 1}$ as the scaled linear interpolation of $(S_j)_{1 \le j \le n}$:

$$\begin{aligned} X_t^n &= \frac{1}{\sigma\sqrt{n}} S_{\lfloor nt \rfloor} + (nt - \lfloor nt \rfloor) \frac{1}{\sigma\sqrt{n}} Z_{\lfloor nt \rfloor + 1} \\ &=: \frac{1}{\sigma\sqrt{n}} S_{\lfloor nt \rfloor} + E_{n,t}. \end{aligned}$$

Note that $E_{n,t} \xrightarrow{P} 0$ as $n \to \infty$. Since $\lfloor nt \rfloor / n \to t$, $S_{\lfloor nt \rfloor} / \sigma \sqrt{n}$ (and thus X_t^n) converges in distribution to $\sqrt{t}N(0,1)$ by CLT.

Similarly, an application of the multivariate CLT yields that, for any $0 \le t_0 < t_1 < \cdots < t_m \le 1$, $(X^n(t_0), X^n(t_1), \ldots, X^n(t_m))$ converges in distribution to the finite-dimensional distribution specified in Definition 14.2 (i.e., a multivariate normal distribution with independent increments).

To show that this implies the existence of Brownian motion, we need

- Prohorov's theorem,
- Kolmogorov-Chentsov continuity theorem (see Method 2),
- Arzelà-Ascoli theorem (see [4]).

Let (S, d) be a metric space and $\mathcal{B}(S)$ denote the Borel σ -algebra (i.e., the σ -algebra generated by all open sets w.r.t. the metric d).

Relatively compactness and tightness

Let Π be a collection of probability measures on $(S, \mathcal{B}(S))$. We say Π is relatively compact if every sequence of probability measures in Π contains a weakly convergence subsequence (with limit being another probability measure on $(S, \mathcal{B}(S))$). We say Π is tight if for every $\epsilon > 0$, there is a compact set $K \subset S$ such that $\inf_{P \in \Pi} P(K) \ge 1 - \epsilon$

Theorem 14.3

Suppose (S, d) is complete and separable. Then Π is relatively compact if and only if it is tight.

Space $\mathcal{C}([0,1])$

Let $\mathcal{C}([0,1])$ be the space of continuous functions on [0,1] endowed with the metric

$$d(\omega_1,\omega_2)=\sup_{0\leq t\leq 1}|\omega_1(t)-\omega_2(t)|.$$

It can be shown that $(\mathcal{C}([0,1]), d)$ is complete and separable.

By construction each X^n takes values in $\mathcal{C}([0, 1])$. Let \mathbb{P}^n denote the distribution of X^n . If we can show $(\mathbb{P}_n)_{n\geq 1}$ is tight, then Prohorov's theorem implies that $(\mathbb{P}_n)_{n\geq 1}$ has a subsequence converging weakly to some probability measure W. In particular, the process X defined on $(\mathcal{C}([0,1]), \mathcal{B}(\mathcal{C}([0,1])), W)$ by $X_t(\omega) = \omega(t)$ is a Brownian motion. W is known as Wiener measure.

This argument can be extended to $C([0,\infty))$, the space of all continuous functions on $[0,\infty)$, with metric

$$d(x,y) = \sum_{n=1}^{\infty} \frac{1}{2^n} \max_{0 \le t \le n} (|x(t) - y(t)| \land 1).$$

 $(\mathcal{C}([0,\infty)), d)$ is complete and separable. Further, $\mathcal{B}(\mathcal{C}([0,\infty))$ coincides with the σ -algebra generated by the collection of sets

$$\{\omega \in \mathcal{C}([0,\infty)) \colon (\omega(t_1),\omega(t_2),\ldots,\omega(t_n)) \in A\}, \quad n \ge 1, A \in \mathcal{B}(\mathbb{R}^n).$$

We omit the proof of the tightness of $(P_n)_{n\geq 1}$, which requires Kolmogorov-Chentsov continuity theorem and Arzelà-Ascoli theorem. With some extra work, we obtain the following functional CLT.

Theorem 14.4

Let Z_1, Z_2, \ldots be i.i.d. random variables with mean zero and variance $\sigma^2 \in (0, \infty)$. Define $S_n = Z_1 + \cdots + Z_n$ and set $S_0 = 0$. Define $X^n = (X_t^n)_{0 \le t < \infty}$ by

$$X_t^n = \frac{1}{\sigma\sqrt{n}} S_{\lfloor nt \rfloor} + (nt - \lfloor nt \rfloor) \frac{1}{\sigma\sqrt{n}} Z_{\lfloor nt \rfloor + 1}.$$

The distribution of X^n converges weakly to the Wiener measure as $n \to \infty$.

Let $\mathbb{R}^{[0,\infty)}$ denote the set of all real-valued functions on $[0,\infty)$ and $\mathcal{B}(\mathbb{R}^{[0,\infty)})$ be the σ -algebra generated by the collection of sets

$$\{\omega \in \mathbb{R}^{[0,\infty)} \colon (\omega(t_1), \omega(t_2), \dots, \omega(t_n)) \in A\}, \quad n \ge 1, A \in \mathcal{B}(\mathbb{R}^n).$$

The second method for constructing Brownian motion directly finds a stochastic process X on $\mathbb{R}^{[0,\infty)}$ that is distributed as a Brownian motion.

Construction of Brownian motion: Method 2

A standard application of Kolmogorov extension theorem yields the following result.

Theorem 14.5

For every $x \in \mathbb{R}$, there exists a probability measure P_x on $(\mathbb{R}^{[0,\infty)}, \mathcal{B}(\mathbb{R}^{[0,\infty)}))$ such that $P_x\{\omega : \omega(0) = x\} = 1$ and for any $0 = t_0 < t_1 < \cdots < t_n$ and Borel sets A_1, \ldots, A_n , we have

$$\mathsf{P}_{\mathsf{x}}(\{\omega: \omega(t_i) \in A_i\}) = \int_{A_1} \cdots \int_{A_n} \prod_{k=1}^n p_{t_k-t_{k-1}}(x_{k-1}, x_k) \, \mathrm{d} x_n \cdots \mathrm{d} x_1,$$

where $x_0 = 0$ and

$$p_t(x,y) = \frac{1}{\sqrt{2\pi t}} e^{-(y-x)^2/2t}$$

Choosing x = 0 in the previous theorem, we get a probability measure that satisfies conditions (1), (2), (3) in Definition 14.2. But condition (4) is hard to satisfy. Indeed, we have the following result:

Lemma 14.6

$$\{A \subset \mathcal{C}([0,\infty)) \colon A \in \mathcal{B}(\mathbb{R}^{[0,\infty)})\} = \{\emptyset\}.$$

For example, $\mathcal{C}([0,\infty))$ is not measurable.

- Main idea: construct the discrete-time version of Brownian motion at $t \in \mathbb{Q}$ and then extend it to \mathbb{R} .
- Question: Does a continuous function $f : \mathbb{Q} \to \mathbb{R}$ always have a continuous extension to \mathbb{R} ?

Consider the function $f: \mathbb{Q} \to \mathbb{R}$ defined by f(x) = 0 if $x < \sqrt{2}$ and f(x) = 1 if $x > \sqrt{2}$.

Hölder continuity

Let $f: S \to \mathbb{R}$ for some $S \subset \mathbb{R}$. We say f is Hölder continuous of order $\gamma > 0$ (or γ -Hölder continuous) at x if there exist $\epsilon > 0, C < \infty$ such that for any $y \in (x - \epsilon, x + \epsilon)$,

$$|f(y) - f(x)| \le C|y - x|^{\gamma}. \tag{1}$$

If (1) holds for any x, y and some fixed $C < \infty$, then we say f is Hölder continuous of order γ .

When $\gamma = 1$, this is known as Lipschitz continuity.

Assume $\gamma \in (0, 1]$.

Pointwise: Differentiable at $x \Rightarrow$ Lipschitz continuous at $x \Rightarrow \gamma$ -Hölder continuous at $x \Rightarrow$ continuous at x.

Global:

```
Continuously differentiable \Rightarrow Lipschitz continuous \Rightarrow \gamma-Hölder continuous \Rightarrow uniformly continuous \Rightarrow continuous.
```

If $f: \mathbb{Q} \to \mathbb{R}$ is uniformly continuous, it has a unique continuous extension from \mathbb{Q} to \mathbb{R} .

For simplicity, we consider the time interval [0, 1] first.

Theorem 14.7

Let $(X_t)_{0 \le t \le 1}$ be real-valued. Suppose there exist $\alpha, \beta > 0, C < \infty$ s.t.

$$\mathsf{E}(|X_t-X_s|^lpha) \leq C |t-s|^{1+eta}, \quad ext{ for all } s,t\in [0,1].$$

Then, for any $\gamma < \beta/\alpha$, for almost every ω there exists $C(\omega)$ s.t.

$$|X_t(\omega) - X_s(\omega)| \leq C(\omega)|t-s|^\gamma, \quad ext{ for all } s,t\in \mathbb{Q}_2\cap [0,1],$$

where $\mathbb{Q}_2 = \{k2^{-n}: n, k \ge 0\}$ denotes the dyadic rationals. Further, there is a modification (unique up to indistinguishability) $\tilde{X} = (\tilde{X}_t)_{0 \le t \le 1}$ of X whose paths are a.s. Hölder continuous of order γ .

On $(\mathbb{R}^{[0,1]}, \mathcal{B}(\mathbb{R}^{[0,1]}))$, we have shown that there is a probability measure P under which the process X defined by $X_t(\omega) = \omega(t)$ has stationary, independent, and normally distributed increments, and $P(X_0 = 0) = 1$.

By Kolmogorov-Chentsov theorem, there is a modification B of X such that B is a.s. Hölder continuous of order $\gamma \in (0, 1/2)$, since

$$\mathsf{E}(|X_t - X_s|^{2k}) = C_k |t - s|^k$$
, for $k \ge 1$ and some $C_k < \infty$.

Because B has the same finite-dimensional distributions as X, B is a Brownian motion.

Using a limiting argument, we can extend the construction of B_t to $t \in [0, \infty)$. The paths of $(B_t)_{0 \le t < \infty}$ are a.s. *locally* Hölder continuous of order $\gamma \in (0, 1/2)$ (see [4] for the definition).

How about $\gamma \ge 1/2?$

Theorem 14.8

For any $\gamma > 1/2$, the paths of Brownian motion are a.s. nowhere γ -Hölder continuous (i.e., not γ -Hölder continuous at any t).

This implies that paths of Brownian motion are a.s. nowhere differentiable.

The last method constructs Brownian motion as an L^2 -limit.

Consider the time interval [0,1] equipped with the Lebesgue measure λ . Let $L^2([0,1])$ be the Hilbert space of square integrable (w.r.t. λ) functions with inner product

$$\langle f,g\rangle = \int_{[0,1]} f(x)g(x)\lambda(\mathrm{d} x).$$

Let $(b_n)_{n\geq 1}$ be an orthonormal basis; that is, $\langle b_n, b_m
angle = \mathbb{1}_{\{n=m\}}$, and

$$\lim_{n\to\infty}\left\|f-\sum_{k=1}^n\langle f,b_k\rangle b_k\right\|=0,\quad\forall\,f\in L^2([0,1]).$$

Let Z_1, Z_2, \ldots be i.i.d. N(0, 1) random variables defined on some probability space $(\Omega, \mathcal{F}, \mathsf{P})$. For each $n \ge 1$ and $t \in [0, 1]$, define

$$egin{aligned} X^n_t &= \sum_{i=1}^n \langle \mathbbm{1}_{[0,t]}, \ b_i
angle Z_i \ &= \int_{[0,t]} \left(\sum_{i=1}^n Z_i b_i(s)
ight) \lambda(\mathrm{d} s). \end{aligned}$$

It can be shown that $(X_t^n)_{n\geq 1}$ converges in L^2 to some random variable X_t . Further, the process $(X_t)_{0\leq t\leq 1}$ has the same finite-dimensional distributions as Brownian motion.

Construction of Brownian motion: Method 3

For example, let $b_1 = 1$ and $b_n(x) = \sqrt{2}\cos((n-1)\pi x)$ for $n \ge 2$. Then,

$$X_t^n = Z_1 t + \sum_{k=1}^{n-1} \frac{\sqrt{2} \sin(k\pi t)}{k\pi} Z_{k+1}.$$

We can still use Kolmogorov-Chentsov continuity theorem to show that X has a continuous modification. But now we have a shortcut. By choosing a proper orthonormal basis of $L^2([0,1])$, we can have $||X^n - X||_{\infty} \stackrel{a.s.}{\to} 0$. Since a uniform limit of continuous functions is again continuous, this would guarantee that X is continuous a.s. and thus X is a Brownian motion. See [4, Chap. 21.5].

This is also known as Lévy's construction of Brownian motion.

Let $(b_n)_{n\geq 1}$ be an orthonormal basis of $L^2([0,1])$ such that

$$B_t = \sum_{i=1}^{\infty} \langle \mathbb{1}_{[0,t]}, b_i \rangle Z_i$$

is a Brownian motion. Given $f \in L^2([0,1])$ and $t \in [0,1]$, we define

$$\int_{0}^{t} f(s) dB_{s} = \int_{[0,t]} f(s) \left(\sum_{i=1}^{\infty} Z_{i} b_{i}(s) \right) \lambda(ds)$$
$$= \sum_{i=1}^{\infty} \langle f \mathbb{1}_{[0,t]}, b_{i} \rangle Z_{i}.$$
(2)

This is called the stochastic integral of f w.r.t. B.

Theorem 14.9

Equivalently, $B = (B_t)_{0 \le t < \infty}$ is a standard one-dimensional Brownian motion if

- B is a Gaussian process; that is, all finite dimensional distributions are multivariate normal;
- 2 $\mathsf{E}[B_t] = 0$ and $\mathrm{Cov}(B_s, B_t) = s \wedge t$ for any $s, t \geq 0$;

o sample paths of B are almost surely continuous.

Proof.

Try it yourself.

Exercises

Let $B = (B_t)_{0 \le t < \infty}$ be a Brownian motion.

Exercise 14.1

Prove Theorem 14.9.

Exercise 14.2

Let c > 0. Show that $X = (X_t)_{0 \le t < \infty}$ is also a Brownian motion where

$$X_t = c^{-1/2} B_{ct}.$$

Exercise 14.3

Let
$$Y = \int_0^1 B_s ds$$
. Find $E[Y]$ and $E[Y^2]$

Exercise 14.4

Let a > 0 and $\mathcal{F}_t = \sigma(B_t)$. Show that $(G_t)_{0 \le t < \infty}$ is a martingale where

$$G_t = \exp\left(aB_t - \frac{1}{2}a^2t
ight).$$

Exercise 14.5

For $t \in [0, 1]$, let $X_t = \int_0^t f(s) dB_s$ denote the stochastic integral defined in (2). Show that for any $s, t \ge 0$, $Cov(X_s, X_t) = \int_0^{s \wedge t} f^2(u) du$.

- Patrick Billingsley. Convergence of probability measures. John Wiley & Sons, 2013.
- [2] Rick Durrett. Probability: theory and examples, volume 49. Cambridge university press, 2019.
- [3] Ioannis Karatzas and Steven Shreve. *Brownian motion and stochastic calculus*, volume 113. Springer Science & Business Media, 2012.
- [4] Achim Klenke. Probability theory: a comprehensive course. Springer Science & Business Media, 2013.