Unit 14: Brownian Motion

Instructor: Quan Zhou

Fall 2023

Continuous-time stochastic processes

Let $(\Omega, \mathcal{F}, \mathrm{P})$ be a probability space. We say $\left(X_{t}\right)_{0 \leq t<\infty}$, a collection of random variables defined on $(\Omega, \mathcal{F}, \mathrm{P})$ indexed by $t \in[0, \infty)$, is a continuous-time stochastic process.

Sample path

For each $\omega \in \Omega$, the function $t \mapsto X_{t}(\omega)$ is said to be a sample path or trajectory of the process $X=\left(X_{t}\right)_{0 \leq t<\infty}$.

Finite-dimensional distributions

The finite-dimensional distributions of X refer to the distributions of $\left(X_{t_{1}}, X_{t_{2}}, \ldots, X_{t_{n}}\right)$ for any $n \geq 1$ and $0 \leq t_{1}<t_{2} \leq \cdots<t_{n}<\infty$.

Equivalence between stochastic processes

Theorem 14.1

Let X and Y be two stochastic processes. Consider the following.
(1) $\mathrm{P}\left(X_{t}=Y_{t}\right.$ for every $\left.0 \leq t<\infty\right)=1$ (indistinguishable).
(2) $\mathrm{P}\left(X_{t}=Y_{t}\right)=1$ for every $0 \leq t<\infty$ (modification).
(3) X and Y have the same finite-dimensional distributions.

Then (1) $\Rightarrow(2) \Rightarrow(3)$.

Proof.

Try it yourself.

Continuous-time martingales

Let $\left(\mathcal{F}_{t}\right)_{0 \leq t<\infty}$ be a filtration (i.e., non-decreasing σ-algebras) such that X is adapted to $\left(\mathcal{F}_{t}\right)_{0 \leq t<\infty}$ (i.e., $X_{t} \in \mathcal{F}_{t}$ for each t). Further, assume that $\mathrm{E}\left|X_{t}\right|<\infty$ for each t.

Submartingales, supermartingales and martingales

- X is a submartingale if $\mathrm{E}\left[X_{t} \mid \mathcal{F}_{s}\right] \geq X_{s}$, a.s. for any $0 \leq s<t<\infty$.
- X is a supermartingale if $-X$ is a submartingale.
- X is a martingale if it is both a supermartingale and a submartingale.

Many results for discrete-time martingales (e.g. upcrossing inequality, Doob's inequality, optional sampling theorem) continue to hold for continuous-time martingales with right-continuous paths.

Brownian motion

Brownian motion is the foundation of continuous-time martingales.

Definition 14.2

We say $B=\left(B_{t}\right)_{0 \leq t<\infty}{ }^{a}$ is a standard one-dimensional Brownian motion (i.e., Wiener process) if
(1) $B_{0}=0$;
(2) for any $t_{0}<t_{1}<\cdots<t_{n}, B\left(t_{0}\right), B\left(t_{1}\right)-B\left(t_{0}\right), \ldots, B\left(t_{n}\right)-B\left(t_{n-1}\right)$ are independent;
(3) for any $s, t \geq 0, B(s+t)-B(s) \sim N(0, t)$;
(9) sample paths of B are almost surely continuous.
${ }^{2}$ We will sometimes write $B(t)$ instead of B_{t}.

Numerical simulation of Brownian motion

Here is the R code.

```
\(\mathrm{h}=0.001\)
\(\mathrm{N}=1 / \mathrm{h}\)
\(Z=\operatorname{rnorm}(N\), mean=0, sd=sqrt(h))
\(B=c(0, \operatorname{cumsum}(Z))\)
plot ((0:N)/N, B, type='l', xlab='time', ylab='B_t')
```


Numerical simulation of Brownian motion

Construction of Brownian motion: Method 1

We first consider how to construct a Brownian motion on the time interval $[0,1]$. The method we use will also justify the simulation scheme used in the previous slides and lead to the famous Donsker's theorem.

Construction of Brownian motion: Method 1

Let Z_{1}, Z_{2}, \ldots be i.i.d. random variables with mean zero and variance $\sigma^{2} \in(0, \infty)$. Define $S_{n}=Z_{1}+\cdots+Z_{n}$ and set $S_{0}=0$. Define $\left(X_{t}^{n}\right)_{0 \leq t \leq 1}$ as the scaled linear interpolation of $\left(S_{j}\right)_{1 \leq j \leq n}$:

$$
\begin{aligned}
X_{t}^{n} & =\frac{1}{\sigma \sqrt{n}} S_{\lfloor n t\rfloor}+(n t-\lfloor n t\rfloor) \frac{1}{\sigma \sqrt{n}} Z_{\lfloor n t\rfloor+1} \\
& =: \frac{1}{\sigma \sqrt{n}} S_{\lfloor n t\rfloor}+E_{n, t} .
\end{aligned}
$$

Note that $E_{n, t} \xrightarrow{\mathrm{P}} 0$ as $n \rightarrow \infty$. Since $\lfloor n t\rfloor / n \rightarrow t, S_{\lfloor n t\rfloor} / \sigma \sqrt{n}$ (and thus X_{t}^{n}) converges in distribution to $\sqrt{t} N(0,1)$ by CLT.

Construction of Brownian motion: Method 1

Similarly, an application of the multivariate CLT yields that, for any $0 \leq t_{0}<t_{1}<\cdots<t_{m} \leq 1,\left(X^{n}\left(t_{0}\right), X^{n}\left(t_{1}\right), \ldots, X^{n}\left(t_{m}\right)\right)$ converges in distribution to the finite-dimensional distribution specified in Definition 14.2 (i.e., a multivariate normal distribution with independent increments).

To show that this implies the existence of Brownian motion, we need

- Prohorov's theorem,
- Kolmogorov-Chentsov continuity theorem (see Method 2),
- Arzelà-Ascoli theorem (see [4]).

Prohorov's theorem

Let (S, d) be a metric space and $\mathcal{B}(S)$ denote the Borel σ-algebra (i.e., the σ-algebra generated by all open sets w.r.t. the metric d).

Relatively compactness and tightness

Let Π be a collection of probability measures on $(S, \mathcal{B}(S))$. We say Π is relatively compact if every sequence of probability measures in Π contains a weakly convergence subsequence (with limit being another probability measure on $(S, \mathcal{B}(S)))$. We say Π is tight if for every $\epsilon>0$, there is a compact set $K \subset S$ such that $\inf _{\mathrm{P} \in \Pi} \mathrm{P}(K) \geq 1-\epsilon$

Theorem 14.3

Suppose (S, d) is complete and separable. Then Π is relatively compact if and only if it is tight.

Construction of Brownian motion: Method 1

Space $\mathcal{C}([0,1])$

Let $\mathcal{C}([0,1])$ be the space of continuous functions on $[0,1]$ endowed with the metric

$$
d\left(\omega_{1}, \omega_{2}\right)=\sup _{0 \leq t \leq 1}\left|\omega_{1}(t)-\omega_{2}(t)\right|
$$

It can be shown that $(\mathcal{C}([0,1]), d)$ is complete and separable.

By construction each X^{n} takes values in $\mathcal{C}([0,1])$. Let P^{n} denote the distribution of X^{n}. If we can show $\left(P_{n}\right)_{n \geq 1}$ is tight, then Prohorov's theorem implies that $\left(\mathrm{P}_{n}\right)_{n \geq 1}$ has a subsequence converging weakly to some probability measure W. In particular, the process X defined on $(\mathcal{C}([0,1]), \mathcal{B}(\mathcal{C}([0,1])), W)$ by $X_{t}(\omega)=\omega(t)$ is a Brownian motion. W is known as Wiener measure.

Construction of Brownian motion: Method 1

This argument can be extended to $\mathcal{C}([0, \infty))$, the space of all continuous functions on $[0, \infty)$, with metric

$$
d(x, y)=\sum_{n=1}^{\infty} \frac{1}{2^{n}} \max _{0 \leq t \leq n}(|x(t)-y(t)| \wedge 1)
$$

$(\mathcal{C}([0, \infty)), d)$ is complete and separable. Further, $\mathcal{B}(\mathcal{C}([0, \infty))$ coincides with the σ-algebra generated by the collection of sets

$$
\left\{\omega \in \mathcal{C}([0, \infty)):\left(\omega\left(t_{1}\right), \omega\left(t_{2}\right), \ldots, \omega\left(t_{n}\right)\right) \in A\right\}, \quad n \geq 1, A \in \mathcal{B}\left(\mathbb{R}^{n}\right)
$$

We omit the proof of the tightness of $\left(P_{n}\right)_{n \geq 1}$, which requires Kolmogorov-Chentsov continuity theorem and Arzelà-Ascoli theorem.

Donsker's theorem

With some extra work, we obtain the following functional CLT.
Theorem 14.4
Let Z_{1}, Z_{2}, \ldots be i.i.d. random variables with mean zero and variance $\sigma^{2} \in(0, \infty)$. Define $S_{n}=Z_{1}+\cdots+Z_{n}$ and set $S_{0}=0$. Define $X^{n}=\left(X_{t}^{n}\right)_{0 \leq t<\infty}$ by

$$
X_{t}^{n}=\frac{1}{\sigma \sqrt{n}} S_{\lfloor n t\rfloor}+(n t-\lfloor n t\rfloor) \frac{1}{\sigma \sqrt{n}} Z_{\lfloor n t\rfloor+1}
$$

The distribution of X^{n} converges weakly to the Wiener measure as $n \rightarrow \infty$.

Construction of Brownian motion: Method 2

Let $\mathbb{R}^{[0, \infty)}$ denote the set of all real-valued functions on $[0, \infty)$ and $\mathcal{B}\left(\mathbb{R}^{[0, \infty)}\right)$ be the σ-algebra generated by the collection of sets

$$
\left\{\omega \in \mathbb{R}^{[0, \infty)}:\left(\omega\left(t_{1}\right), \omega\left(t_{2}\right), \ldots, \omega\left(t_{n}\right)\right) \in A\right\}, \quad n \geq 1, A \in \mathcal{B}\left(\mathbb{R}^{n}\right)
$$

The second method for constructing Brownian motion directly finds a stochastic process X on $\mathbb{R}^{[0, \infty)}$ that is distributed as a Brownian motion.

Construction of Brownian motion: Method 2

A standard application of Kolmogorov extension theorem yields the following result.

Theorem 14.5

For every $x \in \mathbb{R}$, there exists a probability measure P_{x} on $\left(\mathbb{R}^{[0, \infty)}, \mathcal{B}\left(\mathbb{R}^{[0, \infty)}\right)\right)$ such that $\mathrm{P}_{x}\{\omega: \omega(0)=x\}=1$ and for any
$0=t_{0}<t_{1}<\cdots<t_{n}$ and Borel sets A_{1}, \ldots, A_{n}, we have

$$
P_{x}\left(\left\{\omega: \omega\left(t_{i}\right) \in A_{i}\right\}\right)=\int_{A_{1}} \cdots \int_{A_{n}} \prod_{k=1}^{n} p_{t_{k}-t_{k-1}}\left(x_{k-1}, x_{k}\right) \mathrm{d} x_{n} \cdots \mathrm{~d} x_{1},
$$

where $x_{0}=0$ and

$$
p_{t}(x, y)=\frac{1}{\sqrt{2 \pi t}} e^{-(y-x)^{2} / 2 t}
$$

Construction of Brownian motion: Method 2

Choosing $x=0$ in the previous theorem, we get a probability measure that satisfies conditions (1), (2), (3) in Definition 14.2. But condition (4) is hard to satisfy. Indeed, we have the following result:

Lemma 14.6
$\left\{A \subset \mathcal{C}([0, \infty)): A \in \mathcal{B}\left(\mathbb{R}^{[0, \infty)}\right)\right\}=\{\emptyset\}$.

For example, $\mathcal{C}([0, \infty))$ is not measurable.

Construction of Brownian motion: Method 2

Main idea: construct the discrete-time version of Brownian motion at $t \in \mathbb{Q}$ and then extend it to \mathbb{R}.

Question: Does a continuous function $f: \mathbb{Q} \rightarrow \mathbb{R}$ always have a continuous extension to \mathbb{R} ?

Consider the function $f: \mathbb{Q} \rightarrow \mathbb{R}$ defined by $f(x)=0$ if $x<\sqrt{2}$ and $f(x)=1$ if $x>\sqrt{2}$.

Continuity of functions

Hölder continuity

Let $f: S \rightarrow \mathbb{R}$ for some $S \subset \mathbb{R}$. We say f is Hölder continuous of order $\gamma>0$ (or γ-Hölder continuous) at x if there exist $\epsilon>0, C<\infty$ such that for any $y \in(x-\epsilon, x+\epsilon)$,

$$
\begin{equation*}
|f(y)-f(x)| \leq C|y-x|^{\gamma} \tag{1}
\end{equation*}
$$

If (1) holds for any x, y and some fixed $C<\infty$, then we say f is Hölder continuous of order γ.

When $\gamma=1$, this is known as Lipschitz continuity.

Continuity of functions

Assume $\gamma \in(0,1]$.
Pointwise:
Differentiable at $x \Rightarrow$ Lipschitz continuous at $x \Rightarrow \gamma$-Hölder continuous at $x \Rightarrow$ continuous at x.

Global:
Continuously differentiable \Rightarrow Lipschitz continuous $\Rightarrow \gamma$-Hölder continuous \Rightarrow uniformly continuous \Rightarrow continuous.

If $f: \mathbb{Q} \rightarrow \mathbb{R}$ is uniformly continuous, it has a unique continuous extension from \mathbb{Q} to \mathbb{R}.

Kolmogorov-Chentsov theorem

For simplicity, we consider the time interval $[0,1]$ first.

Theorem 14.7

Let $\left(X_{t}\right)_{0 \leq t \leq 1}$ be real-valued. Suppose there exist $\alpha, \beta>0, C<\infty$ s.t.

$$
\mathrm{E}\left(\left|X_{t}-X_{s}\right|^{\alpha}\right) \leq C|t-s|^{1+\beta}, \quad \text { for all } s, t \in[0,1]
$$

Then, for any $\gamma<\beta / \alpha$, for almost every ω there exists $C(\omega)$ s.t.

$$
\left|X_{t}(\omega)-X_{s}(\omega)\right| \leq C(\omega)|t-s|^{\gamma}, \quad \text { for all } s, t \in \mathbb{Q}_{2} \cap[0,1]
$$

where $\mathbb{Q}_{2}=\left\{k 2^{-n}: n, k \geq 0\right\}$ denotes the dyadic rationals. Further, there is a modification (unique up to indistinguishability) $\tilde{X}=\left(\tilde{X}_{t}\right)_{0 \leq t \leq 1}$ of X whose paths are a.s. Hölder continuous of order γ.

Construction of Brownian motion: Method 2

On $\left(\mathbb{R}^{[0,1]}, \mathcal{B}\left(\mathbb{R}^{[0,1]}\right)\right)$, we have shown that there is a probability measure P under which the process X defined by $X_{t}(\omega)=\omega(t)$ has stationary, independent, and normally distributed increments, and $\mathrm{P}\left(X_{0}=0\right)=1$.

By Kolmogorov-Chentsov theorem, there is a modification B of X such that B is a.s. Hölder continuous of order $\gamma \in(0,1 / 2)$, since

$$
\mathrm{E}\left(\left|X_{t}-X_{s}\right|^{2 k}\right)=C_{k}|t-s|^{k}, \quad \text { for } k \geq 1 \text { and some } C_{k}<\infty .
$$

Because B has the same finite-dimensional distributions as X, B is a Brownian motion.

Construction of Brownian motion: Method 2

Using a limiting argument, we can extend the construction of B_{t} to $t \in[0, \infty)$. The paths of $\left(B_{t}\right)_{0 \leq t<\infty}$ are a.s. locally Hölder continuous of order $\gamma \in(0,1 / 2)$ (see [4] for the definition).

How about $\gamma \geq 1 / 2$?

Theorem 14.8

For any $\gamma>1 / 2$, the paths of Brownian motion are a.s. nowhere γ-Hölder continuous (i.e., not γ-Hölder continuous at any t).

This implies that paths of Brownian motion are a.s. nowhere differentiable.

Construction of Brownian motion: Method 3

The last method constructs Brownian motion as an L^{2}-limit.
Consider the time interval $[0,1]$ equipped with the Lebesgue measure λ. Let $L^{2}([0,1])$ be the Hilbert space of square integrable (w.r.t. λ) functions with inner product

$$
\langle f, g\rangle=\int_{[0,1]} f(x) g(x) \lambda(\mathrm{d} x)
$$

Let $\left(b_{n}\right)_{n \geq 1}$ be an orthonormal basis; that is, $\left\langle b_{n}, b_{m}\right\rangle=\mathbb{1}_{\{n=m\}}$, and

$$
\lim _{n \rightarrow \infty}\left\|f-\sum_{k=1}^{n}\left\langle f, b_{k}\right\rangle b_{k}\right\|=0, \quad \forall f \in L^{2}([0,1])
$$

Construction of Brownian motion: Method 3

Let Z_{1}, Z_{2}, \ldots be i.i.d. $N(0,1)$ random variables defined on some probability space (Ω, \mathcal{F}, P). For each $n \geq 1$ and $t \in[0,1]$, define

$$
\begin{aligned}
X_{t}^{n} & =\sum_{i=1}^{n}\left\langle\mathbb{1}_{[0, t]}, b_{i}\right\rangle Z_{i} \\
& =\int_{[0, t]}\left(\sum_{i=1}^{n} Z_{i} b_{i}(s)\right) \lambda(\mathrm{d} s) .
\end{aligned}
$$

It can be shown that $\left(X_{t}^{n}\right)_{n \geq 1}$ converges in L^{2} to some random variable X_{t}. Further, the process $\left(X_{t}\right)_{0 \leq t \leq 1}$ has the same finite-dimensional distributions as Brownian motion.

Construction of Brownian motion: Method 3

For example, let $b_{1}=1$ and $b_{n}(x)=\sqrt{2} \cos ((n-1) \pi x)$ for $n \geq 2$. Then,

$$
X_{t}^{n}=Z_{1} t+\sum_{k=1}^{n-1} \frac{\sqrt{2} \sin (k \pi t)}{k \pi} Z_{k+1}
$$

Construction of Brownian motion: Method 3

We can still use Kolmogorov-Chentsov continuity theorem to show that X has a continuous modification. But now we have a shortcut. By choosing a proper orthonormal basis of $L^{2}([0,1])$, we can have $\left\|X^{n}-X\right\|_{\infty} \xrightarrow{\text { a.s. }} 0$. Since a uniform limit of continuous functions is again continuous, this would guarantee that X is continuous a.s. and thus X is a Brownian motion. See [4, Chap. 21.5].

This is also known as Lévy's construction of Brownian motion.

Application to stochastic integrals

Let $\left(b_{n}\right)_{n \geq 1}$ be an orthonormal basis of $L^{2}([0,1])$ such that

$$
B_{t}=\sum_{i=1}^{\infty}\left\langle\mathbb{1}_{[0, t]}, b_{i}\right\rangle Z_{i}
$$

is a Brownian motion. Given $f \in L^{2}([0,1])$ and $t \in[0,1]$, we define

$$
\begin{align*}
\int_{0}^{t} f(s) \mathrm{d} B_{s} & =\int_{[0, t]} f(s)\left(\sum_{i=1}^{\infty} Z_{i} b_{i}(s)\right) \lambda(\mathrm{d} s) \tag{2}\\
& =\sum_{i=1}^{\infty}\left\langle f \mathbb{1}_{[0, t]}, b_{i}\right\rangle Z_{i}
\end{align*}
$$

This is called the stochastic integral of f w.r.t. B.

Another characterization of Brownian motion

Theorem 14.9

Equivalently, $B=\left(B_{t}\right)_{0 \leq t<\infty}$ is a standard one-dimensional Brownian motion if
(1) B is a Gaussian process; that is, all finite dimensional distributions are multivariate normal;
(2) $\mathrm{E}\left[B_{t}\right]=0$ and $\operatorname{Cov}\left(B_{s}, B_{t}\right)=s \wedge t$ for any $s, t \geq 0$;
(3) sample paths of B are almost surely continuous.

Proof.

Try it yourself.

Exercises

Let $B=\left(B_{t}\right)_{0 \leq t<\infty}$ be a Brownian motion.

Exercise 14.1

Prove Theorem 14.9.

Exercise 14.2

Let $c>0$. Show that $X=\left(X_{t}\right)_{0 \leq t<\infty}$ is also a Brownian motion where

$$
X_{t}=c^{-1 / 2} B_{c t} .
$$

Exercise 14.3

Let $Y=\int_{0}^{1} B_{s} \mathrm{~d} s$. Find $\mathrm{E}[Y]$ and $\mathrm{E}\left[Y^{2}\right]$.

Exercises

Exercise 14.4

Let $a>0$ and $\mathcal{F}_{t}=\sigma\left(B_{t}\right)$. Show that $\left(G_{t}\right)_{0 \leq t<\infty}$ is a martingale where

$$
G_{t}=\exp \left(a B_{t}-\frac{1}{2} a^{2} t\right) .
$$

Exercise 14.5

For $t \in[0,1]$, let $X_{t}=\int_{0}^{t} f(s) \mathrm{d} B_{s}$ denote the stochastic integral defined in (2). Show that for any $s, t \geq 0, \operatorname{Cov}\left(X_{s}, X_{t}\right)=\int_{0}^{s \wedge t} f^{2}(u) \mathrm{d} u$.

References

[1] Patrick Billingsley. Convergence of probability measures. John Wiley \& Sons, 2013.
[2] Rick Durrett. Probability: theory and examples, volume 49. Cambridge university press, 2019.
[3] loannis Karatzas and Steven Shreve. Brownian motion and stochastic calculus, volume 113. Springer Science \& Business Media, 2012.
[4] Achim Klenke. Probability theory: a comprehensive course. Springer Science \& Business Media, 2013.

