
Unit 11: Backwards Martingales

Instructor: Quan Zhou

11.1 Convergence of backwards martingales

Definition 11.1. A sequence of random variables (Xn)n≤0 adapted to an
increasing sequence of σ-algebras (Fn)n≤0

1 is said to be a backwards martin-
gale (or reversed martingale) w.r.t (Fn)n≤0, if for each n ≤ −1, we have (i)
E|Xn| <∞, and (ii) E[Xn+1 | Fn] = Xn, a.s.

Remark 11.1. The first term in (Xn)n≤0 is X0, the second is X−1, and so
on. We are particularly interested in what happens as n→ −∞. Compared
to forward martingales, the key difference is that the σ-algebra Fn decreases
as n → −∞. The following lemma explains why the theory for backwards
martingales is easier.

Lemma 11.1. Let (Xn)n≤0 be a backwards martingale. Then, (Xn)n≤0 is
uniformly integrable.

Proof. For any n ≤ 0, we have E[X0 | Fn] = Xn. Hence, the result follows
from Theorem 8.4.

Theorem 11.1. For a backwards martingale (Xn)n≤0, as n → −∞, Xn

converges a.s. and in L1 to some X−∞.

Proof. For n ≤ 0, let Ua,b
n be the number of upcrossings of [a, b] completed

by Xn, . . . , X0. Lemma 5.1 yields that

(b− a)EUa,b
n ≤ E(X0 − a)−.

Since E|X0| < ∞, letting n → −∞ yields that EUa,b
−∞ < ∞. Mimicking the

proof of Theorem 5.1, we see that X−∞ = limn→−∞Xn exists a.s. (but is
possibly infinite). Fatou’s lemma yields E|X−∞| ≤ lim infn→−∞ E|Xn|, which
is finite, since (Xn)n≤0 is uniformly integrable by Lemma 11.1. The uniform
integrability also implies that he convergence also occurs in L1.

Lemma 11.2. Let (Xn)n≤0 be a backwards martingale, X−∞ = limn→−∞Xn,
and F−∞ = ∩n≤0Fn. Then, X−∞ = E[X0 | F−∞].

1“Increasing” means that · · · ⊂ F−2 ⊂ F−1 ⊂ F0.
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Proof. Clearly, X−∞ ∈ Fn for each n ≤ 0. Hence, X−∞ ∈ F−∞. To prove
the claim, it remains to show that for any A ∈ F−∞, E[X−∞1A] = E[X01A].
Since A ∈ F−∞ implies A ∈ Fn for each n, we have

Xn1A = 1A E[X0 | Fn] = E[X01A | Fn].

Taking expectations on both sides yields E[Xn1A] = E[X01A]. Theorem 11.1
implies Xn1A converges in L1 to X−∞1A. Hence, E[X−∞1A] = E[X01A].

Theorem 11.2. Let X be an integrable random variable and F−∞ = ∩n≤0Fn.
Then, E[X | Fn] converges to E[X | F−∞] a.s. and in L1.

Proof. Define Xn = E[X | Fn] for n ≤ 0, which is a backwards martingale.
Hence, Xn → X−∞ a.s. and in L1, whereX−∞ = E[X0 | F−∞] by Lemma 11.2.
But E[X0 | F−∞] = E[X | F−∞] by the tower property.

Exercise 11.1. Let (Xn)n≤0 be a backwards martingale with E[|X0|p] < ∞
for some p > 1. Show that Xn converges to X−∞ (as n→ −∞) in Lp.

11.2 Application of backwards martingales

Theorem 11.3. Let Z1, Z2, . . . be i.i.d. integrable random variables with
EZ1 = µ. Let Sn = Z1 + · · ·+ Zn. Then Sn/n converges to µ a.s. and in L1

as n→∞.

Proof. For each n ≥ 1, defineX−n = Sn/n, and F−n = σ(Sn, Zn+1, Zn+2, . . . ).
Then, (Xn)n≤−1 is adapted to (Fn)n≤−1. We show that it is indeed a back-
wards martingale. For n ≥ 1, we have

E[X−n | F−(n+1)] = E

[
Sn
n

∣∣∣F−(n+1)

]
= E

[
Sn+1 − Zn+1

n

∣∣∣F−(n+1)

]
=
Sn+1

n
− E

[
Zn+1

n

∣∣∣F−(n+1)

]
.

The i.i.d. assumption implies that

E

[
Zn+1

n

∣∣∣F−(n+1)

]
= E

[
Zn+1

n

∣∣∣Sn+1

]
=

Sn+1

n(n+ 1)
.
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where the last equality follows from the fact that E[Z1 |Sn+1] = · · · =
E[Zn+1 |Sn+1]. Hence,

E[X−n | F−(n+1)] =
Sn+1

n
− Sn+1

n(n+ 1)
=

Sn+1

n+ 1
= X−(n+1).

Hence, by Theorem 11.1, as n → ∞, X−n = Sn/n converges a.s. and in L1

to some X−∞. Note that the convergence in L1 implies E[X−∞] = µ. Since
X−∞ is in the tail σ-algebra generated by (Zn)n≥1, Kolmogorov’s zero-one
law implies that X−∞ must be a constant; that is, X−∞ = µ, a.s.

Definition 11.2. Let (Ω,F ,P) be given by Ω = {(ω1, ω2, . . . ) : ωi ∈ R} and
F = B(R) × B(R) × · · · . Define Xn(ω) = ωn. Let Sn be the permutation
group on {1, 2, . . . , n}. Given π ∈ Sn and A ∈ F , define

π−1A = {ω ∈ Ω: (ωπ(1), . . . , ωπ(n), ωn+1, . . . ) ∈ A}.

Let En be the σ-algebra generated by all events A such that A = π−1A for
every π ∈ Sn. Let E = ∩n≥1En be the exchangeable σ-algebra.

Remark 11.2. Let T = ∩n≥1σ(Xn, Xn+1, . . . ) be the tail σ-algebra gener-
ated by (Xn)n≥1. Then, T ⊂ E , but not vice versa; that is, a tail event must
be exchangeable, but an exchangeable event may not be a tail event.

Theorem 11.4 (Hewitt-Savage zero-one law). Consider the setting of Defi-
nition 11.2. If X1, X2, . . . are i.i.d. and A ∈ E, then P(A) = 0 or 1.

Sketch of proof. Suppose for any n ≥ 1 and bounded function f ,

E[f(X1, . . . , Xn) | E ] = E[f(X1, . . . , Xn)]. (1)

This implies that E is independent of σ(X1, . . . , Xn) for every n. Then, one
can use the argument in the proof of Kolmogorov’s zero-one law to show that
E is independent of F , which proves the asserted the result.

To prove (1), define Y−m = E[f(X1, . . . , Xn) | Em] for each m ≥ n. Since
Em is monotone decreasing, (Y−m)m≥n is a backwards martingale with respect
to (Em)m≥n. Hence, Y−m → Y−∞ = E[f(X1, . . . , Xn) | E ] a.s. It is not difficult
to prove, using the i.i.d. assumption, that

E[f(X1, . . . , Xn) | Em] =
(m− n)!

m!

∑
a∈S([m],n)

f(Xa1 , . . . , Xan), (2)
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where [m] = {1, 2, . . . ,m}, and

S(I, n) = {(a1, . . . , an) : a1, . . . , an are distinct, and ∀ i, ai ∈ I}.

A straightforward calculation shows that, a.s.,

(m− n)!

m!

 ∑
a∈S([m],n)

f(Xa1 , . . . , Xan)−
∑

a∈S([m]\{1},n)

f(Xa1 , . . . , Xan)


converges to zero as m→∞. That is, the limit of E[f(X1, . . . , Xn) | Em] is in-
dependent ofX1. By repeating this argument, we find that E[f(X1, . . . , Xn) | E ]
is independent of σ(X1, . . . , Xn), which implies (1).

Theorem 11.5 (de Finetti’s Theorem). Consider the setting of Definition 11.2,
and assume X1, X2, . . . are exchangeable; that is, for any n and π ∈ Sn,
(X1, . . . , Xn) and (Xπ(1), . . . , Xπ(n)) have the same distribution. Then, con-
ditional on E, X1, X2, . . . are i.i.d.

Proof. Proof is omitted.

Theorem 11.6. If X1, X2, . . . are exchangeable and take values in {0, 1},
then there exists a probability distribution µ on [0, 1] such that

P(X1 = 1, . . . , Xk = 1, Xk+1 = 0, . . . , Xn = 0) =

∫ 1

0

yk(1− y)n−kµ(dy).

Proof. Proof is omitted.

Exercise 11.2. Consider the setting of Definition 11.2. Find an event which
is in E but not necessarily in T .

Exercise 11.3. Let X1, X2, . . . be exchangeable with E[X2
1 ] < ∞. Prove

that E[X1X2] ≥ 0.
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