
Unit 13: Mabinogion Sheep Problem

Instructor: Quan Zhou

13.1 Problem formulation

Mabinogion sheep problem. Consider a magical flock of sheep; some are
black, and the others are white. At each time n ∈ N = {1, 2, . . . }, a sheep
is drawn randomly (with equal probability) from the whole flock and bleats.
If the bleating sheep is white, one black sheep becomes white instantly; if
the bleating sheep is black, a white sheep becomes black. Of course when
all sheep are black or all are white, this magical process stops. Now suppose
that we are allowed to do the following: at each time n ∈ N, we can remove
any number of white sheep from the flock. The Mabinogion sheep problem
asks how to maximize the expected final number of black sheep.

Constructing the stochastic process of interest. Let’s first develop a
mathematical formulation of the problem. We use πn to denote the number
of white sheep we remove before the bleating at time n, and use W π

n , B
π
n to

denote the numbers of white and black sheep after the bleating at time n.
The bivariate stochastic process (W π

n , B
π
n)n≥0 can be constructed as follows.

Let (Ω,F ,P) be a probability space on which we have independent ran-
dom variables W0, B0 and (Un)n≥1 such that U1, U2, . . . are i.i.d. with uniform
distribution on [0, 1]. Let W π

0 = W0, Bπ
0 = B0. For each n ≥ 1, we define

(W π
n , B

π
n) = f(W π

n−1, B
π
n−1, πn, Un) where

f(w, b, π, u) =


(w − π − 1, b+ 1), if (w − π) ∧ b > 0, u ≤ b

w−π+b
,

(w − π + 1, b− 1), if (w − π) ∧ b > 0, u > b
w−π+b

,

(w − π, b), if (w − π) ∧ b ≤ 0.

This implies that if W π
n−1 − πn > 0, Bπ

n−1 > 0, then

P(W π
n = W π

n−1 − πn + 1, Bπ
n = Bπ

n−1 − 1 |W π
n−1, B

π
n−1, πn) =

W π
n−1 − πn

W π
n−1 − πn +Bπ

n−1

,

P(W π
n = W π

n−1 − πn − 1, Bπ
n = Bπ

n−1 + 1 |W π
n−1, B

π
n−1, πn) =

Bπ
n−1

W π
n−1 − πn +Bπ

n−1

,

which is the dynamics described in the Mabinogion sheep problem.
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Admissible policies. We will also call π = (πn)n≥1 a policy, and we say a
policy π is admissible if for each n ≥ 1, (i) πn ∈ {0, 1, 2, . . . ,W π

n−1} a.s., and
(ii) πn = πn((W π

0 , B
π
0 ), . . . , (W π

n−1, B
π
n−1)); that is, πn is measurable w.r.t.

Fπn−1 = σ((W π
k , B

π
k )0≤k≤n−1). Let Π denote the set of all admissible policies.

Remark 13.1. In property (ii) above, we can also replace Fπn−1 with a

larger σ-algebra F̃n−1 = σ(W0, B0, U1, U2, . . . , Un−1). The latter is larger,
since for any admissible π and n ≥ 1, (W π

n , B
π
n) is a measurable function of

W0, B0, U1, U2, . . . , Un. But note that given (W π
n , B

π
n)n≥0, we cannot exactly

recover the sequence (Un)n≥1.

Objective. Our goal is to find maxπ∈Π E[Bπ
∞], where Bπ

∞ = limn→∞B
π
n

denotes the final number of black sheep.

Lemma 13.1. Suppose W0 = w0, B0 = b0 a.s. for some w0, b0 ≥ 0. For any
π ∈ Π, let T π = inf{n ≥ 0: min{W π

n , B
π
n} = 0}. Then, E[T π] < ∞, and

thus Bπ
∞ = limn→∞B

π
n exists.

Proof. Let N = W0 +B0 and fix some π ∈ Π. As long as Bπ
n−1 > 0, we have

Bπ
n−1

W π
n−1 − πn +Bπ

n−1

≥ 1

N
,

since πn ≥ 0 and the total number of sheep cannot increase. This implies
that P(T π ≤ n+N | Fπn ) ≥ N−N . Hence, E[T π] <∞, which implies T π <∞,
a.s. The asserted result follows since Bπ

∞ exists on the event {T π <∞}.

Value function. It will be convenient to solve this problem for all possible
initial states simultaneously. Let N0 = {0, 1, 2, . . . }. For any (w, b) ∈ N2

0,
we can define a new probability measure on (Ω,F) (assuming that it is suffi-
ciently rich) such that W π

0 = w,Bπ
0 = b, a.s. and the distribution of (Un)n≥1

remains the same. Denote this probability measure by Pw,b and the corre-
sponding expectation by Ew,b. Define

V (w, b) = max
π∈Π

Ew,b[B
π
∞]. (1)

We want to find the expression for V (w, b).

2
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13.2 Optimal policy

Solution. We claim that the optimal policy is given by π∗n = g(W ∗
n−1, B

∗
n−1),

where (W ∗
n , B

∗
n) = (W π∗

n , Bπ∗
n ) denotes the optimally controlled process and

the measurable function g is defined by

g(w, b) =

{
max{0, w − b+ 1}, if w > 0, b > 0,

0, otherwise.

Under the policy π∗, once there is no black or white sheep, the whole process
stops (i.e., the values of W ∗

n , B
∗
n no longer change). And if there are more

white sheep than black sheep (assuming there is at least one black sheep),
we reduce the number of white sheep to that of black sheep minus one. The
probability that a black sheep bleats at time n is given by p(W ∗

n−1, B
∗
n−1)

where the measurable function p is defined by

p(w, b) =
b

w − g(w, b) + b
.

Now define
v(w, b) = Ew,b[B

∗
∞]. (2)

To prove the optimality of π∗ is equivalent to showing that v = V , where V
is defined in (1). The next lemma describes how to find v.

Lemma 13.2. The function v : N2
0 → [0,∞) defined in (2) is the unique

solution to the following system of equations:

(i) v(0, b) = b for any b ∈ N.

(ii) v(w, b) = v(w − 1, b) for any (w, b) such that w ≥ b and w > 0.

(iii) v(w, b) = w
w+b

v(w + 1, b − 1) + b
w+b

v(w − 1, b + 1) for any (w, b) such
that w < b, b > 0 and w > 0.

Proof. Condition (i) is obvious, since the whole process stops at time 0 if
W ∗

0 = 0. To prove conditions (ii) and (ii), we will use a Markov chain ar-
gument. Write F∗n = Fπ∗

n . Observe that under the policy π∗, (W ∗
n , B

∗
n)n≥0

is a bivariate Markov chain; that is, the conditional distribution of (W ∗
n , B

∗
n)

given F∗n−1 is the same as the conditonal distribution of (W ∗
n , B

∗
n) given

(W ∗
n−1, B

∗
n−1). More explicitly, given W ∗

n−1 = w,B∗n−1 = b,

3
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◦ if w = 0 or b ≤ 1, then W ∗
n = w − g(w, b) and B∗n = b;

◦ if w ≥ 1 and b ≥ 2, then with probability 1 − p(w, b), we have W ∗
n =

w − g(w, b) + 1, B∗n = b − 1; with probability p(w, b), we have W ∗
n =

w − g(w, b)− 1, B∗n = b+ 1.

In the first case where w = 0 or b ≤ 1, the process stops at either time 0
(if w = 0 or b = 0) or time 1 (if w ≥ 1, b = 1), and thus v(w, b) = b. To
characterize v in the second case, we use standard results from Markov chain
theory (which we do not prove here) to get

E

[
lim
m≥n

B∗m

∣∣∣W ∗
n = w,B∗n = b

]
= Ew,b

[
lim
m≥0

B∗m

]
= v(w, b)

whenever P(W ∗
n = w,B∗n = b) > 0. Hence, by applying the law of total

expectation and conditioning on W ∗
1 , B

∗
1 , we find that if w ≥ 1 and b ≥ 2,

v(w, b) = (1− p(w, b)) v(w − g(w, b) + 1, b− 1)+

p(w, b) v(w − g(w, b)− 1, b+ 1).
(3)

Now consider condition (ii). It clearly holds if b = 0 and w > 0 (v = 0 in
this case). If w ≥ b > 0, we have w − g(w, b) = b− 1. By (3),

v(w, b) =
b− 1

2b− 1
v(b, b− 1) +

b

2b− 1
v(b− 2, b+ 1) = v(b− 1, b).

This proves condition (ii). For condition (iii), observe that in this case we
have g(w, b) = 0, and then condition (iii) follows from (3).

We leave it as an exercise to show that conditions (i), (ii), (iii) uniquely
determine v.

To elucidate the line of reasoning behind our proof of the optimality of π∗,
we will first prove a theorem by assuming that the function v has a certain
property. Later we will show that this assumption always holds.

Theorem 13.1. Suppose that Xπ
n = v(W π

n , B
π
n) is a supermartingale w.r.t.

(Fπn )n≥0 for any π ∈ Π, where v is as given in Lemma 13.2. Then, v = V ,
where V is defined in (1).

4
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Proof. Fix arbitrary w, b and let W0 = w,B0 = b. By Lemma 13.2, Bπ
∞

exists, and an analogous argument shows that W π
∞ also exists. Since W π

n , B
π
n

take values in N, we have

Xπ
∞ = lim

n→∞
Xπ
n = v(W π

∞, B
π
∞) = Bπ

∞,

where in the last equality we have used min{W π
∞, B

π
∞} = 0, which holds by

Lemma 13.2. By (2), v should be non-negative. Hence, Corollary 5.1 implies
that E[Bπ

∞] = E[Xπ
∞] ≤ Xπ

0 = v(w, b). Since v(w, b) = Ew,b[B
∗
π], this shows

that v coincides with V .

Lemma 13.3. The assumption in Theorem 13.1 holds; i.e., Xπ
n = v(W π

n , B
π
n)

is a supermartingale w.r.t. (Fπn )n≥0 for any π ∈ Π.

Proof. We prove a slightly stronger result: (Xπ
n )n≥0 is a supermartingale

w.r.t. (F̃n)n≥0, where F̃n = σ(W0, B0, U1, . . . , Un) (recall Remark 13.1). We
claim that it suffices to show that

(a) v(w, b) ≥ v(w − 1, b) if w > 0;

(b) v(w, b) ≥ w
w+b

v(w + 1, b− 1) + b
w+b

v(w − 1, b+ 1) if w > 0, b > 0.

To see this, recall that we can write (W π
n , B

π
n) = f(W π

n−1, B
π
n−1, πn, Un) for

some measurable function f . Hence, Xπ
n = (v ◦ f)(W π

n−1, B
π
n−1, πn, Un). It

follows that

E[Xπ
n | F̃n−1] = E

[
Xπ
n |W π

n−1, B
π
n−1, πn

]
,

since Un is independent of F̃n−1. If W π
n−1 − πn = 0 or Bπ

n−1 = 0, the process
stops at time n before the bleating, which yields

E
[
Xπ
n |W π

n−1, B
π
n−1, πn

]
= Bπ

n−1

= v(W π
n−1 − πn, Bπ

n−1) ≤ v(W π
n−1, B

π
n−1) = Xπ

n−1

where the inequality follows from condition (a). If W π
n−1 − πn > 0 and

Bπ
n−1 > 0, we use conditions (a) and (b) to get

E
[
Xπ
n |W π

n−1 = w,Bπ
n−1 = b, πn = π

]
=

w − π
w − π + b

v(w − π + 1, b− 1) +
b

w − π + b
v(w − π − 1, b+ 1)

≤ v(w − π, b)
≤ v(w, b) = Xπ

n−1.

Proof of conditions (a) and (b) is left as an exercise.
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Exercise 13.1. Find v(10, 10) for v given in Lemma 13.2. (Of course, you
can write computer code to calculate this.)

Exercise 13.2. Complete the proof of Lemma 13.3; that is, prove conditions
(a) and (b).

Exercise 13.3. Let Z1, Z2, . . . be i.i.d. with P(Z1 = 1) = p and P(Z1 =
−1) = 1 − p =: q, and let Fn = σ(Z1, . . . , Zn). We interpret Zn as your
winnings per unit stake in the n-th game. Let S0 > 0 represent your initial
balance, and πn be your stake in the n-th game. We say π = (πn)n≥1 is
admissible if (i) π is previsible w.r.t. (Fn)n≥0, and (ii) 0 ≤ πn ≤ Sπn−1 for
each n, where Sπn denotes your balance after the n-th game. That is, the
dynamics of (Sn)n≥0 is given by

Sπn = Sπn−1 + πnZn.

Given some fixed N ∈ {1, 2, . . . }, we want to find the optimal strategy π
that maximizes E[log(SπN/S0)]. Solve the following questions.

(i) For any s > 0, find the maximum of E[logSπn |Sπn−1 = s] over all admis-
sible choices of πn.

(ii) Show that for any admissible π, Y π
n = logSπn−nα is a supermartingale,

where α = p log p+ q log q + log 2.

(iii) Find the admissible π that maximizes E[log(SπN/S0)] and prove your
claim.
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