Unit 11: Backwards Martingales

Instructor: Quan Zhou

11.1 Convergence of backwards martingales

Definition 11.1. A sequence of random variables $\left(X_{n}\right)_{n \leq 0}$ adapted to an increasing sequence of σ-algebras $\left(\mathcal{F}_{n}\right)_{n \leq q^{1}}$ is said to be a backwards martingale (or reversed martingale) w.r.t $\left(\mathcal{F}_{n}\right)_{n \leq 0}$, if for each $n \leq-1$, we have (i) $\mathrm{E}\left|X_{n}\right|<\infty$, and (ii) $\mathrm{E}\left[X_{n+1} \mid \mathcal{F}_{n}\right]=X_{n}$, a.s.

Remark 11.1. The first term in $\left(X_{n}\right)_{n \leq 0}$ is X_{0}, the second is X_{-1}, and so on. We are particularly interested in what happens as $n \rightarrow-\infty$. Compared to forward martingales, the key difference is that the σ-algebra \mathcal{F}_{n} decreases as $n \rightarrow-\infty$. The following lemma explains why the theory for backwards martingales is easier.

Lemma 11.1. Let $\left(X_{n}\right)_{n \leq 0}$ be a backwards martingale. Then, $\left(X_{n}\right)_{n \leq 0}$ is uniformly integrable.

Proof. For any $n \leq 0$, we have $\mathrm{E}\left[X_{0} \mid \mathcal{F}_{n}\right]=X_{n}$. Hence, the result follows from Theorem 8.4.

Theorem 11.1. For a backwards martingale $\left(X_{n}\right)_{n \leq 0}$, as $n \rightarrow-\infty, X_{n}$ converges a.s. and in L^{1} to some $X_{-\infty}$.

Proof. For $n \leq 0$, let $U_{n}^{a, b}$ be the number of upcrossings of $[a, b]$ completed by X_{n}, \ldots, X_{0}. Lemma 5.1 yields that

$$
(b-a) \mathrm{E} U_{n}^{a, b} \leq \mathrm{E}\left(X_{0}-a\right)^{-}
$$

Since $\mathrm{E}\left|X_{0}\right|<\infty$, letting $n \rightarrow-\infty$ yields that $\mathrm{E} U_{-\infty}^{a, b}<\infty$. Mimicking the proof of Theorem 5.1, we see that $X_{-\infty}=\lim _{n \rightarrow-\infty} X_{n}$ exists a.s. (but is possibly infinite). Fatou's lemma yields $\mathrm{E}\left|X_{-\infty}\right| \leq \liminf _{n \rightarrow-\infty} \mathrm{E}\left|X_{n}\right|$, which is finite, since $\left(X_{n}\right)_{n \leq 0}$ is uniformly integrable by Lemma 11.1. The uniform integrability also implies that he convergence also occurs in L^{1}.

Lemma 11.2. Let $\left(X_{n}\right)_{n \leq 0}$ be a backwards martingale, $X_{-\infty}=\lim _{n \rightarrow-\infty} X_{n}$, and $\mathcal{F}_{-\infty}=\cap_{n \leq 0} \mathcal{F}_{n}$. Then, $X_{-\infty}=\mathrm{E}\left[X_{0} \mid \mathcal{F}_{-\infty}\right]$.

[^0]Proof. Clearly, $X_{-\infty} \in \mathcal{F}_{n}$ for each $n \leq 0$. Hence, $X_{-\infty} \in \mathcal{F}_{-\infty}$. To prove the claim, it remains to show that for any $A \in \mathcal{F}_{-\infty}, \mathrm{E}\left[X_{-\infty} \mathbb{1}_{A}\right]=\mathrm{E}\left[X_{0} \mathbb{1}_{A}\right]$. Since $A \in \mathcal{F}_{-\infty}$ implies $A \in \mathcal{F}_{n}$ for each n, we have

$$
X_{n} \mathbb{1}_{A}=\mathbb{1}_{A} \mathrm{E}\left[X_{0} \mid \mathcal{F}_{n}\right]=\mathrm{E}\left[X_{0} \mathbb{1}_{A} \mid \mathcal{F}_{n}\right] .
$$

Taking expectations on both sides yields $\mathrm{E}\left[X_{n} \mathbb{1}_{A}\right]=\mathrm{E}\left[X_{0} \mathbb{1}_{A}\right]$. Theorem 11.1 implies $X_{n} \mathbb{1}_{A}$ converges in L^{1} to $X_{-\infty} \mathbb{1}_{A}$. Hence, $\mathrm{E}\left[X_{-\infty} \mathbb{1}_{A}\right]=\mathrm{E}\left[X_{0} \mathbb{1}_{A}\right]$.

Theorem 11.2. Let X be an integrable random variable and $\mathcal{F}_{-\infty}=\cap_{n \leq 0} \mathcal{F}_{n}$. Then, $\mathrm{E}\left[X \mid \mathcal{F}_{n}\right]$ converges to $\mathrm{E}\left[X \mid \mathcal{F}_{-\infty}\right]$ a.s. and in L^{1}.

Proof. Define $X_{n}=\mathrm{E}\left[X \mid \mathcal{F}_{n}\right]$ for $n \leq 0$, which is a backwards martingale. Hence, $X_{n} \rightarrow X_{-\infty}$ a.s. and in L^{1}, where $X_{-\infty}=\mathrm{E}\left[X_{0} \mid \mathcal{F}_{-\infty}\right]$ by Lemma 11.2 , But $\mathrm{E}\left[X_{0} \mid \mathcal{F}_{-\infty}\right]=\mathrm{E}\left[X \mid \mathcal{F}_{-\infty}\right]$ by the tower property.

Exercise 11.1. Let $\left(X_{n}\right)_{n \leq 0}$ be a backwards martingale with $\mathrm{E}\left[\left|X_{0}\right|^{p}\right]<\infty$ for some $p>1$. Show that X_{n} converges to $X_{-\infty}($ as $n \rightarrow-\infty)$ in L^{p}.

11.2 Application of backwards martingales

Theorem 11.3. Let Z_{1}, Z_{2}, \ldots be i.i.d. integrable random variables with $\mathrm{E} Z_{1}=\mu$. Let $S_{n}=Z_{1}+\cdots+Z_{n}$. Then S_{n} / n converges to μ a.s. and in L^{1} as $n \rightarrow \infty$.

Proof. For each $n \geq 1$, define $X_{-n}=S_{n} / n$, and $\mathcal{F}_{-n}=\sigma\left(S_{n}, Z_{n+1}, Z_{n+2}, \ldots\right)$. Then, $\left(X_{n}\right)_{n \leq-1}$ is adapted to $\left(\mathcal{F}_{n}\right)_{n \leq-1}$. We show that it is indeed a backwards martingale. For $n \geq 1$, we have

$$
\begin{aligned}
\mathrm{E}\left[X_{-n} \mid \mathcal{F}_{-(n+1)}\right] & =\mathrm{E}\left[\left.\frac{S_{n}}{n} \right\rvert\, \mathcal{F}_{-(n+1)}\right] \\
& =\mathrm{E}\left[\left.\frac{S_{n+1}-Z_{n+1}}{n} \right\rvert\, \mathcal{F}_{-(n+1)}\right] \\
& =\frac{S_{n+1}}{n}-\mathrm{E}\left[\left.\frac{Z_{n+1}}{n} \right\rvert\, \mathcal{F}_{-(n+1)}\right] .
\end{aligned}
$$

The i.i.d. assumption implies that

$$
\mathrm{E}\left[\left.\frac{Z_{n+1}}{n} \right\rvert\, \mathcal{F}_{-(n+1)}\right]=\mathrm{E}\left[\left.\frac{Z_{n+1}}{n} \right\rvert\, S_{n+1}\right]=\frac{S_{n+1}}{n(n+1)}
$$

where the last equality follows from the fact that $\mathrm{E}\left[Z_{1} \mid S_{n+1}\right]=\cdots=$ $\mathrm{E}\left[Z_{n+1} \mid S_{n+1}\right]$. Hence,

$$
\mathrm{E}\left[X_{-n} \mid \mathcal{F}_{-(n+1)}\right]=\frac{S_{n+1}}{n}-\frac{S_{n+1}}{n(n+1)}=\frac{S_{n+1}}{n+1}=X_{-(n+1)}
$$

Hence, by Theorem 11.1, as $n \rightarrow \infty, X_{-n}=S_{n} / n$ converges a.s. and in L^{1} to some $X_{-\infty}$. Note that the convergence in L^{1} implies $\mathrm{E}\left[X_{-\infty}\right]=\mu$. Since $X_{-\infty}$ is in the tail σ-algebra generated by $\left(Z_{n}\right)_{n \geq 1}$, Kolmogorov's zero-one law implies that $X_{-\infty}$ must be a constant; that is, $X_{-\infty}=\mu$, a.s.

Definition 11.2. Let $(\Omega, \mathcal{F}, \mathcal{P})$ be given by $\Omega=\left\{\left(\omega_{1}, \omega_{2}, \ldots\right): \omega_{i} \in \mathbb{R}\right\}$ and $\mathcal{F}=\mathcal{B}(\mathbb{R}) \times \mathcal{B}(\mathbb{R}) \times \cdots$. Define $X_{n}(\omega)=\omega_{n}$. Let \mathbb{S}_{n} be the permutation group on $\{1,2, \ldots, n\}$. Given $\pi \in \mathbb{S}_{n}$ and $A \in \mathcal{F}$, define

$$
\pi^{-1} A=\left\{\omega \in \Omega:\left(\omega_{\pi(1)}, \ldots, \omega_{\pi(n)}, \omega_{n+1}, \ldots\right) \in A\right\}
$$

Let \mathcal{E}_{n} be the σ-algebra generated by all events A such that $A=\pi^{-1} A$ for every $\pi \in \mathbb{S}_{n}$. Let $\mathcal{E}=\cap_{n \geq 1} \mathcal{E}_{n}$ be the exchangeable σ-algebra.

Remark 11.2. Let $\mathcal{T}=\cap_{n \geq 1} \sigma\left(X_{n}, X_{n+1}, \ldots\right)$ be the tail σ-algebra generated by $\left(X_{n}\right)_{n \geq 1}$. Then, $\mathcal{T} \subset \mathcal{E}$, but not vice versa; that is, a tail event must be exchangeable, but an exchangeable event may not be a tail event.

Theorem 11.4 (Hewitt-Savage zero-one law). Consider the setting of Definition 11.2. If X_{1}, X_{2}, \ldots are i.i.d. and $A \in \mathcal{E}$, then $\mathrm{P}(A)=0$ or 1 .

Sketch of proof. Suppose for any $n \geq 1$ and bounded function f,

$$
\begin{equation*}
\mathrm{E}\left[f\left(X_{1}, \ldots, X_{n}\right) \mid \mathcal{E}\right]=\mathrm{E}\left[f\left(X_{1}, \ldots, X_{n}\right)\right] . \tag{1}
\end{equation*}
$$

This implies that \mathcal{E} is independent of $\sigma\left(X_{1}, \ldots, X_{n}\right)$ for every n. Then, one can use the argument in the proof of Kolmogorov's zero-one law to show that \mathcal{E} is independent of \mathcal{F}, which proves the asserted the result.

To prove (1), define $Y_{-m}=\mathrm{E}\left[f\left(X_{1}, \ldots, X_{n}\right) \mid \mathcal{E}_{m}\right]$ for each $m \geq n$. Since \mathcal{E}_{m} is monotone decreasing, $\left(Y_{-m}\right)_{m \geq n}$ is a backwards martingale with respect to $\left(\mathcal{E}_{m}\right)_{m \geq n}$. Hence, $Y_{-m} \rightarrow Y_{-\infty}=\mathrm{E}\left[f\left(X_{1}, \ldots, X_{n}\right) \mid \mathcal{E}\right]$ a.s. It is not difficult to prove, using the i.i.d. assumption, that

$$
\begin{equation*}
\mathrm{E}\left[f\left(X_{1}, \ldots, X_{n}\right) \mid \mathcal{E}_{m}\right]=\frac{(m-n)!}{m!} \sum_{a \in \mathcal{S}([m], n)} f\left(X_{a_{1}}, \ldots, X_{a_{n}}\right) \tag{2}
\end{equation*}
$$

where $[m]=\{1,2, \ldots, m\}$, and

$$
\mathcal{S}(I, n)=\left\{\left(a_{1}, \ldots, a_{n}\right): a_{1}, \ldots, a_{n} \text { are distinct, and } \forall i, a_{i} \in I\right\}
$$

A straightforward calculation shows that, a.s.,

$$
\frac{(m-n)!}{m!}\left\{\sum_{a \in \mathcal{S}([m], n)} f\left(X_{a_{1}}, \ldots, X_{a_{n}}\right)-\sum_{a \in \mathcal{S}([m] \backslash\{1\}, n)} f\left(X_{a_{1}}, \ldots, X_{a_{n}}\right)\right\}
$$

converges to zero as $m \rightarrow \infty$. That is, the limit of $\mathrm{E}\left[f\left(X_{1}, \ldots, X_{n}\right) \mid \mathcal{E}_{m}\right]$ is independent of X_{1}. By repeating this argument, we find that $\mathrm{E}\left[f\left(X_{1}, \ldots, X_{n}\right) \mid \mathcal{E}\right]$ is independent of $\sigma\left(X_{1}, \ldots, X_{n}\right)$, which implies (1).

Theorem 11.5 (de Finetti's Theorem). Consider the setting of Definition 11.2, and assume X_{1}, X_{2}, \ldots are exchangeable; that is, for any n and $\pi \in \mathbb{S}_{n}$, $\left(X_{1}, \ldots, X_{n}\right)$ and $\left(X_{\pi(1)}, \ldots, X_{\pi(n)}\right)$ have the same distribution. Then, conditional on $\mathcal{E}, X_{1}, X_{2}, \ldots$ are i.i.d.

Proof. Proof is omitted.
Theorem 11.6. If X_{1}, X_{2}, \ldots are exchangeable and take values in $\{0,1\}$, then there exists a probability distribution μ on $[0,1]$ such that

$$
\mathrm{P}\left(X_{1}=1, \ldots, X_{k}=1, X_{k+1}=0, \ldots, X_{n}=0\right)=\int_{0}^{1} y^{k}(1-y)^{n-k} \mu(\mathrm{~d} y)
$$

Proof. Proof is omitted.
Exercise 11.2. Consider the setting of Definition 11.2. Find an event which is in \mathcal{E} but not necessarily in \mathcal{T}.

Exercise 11.3. Let X_{1}, X_{2}, \ldots be exchangeable with $\mathrm{E}\left[X_{1}^{2}\right]<\infty$. Prove that $\mathrm{E}\left[X_{1} X_{2}\right] \geq 0$.

References

[1] Rick Durrett. Probability: theory and examples, volume 49. Cambridge university press, 2019.

[^0]: 1 "Increasing" means that $\cdots \subset \mathcal{F}_{-2} \subset \mathcal{F}_{-1} \subset \mathcal{F}_{0}$.

